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Abstract. The aim of this publication (this paper together with several its
continuations) is to present algebra as a branch of mathematics treating the contents
close to the usual teaching matter. The whole exposition presupposes not a large
frame of knowledge: operations with integers and fractions, square roots, removing of
parentheses and other transformations of literal terms, properties of inequalities. The
exposition clusters round a number of main themes: “Number”, “Polynomial”, “Set”,
each of which is treated in a series of chapters listed in Preface.

Preface

In the school mathematical education algebra has the role of Cinderella and
geometry of Beloved Daughter. The extent of the geometrical knowledge, studied
in school, coincides approximately with the development in this field attained in
Ancient Greece and embodied in Euclid’s “Elements” (III century B.C.). For long,
geometry had been taught after Euclid and, only at a later time, some simplified
versions appeared. In spite of all changes introduced into geometry course, the
influence of Euclid and the spirit of the grandiose scientific revolution of Hellenic
era continued to last. More than once I met people saying: “I have not chosen
mathematics to be my profession, but I will remember forever all the beauty of
logical construction of geometry with the precise derivations of more and more
complex statements starting with the simplest”.

Unfortunately, not even once I heard a similar reaction concerning algebra.
The school course of algebra is a strange mixture of useful rules, logical reasonings,
practices of how to use such auxilliary tools as tables of logarithms or a microcal-
culator. In its spirit, such a course is closer to the type of mathematical knowledge
formed in Ancient Egypt or Babylon than to the direction of development which
started in Ancient Greece and was continued in Western Europe, in the Renais-
sance period. None the less, algebra is a fundamental, deep and beautiful branch
of mathematics as much as geometry is. Moreover, from the point of view of the
contemporary classification of mathematics, the school course of algebra contains
the elements of several subdivisions of mathematics: algebra, number theory, com-
binatorics and a small part of probability theory.

This paper is an English translation of: I. R. Xafareviq, Izbranye glavy algebry, Matem-
atiqeskoe obrazovanie, 1, 1, apr.--jun 1997, Moskva, str. 5--27. In the opinion of the editors, the
paper merits wider circulation and we are thankful to the author for his kind permission to let us
make this version.
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The aim of this publication (this paper together with several its continuations)
is to exhibit algebra as a branch of mathematics treating the contents close to
the usual teaching matter. The whole exposition resupposes not a large frame
of knowledge: operations with integers and fractions, square roots, cancellation
of brackets and other transformations of literal terms, properties of inequalities.
And all these practices are very well settled until the 9th class. The complexity
of mathematical reasonings somewhat increases as we proceed with the matter. In
order to help the reader digest the text with more ease, we also include some simple
exercises.

The exposition clusters round a number of the main themes: “Number”, “Poly-
nomial”, “Set”, each of which is treated in more than one chapter, and the chapters
related to different themes do not overlap. In the form of appendices, some more
complex questions are selected, which are related to the rest of the text and which
comprise no new facts besides those already in the reader’s mind. In the first
chapters they do not appear.

An expected list of chapters:

Chapter 1. Number.
(Irrationality of

√
2 and other radicals. Unique factorization of a positive

integer as the product of primes.)

Chapter 2. Polynomial.
(Roots and linear factors. Common roots. Interpolation. Multiple roots.

Derivative of a polynomial. Newton’s binomial.)

Chapter 3. Set.
(Finite sets and their subsets. Combinatorics. Some concepts from probability

theory.)

Chapter 4. Number (continued).
(Axioms of real numbers. Properties of polynomials as continuous functions.)

Chapter 5. Polynomial (continued).
(Separation of roots of a polynomial. Sturm’s theorem.)

Chapter 6. Set (continued).
(Infinite sets, countable and uncountable sets.)

Chapter 7. Number (continued).
(Infinite set of prime numbers. Density of the set of prime numbers.)

Appendix I.
(Chebyshev’s estimations of the number of primes less than the given bound.)

Chapter 8. Number (continued).
(Complex numbers.)

Chapter 9. Polynomial (continued).
(The existence of complex root of a polynomial with complex coefficients.)
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Chapter 10. Number (continued).
(Arithmetic of Gauss numbers, number-theoretical applications.)

Chapter 11. Polynomial (continued).
(Constructions by means of compasses and ruler and the solution of equations

by square radicals.)

Chapter 12. Polynomial (continued).
(Symmetric functions.)

Chapter 13. Polynomial (continued).
(Solutions of cubic and biquadratic equations. Nonsolvability by radicals of

equations of degree n > 5.)

Appendix II.
(Equations of degree 5, icosahedron, problem of resolvents.)

Chapter 14. Number (ended).
(Finite fields and finite geometries.)

Appendix III.
(Construction of regular 17-gon.)

Chapter 15. Polynomial (ended).
(Formal power series and infinite products. Applications to number theory.)

CHAPTER I. NUMBER

1. Irrational numbers

Natural numbers arose as a result of counting. The cognition of the fact that
two eyes, two men walking side by side and two oars of a boat have something
in common, expressed by the abstract concept “two”, was an important step in
the logical development of mankind. The step to follow was not made so easily.
Consonance, in many languages, of the word “three” and the words “many” (orig.
“ mnogo”) or “much” (orig. “ slixkom”) bears a record to it. And only step by
step, the idea of infinite series of natural numbers arose.

Gradually, the concept of number was related not only to counting, but also to
measuring of length, area, weight etc. To be more concrete, we will only consider
the length of line segments in the following. First of all, we have to choose a unit
of length: cm, mm, km, light-year, . . . Thus, a segment E is fixed and may be
used for measuring of another segment A. If E is contained in A exactly n times,
then we say that the length of segment A is equal to n (Fig. 1,a). But, as a rule,
it will not happen (Fig. 1,b).



4 I. R. Shafarevich

a) b)

Fig. 1

Then, the unit lessens, breaking up E into m equal segments E′. If E′ is contained
in A exactly n times, then we say that the length of A is equal to

n

m
(relative to

the unit E). Thousands of years, men, in different parts of the world, had applied
this procedure in a variety of situations until the question: is this breaking really
possible?, arose. This completely new setting of question already belongs to the
historical epoch—Pythagoras’ School, in the period of VI or V century B.C. The
segments A and E are called commensurable if there exists a segment E′ exactly
m times contained in E and n times in A. Thus the above question modifies to
the following: are each two segments commensurable? Or further: is the length of
each segment (a unit being fixed) equal to a rational number

n

m
? The answer is

negative and an example of a pair of incommensurable segments is simple. Consider
a square, its side being E and its diagonal A.

THEOREM 1. The side of the square is incommensurable with its diagonal.

Before we proceed with the proof, we give this theorem another form. Accord-
ing to the famous Pythagorean theorem, the area of the square over the hypotenuse
of a right triangle is equal to the sum of areas of the squares over the other two
sides. Or, in other words, the square of the length of the hypotenuse is equal to
the sum of squares of the lengths of the other two sides. However, the diagonal
A of our square is the hypotenuse of the isosceles triangle whose other two sides
coincide with the sides E of the square (Fig. 2) and hence in our case A2 = 2E2,

and if A = nE′, E = mE′, then
( n

m

)2
= 2 or

n

m
=
√

2. Therefore, Theorem 1 can
be reformulated as

THEOREM 2.
√

2 is not a rational number.

Fig. 2 Fig. 3

We shall give a proof of this form of the theorem, but first we make the
following remark. Although we have leaned on the Pythagorean theorem, we have
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actually used it only for the case of an isosceles right triangle, when the conclusion
is evident. Namely, it is enough to complete the Fig. 2 by constructing the square
over the side A (Fig. 3). From known criterions of congruency it follows that all five
small right isosceles triangles in Fig. 3 are congruent. Hence they have the same
area S. But the square whose side is E consists of two such triangles and its area
is E2. Thus, E2 = 2S. Similarly, A2 = 4S. Hence, A2 = 2E2, i.e. (A/E)2 = 2,
which is all we need.

We can now proceed with the proof of Theorem 2. Since our task is to prove
the impossibility of representing

√
2 in the form

√
2 =

n

m
, it is natural to start with

the converse, i.e. to suppose that
√

2 =
n

m
, where n and m are positive integers.

We also suppose that they are relatively prime, for if they have a common factor,
it can be cancelled without changing the ratio

n

m
. By definition of the square root,

the equality
√

2 =
n

m
means that 2 =

( n

m

)2
=

n2

m2
. Multiplying both sides by m2

we obtain the equality
(1) 2m2 = n2,

where m and n are relatively prime positive integers, and it remains to prove that
it is impossible.

Since there is a factor 2 on the left-hand side of (1), the question is naturally
related to the possibility of dividing positive integers by 2. Numbers divisible by
2 are said to be even, and those indivisible by 2 to be odd. Therefore, every even
number k can be written in the form k = 2l, where l is a positive integer, i.e.
we have an explicit expression for even numbers, whereas odd numbers are defined
only by a negative statement—that such an expression does not hold for them. But
it is easy to obtain an explicit expression for odd numbers.

LEMMA 1. Every odd number r can be written in the form r = 2s + 1, where
s is a natural number or 0. Conversely, all such numbers are odd.

The last statement is evident: if r = 2s + 1 were even, it would be of the form
r = 2l, which implies 2l = 2s + 1, i.e. 2(l − s) = 1, which is a contradiction.

In order to prove the first statement, notice that if the odd number r 6 2, then
r = 1 and the representation is true with s = 0. If the odd number r > 1, then
r > 3. Subtracting 2 from it, we obtain the number r1 = r− 2 > 1, and r1 is again
odd. If it is greater then 1, we again subtract 2 and put r2 = r1 − 2. In this way
we obtain a decreasing sequence of numbers r, r1, r2, . . . , where each member is
less than its predecessor by 2. We continue this procedure as long as ri > 1, and
since positive integers cannot decrease indefinitely, we shall arrive at the situation
when we cannot further subtract the number 2, i.e. when ri = 1. We obtain that
ri = ri−1− 2 = ri−2− 2− 2 = · · · = r− 2− 2 · · ·− 2 = r− 2i = 1. Hence r = 2i+1,
as stated.

We can now prove the basic property of even and odd numbers.

LEMMA 2. The product of two even numbers is even, the product of an even
and an odd number is even and the product of two odd numbers is odd.
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The first two statements follow directly from the definition of even numbers: if
k = 2l, then no matter whether m is even or odd, we always have km = 2lm which
is an even number. However, the proof of the last statement requires Lemma 1.
Let k1 and k2 be two odd numbers. By Lemma 1 we can write them in the form
k1 = 2s1 + 1, k2 = 2s2 + 1, where s1 and s2 are natural numbers or 0. Then
k1k2 = (2s1 +1)(2s2 +1) = 4s1s2 +2s1 +2s2 +1 = 2s+1 where s = 2s1s2 +s1 +s2.
As we know, any number of the form 2s + 1 is odd and so k1k2 is odd.

Notice the following particular case of Lemma 2: the square of an odd number
is odd.

Now we can easily finish the proof of Theorem 2. Suppose that the equality
(1) is true where m and n are positive integers, relatively prime. If n is odd, then
by Lemma 2, n2 is also odd, whereas from (1) follows that n2 is even. Hence, n is
even and can be written in the form n = 2s. But m and n are relatively prime, and
so m must be odd (otherwise they would have common factor 2). Substituting the
expression for n into (1) and cancelling by 2, we obtain

m2 = 2s2,

i.e. the square of the odd number m is even, which is in contradiction with Lemma 2.
Theorem 2, and hence Theorem 1, are proved.

Under the supposition that the result of measuring the length of a segment
(with respect to a given unit segment) is a number and that the square root of a
positive number is a number, we can look at Theorems 1 and 2 from a different
point of view. These theorems assert that in the case of the diagonal of a square or
in the case of

√
2, these numbers are not rational, that is to say they are irrational.

This is the simplest example of an irrational number. All the numbers, rational and
irrational, comprise real numbers. In one of the following chapters we shall give a
more precise logical approach to the concept of a real number, and we shall use it
in accordance with the school teaching of mathematics, that is to say we shall not
insist too much on the logical foundations.

Why did such a simple and at the same time important fact, the existence of
irrational numbers, have to wait so long to be discovered? The answer is simple—
because for all practical purposes, we can take, for instance,

√
2 to be a rational

number. In fact, we have

THEOREM 3. No matter how small is a given number ε, it is possible to find
a rational number a =

m

n
, such that a <

√
2 and

√
2− a < ε.

All practical measurements can necessarily be carried out only up to a certain
degree of accuracy, and up to that degree of accuracy we may take

√
2 to be rational.

Hence, we can say that our measurements give us
√

2 as a rational number.
In order to prove Theorem 3 it is enough to write our arbitrarily small number

ε in the form
1

10n
for sufficiently large n, and to find a positive integer k such that

(2)
k

10n
6
√

2 <
k + 1
10n

.
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Then we may take a =
k

10n
, for

√
2− k

10n
<

1
10n

. The inequalities (2) are equivalent

to
k2

102n
6 2 <

(k + 1)2

102n
or k2 6 2 · 102n < (k + 1)2. Since the number n, and so

2·10n, is given, there exists the largest positive integer k whose square is not greater
than 2 · 10n. This is the number we want.

Obviously, the conclusion of Theorem 3 holds not only for the number
√

2, but
also for any positive (for simplicity’s
sake we confine ourselves to them) real
number x. This becomes evident if we
represent x by a point of the number
axis, if we divide the unit length E into

small segments
1

10n
E and cover the

entire line by these segments (Fig. 4).
Fig. 4

Then the last of those points which is not right from x gives the required

rational number: if it is the k-th point, then a =
k

10n
6 x and x− a <

1
10n

.

Now please consider the depth of the assertion contained in Theorems 1 and 2.
This assertion can never be verified by an experiment, since an experiment can
be carried out up to a certain degree of accuracy, and

√
2 can be expressed as

a rational number with any given degree of accuracy. It is an accomplishment
of pure reasoning which could not be achieved even as a result of thousands of
years of experience. It had to wait for the revolution in mathematics carried out
in Ancient Greece in VII–V centuries B.C. No wonder that in the Pythagorean
School those facts were considered to be holy, secret knowledge, not to be shared
with ordinary people. The legend says that Hyppas, a Pythagorean, died in a
shipwreck as a punisment for revealing this secret. A hundred years later Plato
in his book “Laws” narrates how he was astonished when he found that it is not
always possible “to measure a length by a length”. He speaks of his “shameful
ignorance”: “It seemed to me that it is not appropriate for men, but rather for
swine. And I was ashamed not only for myself, but for all Greeks.”

The Theorems 1 and 2 may throw some light onto the question often posed to
mathematics: why prove theorems? The answer that first comes to mind is: in order
to be sure that a statement is true. But sometimes a statement has been verified in
so many particular cases that no one doubts its truth (and physicists often snigger
at mathematicians who prove undoubted truths). But we have seen that a proof
sometimes leads mathematicians into a completely new world of mathematical ideas
and concepts, which would not be discovered otherwise.

Problems

1. Prove that the numbers
√

6 and 3
√

2 are irrational.
2. Prove that the number

√
2 +

√
3 is irrational.



8 I. R. Shafarevich

3. Prove that the number 3
√

3 +
√

2 is irrational.

4. Determine
√

2 with accuracy not less than
1

100
.

5. Prove that every positive integer can be written as a sum of terms of
the form 2k, where all the terms are different. Prove that for each number this
representation is unique.

2. Irrationality of other square roots

It would be interesting to generalize the results of the preceding section. For
example, is it possible to prove in the same way that

√
3 is irrational? Clearly, we

have to adapt the reasoning from the previous section to the new situation.

We want to prove the impossibility of the equality 3 =
( n

m

)2
, or

(3) 3m2 = n2,

where, as in section 1, we may take that the fraction
n

m
cannot be further cancelled,

i.e. that the positive integers m, n are relatively prime. Since in (3) we have the
number 3, it is natural to examine the properties of division by 3. We adapt
Lemmas 1 and 2 to the new case.

LEMMA 3. Every positive integer r is either divisible by 3 or it can be repre-
sented in one of the following forms: r = 3s + 1 or r = 3s + 2, where s is a natural
numbers or 0. The numbers 3s + 1 and 3s + 2 are not divisible by 3.

The last statement is evident. If, for example, n = 3s + 1 were divisible
by 3, we would have 3s + 1 = 3m, i.e. 3(m − s) = 1, which is a contradiction. If
n = 3s + 2 were divisible by 3 we would have 3s + 2 = m. i.e. 3(m− s) = 2, again
a contradiction. We prove the first statement of Lemma 3 by the same procedure
used to prove Lemma 1. If r is not divisible by 3 and is less than 3, then r = 1 or
r = 2 and the given representation holds with s = 0. If r > 3, then subtracting 3
from it we get r1 = r − 3 > 0 and r1 is again not divisible by 3. We continue to
subtract the number 3 and we obtain the sequence r, r1 = r − 3, r2 = r − 3 − 3,
. . . , rs = r−3−3−· · ·−3, where we cannot subtract 3 any more, since as noticed
above, rs = 1 or rs = 2. As a result we have two possibilities: r − 3s = 1, i.e.
r = 3s + 1 or r − 3s = 2, i.e. r = 3s + 2, as stated.

In the formulation of the following lemma we take from the formulation of
Lemma 2 only that part which we shall use later.

LEMMA 4. The product of two positive integers not divisible by 3 is itself not
divisible by 3.

Let r1 and r2 be two positive integers not divisible by 3. According to Lemma 3
for each one there are two possibilities: the number can be written in the form 3s+1
or in the form 3s + 2. Hence, there are altogether four possibilities:

1) r1 = 3s1 + 1, r2 = 3s2 + 1; 2) r1 = 3s1 + 1, r2 = 3s2 + 2;

3) r1 = 3s1 + 2, r2 = 3s2 + 1; 4) r1 = 3s1 + 2, r2 = 3s2 + 2;
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The cases 2) and 3) differ only in the numerations r1 and r2 and it is enough
to consider only one of them (for instance, 2). For the remaining three cases we
multiply out:

1) r1r2 = 9s1s2 + 3s1 + 3s2 + 1 = 3t1 + 1, t1 = 3s1s2 + s1 + s2;

2) r1r2 = 9s1s2 + 6s1 + 3s2 + 2 = 3t2 + 2, t2 = 3s1s2 + 2s1 + s2;

3) r1r2 = 9s1s2 + 6s1 + 6s2 + 4 = 3t3 + 1, t3 = 3s1s2 + 2s1 + 2s2 + 1

(in the last formula we put 4 = 3+1, and group 3 with the numbers divisible by 3).
As a result we obtain numbers of the form 3t+1 and 3t+2 which are not divisible
by 3 (Lemma 3).

Now we can easily carry over Theorem 2 to our case.

THEOREM 3.
√

3 is not a rational number.

The proof follows closely the lines of the proof of Theorem 2. We have to
establish a contradiction starting with the equality (3): 3m2 = n2, where m and n
are relatively prime. If the number n is not divisible by 3, according to Lemma 4
its square is also not divisible by 3. But it is equal to 3m2, which means that n
is divisible by 3: n = 3s. Substituting this into (3) and cancelling by 3 we get
m2 = 3s2. But since n and m are relatively prime and n is divisible by 3, m cannot
be divisible by 3. In view of Lemma 4 its square is also not divisible by 3, but it is
equal to 3s2. This contradiction proves the theorem.

The close parallel between the reasonings used in the two cases we proved
leads us to think that we can carry on. Of course, we do not consider

√
4, since√

4 = 2, but we may apply the same line of reasoning to
√

5. Clearly, we shall
have to prove a lemma analogous to Lemmas 2 and 4, but the number of products
which have to be evaluated will increase. We can verify all of them and conclude
that

√
5 is irrational. We can continue and consider

√
6,
√

7, etc. In each new case
the number of checkings in the proof of the lemma which corresponds to Lemmas
2 and 4 will increase. Considering all natural numbers n, for instance up to 20, we
can conclude that

√
n is irrational, except in those cases when n is the square of an

integer (n = 4, 9 and 16). In this way, having to do more and more calculations,
we can infer that

√
2,
√

3,
√

5,
√

6,
√

7,
√

8,
√

10,
√

11,
√

12,
√

13,
√

14,
√

15,
√

17,√
18 and

√
19 are irrational numbers. This leads to the following conjecture:

√
n is

irrational for all positive integers n which are not squares of positive integers. But
we cannot prove this general conjecture by the reasoning applied up to now, since
in one step of the proof we have to analyse all possible cases.

It is interesting that the road covered by our reasoning was actually covered by
mankind. As we have said, the irrationality of

√
2 was proved by the Pythagoreans.

Later on irrationality of
√

n was proved for some relatively small numbers n, until
the general problem was formulated. About its solution we read in Plato’s dialogue
“Theaetetus”, written in about 400 B.C. The author narrates how the famous
philosopher Socrates met with Theodor, mathematician from Cyrene and his young,
very talented pupil by the name of Theaetetus. Theaetetus had the age of today’s
schoolboy, between 14 and 15 years. Theodor’s comment on his abilities reads: “he
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approaches studying and research with such ease, fluency, eagerness and peace as oil
flows form a pot and I wonder how can one achieve so much at that age”. Further
on, Theaetetus himself informs Socrates about the work he did with a friend, also
called Socrates, a namesake of the philosopher. He says that Theodor informed
them about the incommensurability (to use contemporary terms) of the side of a
square with the unit segment if the area of the square is an integer, but not the
square of an integer. If this area is n, this means that

√
n is irrational. Theodor

proved this for n = 2, 3, 5, and “solving one case after the other, he came up to 17”.
Theaetetus became intersted in the problem and, together with his friend Socrates,
solved it, as it is recorded at the end of the dialogue. We shall not go into the
reasoning of Theodor (there are several hypotheses), but we shall give the proof of
the general statement, following the exposition of Euclid which is, very probably
analogous to the proof of Theaetetus (with a simplification given by Gauss 2000
years later).

We first prove an analog of Lemmas 1 and 3.

THEOREM 4. For any two positive integers n and m there exist integers t
and r, positive or 0, such that r < m and

(4) n = mt + r.

For given n and m this representation is unique.

Representation (4) is called division with remainder of n by m, the number t
is the quotient and r is the remainder.

The proof follows the known line of reasoning. If m > n, the equality (4)
holds with t = 0, r = n. If n > m, then put n1 = n − m. Clearly, n1 > 0. If
n1 > m, put n2 = n1−m. We keep on subtracting m until we arrive at the number
nt = n − m − · · · − m = r, where r > 0 but < m. Thus we obtain the required
representation n−mt = r, i.e. n = mt + r.

We now prove its uniqueness for given n and m. Let

n = mt1 + r1, n = mt2 + r2.

Let t1 6= t2, e.g. t1 > t2. Subtracting the second equality from the first we get:
m(t1 − t2) + r1 − r2 = 0, i.e. m(t1 − t2) = r2 − r1. Since r1 < r2 on the right-hand
side we have a positive number which is less than m, and on the left-hand side a
number divisible by m. This is impossible.

Before we prove an analog of Lemmas 2 and 4 we have to introduce (or rather
to recall) an important concept.

A positive integer, different from 1, is said to be prime if it is divisible only
by itself and by 1. For example, among the first twenty numbers the following are
prime: 2, 3, 5, 7, 11, 13, 17, 19.

Although obvious, the following property is important: every positive integer,
different from 1, has at least one prime divisor. Indeed, if the number n has no
divisors except itself and 1, it is by definition prime and is its own prime divisor. If
n has other divisors, then n = ab, where a < n, b < n. Consider a which again can
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be prime (and hence a prime divisor of n) or it has two factors: a = a1b1. Then
n = a1(b1b) where a1 < a, i.e. a1 is a divisor of n. Continuing this procedure we
obtain a decreasing sequence of divisors of n: ar < · · · < a1 < n. This sequence
has to end somewhere. If it ends at ar, then ar is a prime divisor of n.

We are now able to prove an analog of Lemmas 2 and 4.

THEOREM 5. If the product of two positive integers is divisible by a prime,
then at least one of them is divisible by that prime.

Suppose that we want to prove the theorem for a prime p. We will prove it for
all primes in the increasing order (as, in fact, we did it in the case of Lemma 2 for
p = 2 and Lemma 4 for p = 3). Therefore, when we arrive at p, we can suppose
the theorem has already been proved for all primes q smaller than p. Let n1 ·n2 be
divisible by p and neither n1 nor n2 is divisible by p. Then

(5) n1 · n2 = pa.

Applying Theorem 4 to the pairs n1, p and n2, p, we get

n1 = pt1 + r1, n2 = pt2 + r2,

where r1 and r2 are naturals less than p (and different from 0, for, otherwise, one
of them would be divisible by p). Substituting in (5) and grouping the numbers
divisible by p, we obtain

r1r2 = p(a− t1r2 − t2r1 − pt1t2),

or

(6) r1r2 = pb, b = a− t1r2 − t2r1 − pt1t2

where, now, not alike in (5), r1 < p and r2 < p. If r1 = 1 and r2 = 1, the
contradiction 1 = pb is obtained. Let r1 > 1. We know that r1 has a prime factor
q not greater than r1 and, by that, less than p. Let r1 = qa1. The equality (6),
now, implies

(7) q(a1r1) = pb.

As already said, the theorem can be considered proved for all primes less than p
and, in particular, for q. Being pb divisible by q, one of its factors must also be
divisible by q. Since p is prime, b is divisible by q: b = qb1. Substituting in (7) and
after cancellation, we obtain

a1r2 = pb1

and a1 < r1, b1 < b. If a1 6= 1, proceeding again in the same way, another prime
will be cancelled in the last equality. As the sequence a, a1, . . . of so obtained
numbers is decreasing, we eventually come to an end, finishing with the number 1.
Then, we have r2 = pb′, which is impossible, being r2 < p (and r2 > 0). Thus, the
theorem has been proved.

You have noticed that the above reasoning is similar to the proofs of Lemmas 2
and 4: the statement reduces to the case when in (5), n1 and n2 (or better to
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say r1 and r2) are less than p. But here, consideration of all possible cases and
direct checking are replaced by an elegant reasoning, by which, the theorem can be
taken to be true for smaller values than p. (Euclid proved Theorem 5 somewhat
differently. Most probably, the here presented reasoning belongs to Gauss.)

Now, to prove irrationality in general, no new ideas are needed.

THEOREM 6. If c is a positive integer which is not the square of any positive
integer, then c is not the square of any rational number, i.e.

√
c is irrational.

We may again verify our statement, going from a positive integer to the bigger
one, and thus, we can suppose the theorem has been proved for all smaller c’s.
In that case, we can assume that c is not divisible by the square of any positive
integer greater than 1. Indeed, if c = d2f , d > 1, then f < c and f is not the
square of positive integer, since f = g2 would imply c = (dg)2 which contradicts
the assumption of the theorem. Thus we can assume the theorem has already
been proved for f , and accordingly, take that

√
f is irrational. But then

√
c is

not rational, either. In fact, the equality
√

c =
n

m
, in view of

√
c = d

√
f , yields

n

m
= d

√
f ,
√

f =
n

dm
, which would mean

√
f is rational.

Now we proceed to the main part of the proof. Suppose
√

c is rational and√
c =

n

m
, where n and m are taken, as we already did it before, to be relatively

prime. Then m2c = n2. Let p be a prime factor of c. Put c = pd and d is not
divisible by p, otherwise c would be divisible by p2 and now we consider the case
when c is not divisible by a square. From m2c = n2, it follows that n2 is divisible
by p and, according to Theorem 5, n is divisible by p. Let n = pn1. Using n = pn1

and c = pd and substituting in the relation m2c = n2, we get m2d = pn2
1. Being m

and n relatively prime and n divisible by p, m is not divisible by p. Then, according
to Theorem 5, m2 is not divisible by p, either. And, as we have seen it, d is not
divisible by p because it would imply that c is divisible by p2. Now, the equation
m2d = pn2

1 is contradictory to Theorem 5.
Notice that, in this section, we have more than once derived this or that

property of positive integers taking them one after the other and, first, checking
the property for n = 1 and, then, after supposing its validity for numbers less
than n, we proved it for n.

Here we lean upon a statement which has to be considered as an axiom of
arithmetic.

If a property of positive integers is valid for n = 1 (or n = 2) and if from
its validity for all positive integers less than n, the validity for n follows, then the
property is valid for all positive integers. This statement is called the Principle of
Mathematical Induction or of Total Induction. Sometimes, instead of supposing
the validity for all numbers less than n, only the validity for n− 1 is supposed. A
statement which corresponds to the case n = 1 or n = 2, with which the reasoning
starts (sometimes n = 0 is more convinient) is called the basis of induction and
the statement corresponding to n − 1, the inductive hypothesis. The Principle
of Mathematical Induction is also used to produce a type of definitions, when a
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concept involving a positive integer n is defined by supposing that it has already
been defined for n − 1. For example, when we define an arithmetic progression
using the property that each term is obtained from the preceding one by adding a
constant d, called the common difference, then we have the type of a definition by
induction. To express the definition symbolically, we write

an = an−1 + d.

And to determine the entire progression we only need to know the initial term: a1

or a0.
In one of his treatise, French mathematician and physicist H. Poincaré consid-

ers the question: how is it possible that mathematics, which is founded on proofs
containing syllogisms, that is statements expressed in a finite number of words, does
lead to theorems related to infinite collections (for example, Theorem 6 holds for
infinite set of numbers c; Theorem 2 asserts that 2n2 6= m2 for all positive integers
n and m, the number of which is also infinite). Possibilities for it, Poincaré sees in
the Principle of Mathematical Induction, which, in his words, “contains an infinite
number of syllogisms condensed in a single formula”.

Problems

1. Prove the irrationality of
√

5 by the same method used in the proofs of
Theorems 2 and 3.

2. Prove that the number of positive integers divisible by m and less than n
is equal to the integer part of the quotient, when n is divided by m.

3. Prove that if a positive integer c is not the cube of any positive integer,
then 3

√
c is irrational.

4. Replace the reasoning, connected with succesive subtracting of the num-
ber m in the proof of Theorem 4, by a reference to the Principle of Mathematical
Induction.

5. Using the Principle of Mathematical Induction, prove the formula

1 + 2 + · · ·+ n =
n(n + 1)

2
.

6. Using the Principle of Mathematical Induction, prove the inequality n 6 2n.

3. The prime factorization

In the previous section we have seen that every natural number has a prime
divisor. Starting with this, we can get much more:

THEOREM 7. Every natural number greater than 1 can be expressed as a
product of prime numbers.

If the number p is itself prime, then the equality p = p is considered as a prime
factorization containing only one factor. If the number n > 1 is not prime, it has
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a prime divisor, different from itself: n = p1 · n1 and (since by definition p1 6= 1),
n1 < n. Now we can apply the same reasoning to n1 and continue. We obtain the
factorization n = p1 · . . . · pk ·nk, where p1, . . . , pk are primes and the quotients nk

decrease: n > n1 > n2 > · · · . Since our process must come to an end, we obtain
nr = 1 for some r and the factorization is n = p1 · . . . · pr. Of course, the reader
can easily formulate this proof in a more “scientific” way—using the method of
mathematical induction.

The process used in the proof of Theorem 7 is not uniquely determined: if
the number n has several prime factors, then any of them could be the first one.
For example, 30 can be expressed first as 2 · 15 and then as 2 · 3 · 5 and it is
also possible to express it first as 3 · 10 and then as 3 · 2 · 5. The fact that two
resulting factorizations differ only by the order of their factors, was unpredictable.
If for number 30 we could easily foresee all possibilities, is it so simple to convince
oneself that the number

740037721 = 23623 · 31327

has no other prime factorizations?
In school curricula it is usually assumed, as a self-evident fact, that every given

natural number has only one prime factorization. However, this claim has to be
proved, as the following example shows. Suppose that we know only even numbers
and do not know how to use odd numbers. (It is possible that this is a reflection of
the real historical situation, since in English the term “odd” has also the meaning
“strange”). Repeating literally the definition of the prime number, we should call
“prime” all even numbers which do not factorize into product of two even factors.
For instance, the “prime” numbers would be 2, 6, 10, 14, 18, 22, 26, 30, . . . Then
a given number may have two different “prime” factorizations, for example

60 = 2 · 30 = 6 · 10.

It is also possible to find numbers with more different factorizations, such as

420 = 2 · 210 = 6 · 70 = 10 · 42 = 14 · 30.

Therefore, if the prime factorization is indeed unique, then in the proof of this
statement we must use some properties which express that we are dealing with all
natural numbers and not, say, with even numbers.

Since we are convinced that the uniqueness of the prime factorization is not
self-evident, let us prove it.

THEOREM 8. Any two prime factorizations of a given natural number differ
only by the order of their factors.

The proof of the theorem is not really slef-evident, but all the difficulties have
been already overcome in the proof of Theorem 5. From this theorem everything
follows easily.

First, let us note an obvious generalization of Theorem 5.
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If a product of any number of factors is divisible by a prime number p, then at
least one of them is divisible by p.

Let
n1 · n2 · . . . · nr = p · a.

We shall prove our statement by induction on the number of factors r. When r = 2,
it coincides with Theorem 5. If r > 2, write the equality in the form

n1(n2 · . . . · nr) = p · a.

According to Theorem 5, either n1 is divisible by p—and then the statement is
proved—or n2 · . . . · nr is divisible by p—and then the statement is again true by
the induction hypothesis.

We now prove Theorem 8. Suppose that a number n has two prime factoriza-
tions:

(8) n = p1 · . . . · pr = q1 · . . . · qs.

We see that p1 didvides the product q1 · . . . · qs. By the generalization of Theo-
rem 5, proved earlier, p1 divides one of the numbers q1, . . . , qs. But qi is a prime
number and its only prime divisor is itself. Hence, p1 coincides with one of the qi’s.
Changing their numeration we can take p1 = q1. Cancelling the equality (8) by p1

we get

(9) n′ =
n

p1
= p2 · . . . · pr = q2 · . . . · qs.

This is a statement concerning a smaller number n′ and using mathematical
induction we can take it to be true. Hence the number of factors in the two
factorizations is the same, i.e. r−1 = s−1, implying r = s. Besides, the factors q2,
. . . , qs can be written in such an order that p2 = q2, p3 = q3, . . . , pr = qr. Since
we have already established that p1 = q1, the theorem is proved.

The theorem we just proved can be found in Euclid. Although simple, it was
always considered to be an abstract mathematical theorem. However, in the last
two decades it found an unexpected practical application which we shall shortly
comment. The application is connected with coding, i.e. writing an information in
such a form that it cannot be understood by a person who does not know some
additional information (the key of the code). Namely, it turns out that the problem
of prime factorization of large numbers requests an enormous amount of operations;
this problem is much more involved than the “inverse” problem—multiplication of
prime numbers. For example, it is possible, though tedious, to multiply two prime
numbers, each one having tens of digits (30 or 40 digits, say) in a day and to write
down the result (which will have about 70 digits) in the evening. But factorization
of this number into two primes would take more time, even if we use the best
contemporary computer, than the time which elapsed since the formation of the
Earth. Hence, a pair of large numbers p and q on one hand, and their product
n = pq on the other, give, in view of Theorem 8, the same information, written in
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two different ways, but the transition from the pair p, q to the number n = pq is
easy, whereas the transition from n to the pair p, q is practically impossible. This
is the underlying idea of coding; we omit technical descripiton.

In the prime factorization of a number, certain primes may appear several
times, for insatnce, 90 = 2 · 3 · 3 · 5. We can group together the equal factors and
write 90 = 2 · 32 · 5. Hence, for each positive integer n we have the factorization

(10) n = pα1
1 · pα2

2 · . . . · pαr
r ,

where all the primes p1, . . . , pr differ from one another and the exponents αi > 1.
This factorization is said to be canonical. Of course, such a factorization is unique
for every n.

Knowing the canonical factorization of a number n, we can find out whatever
we want about its divisors. First, if the canonical factorization has the form (10),
then it is obvious that the numbers

(11) m = pβ1
1 · . . . · pβr

r ,

where β1 6 α1, β2 6 α2, . . . , βr 6 αr, are divisors of n, where βi may have the
value 0 (i.e. some of the pi’s which are divisors of n need not be divisors of m).
Conversely, any divisor of n has the form (11). Indeed, if n = mk, then k is a
divisor of n, i.e. it has the form (11): k = pγ1

1 · . . . · pγr
r . Multiplying the canonical

factorizations of m and k and grouping together the powers of equal primes, we
have to arrive at the factorization (10), since this factorization is, by Theorem 8,
unique. When two powers of a prime number are multiplied, their exponents add
up which implies that β1 + γ1 = α1, i.e. β1 6 α1 and similarly β2 6 α2, . . . ,
βr 6 αr.

For example, we can find the sum of the divisors of n. We also take the number
itself, n and also 1 to be its divisors. For instance, n = 30 has the divisors 1, 2,
3, 5, 6, 10, 15, 30 and their sum is 72. Consider first the simplest case when n is
a power of a prime number: n = pα. Then its divisors are the numbers pβ where
0 6 β 6 α, i.e. the numbers 1, p, p2, . . . , pα. We therefore have to find the sum
1 + p + p2 + · · · + pα. There is a general formula (which you may already know)
which gives the sum of consecutive powers of a number:

s = 1 + a + · · ·+ ar.

The derivation of the formula is quite simple: we multiply both sides of the above
equality by a:

sa = a + a2 + · · ·+ ar+1.

We see that the expressions for s and sa consist of almost the same terms, but in
s we have 1 which does not figure in sa, whereas in sa we have ar+1 which does
not figure in s. Hence, after subtracting s from sa, all the terms cancel out, except
those two:

sa− s = ar+1 − 1,
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i.e. s(a− 1) = ar+1 − 1, and

(12) s = 1 + a + a2 + · · ·+ ar =
ar+1 − 1

a− 1
.

Since we have divided by a− 1, we must suppose that a 6= 1.

Therefore, if n = pα the sum of its divisors is 1 + p + · · · + pα =
pα+1 − 1

p− 1
.

Consider now the next case when n has two prime divisors p1 and p2. Its canonical
factorization has the form n = pα1

1 pα2
2 . In view of formula (11), the divisors of n

are pβ1
1 pβ2

2 , where 0 6 β1 6 α1, 0 6 β2 6 α2. Split them up into groups, one
group for each value of β2. So, for β2 = 0 we obtain the divisors 1, p1, p2

1, . . . ,

pα1
1 whose sum is

pα1+1
1 − 1
p1 − 1

. For β2 = 1 we obtain the group p2, p1p2, p2
1p2,

. . . , pα1
1 p2. In order to find the sum of those divisors, we notice that it is equal

to (1 + p1 + p2
1 + · · · + pα1

1 )p2 =
pα1+1
1 − 1
p1 − 1

p2. Similarly, for any value of β2 we

obtain the sum (1 + p1 + p2
1 + · · ·+ pα1

1 )pβ2
2 =

pα1+1
1 − 1
p1 − 1

pβ2
2 . Hence, the total sum

of divisors is

pα1+1
1 − 1
p1 − 1

+
pα1+1
1 − 1
p1 − 1

p2 +
pα1+1
1 − 1
p1 − 1

p2
2 + · · ·+ pα1+1

1 − 1
p1 − 1

pα2
2

=
pα1+1
1 − 1
p1 − 1

(1 + p2 + p2
2 + · · ·+ pα2

2 ).

We evaluate the sum in the parentheses by another application of the formu-
la (12). As a result we conclude that the sum of all divisors of n = pα1

1 pα2
2 is

pα1+1
1 − 1
p1 − 1

· pα2+1
2 − 1
p2 − 1

.

We now pass on to the general case. Consider the product

S′ = (1 + p1 + p2
1 + · · ·+ pα1

1 )(1 + p2 + p2
2 + · · ·+ pα2

2 ) · . . . · (1 + pr + p2
r + · · ·+ pαr

r )

and remove the parentheses. How do we do that? If we have one pair of parentheses,
i.e. an expression of the form (a + b + · · · )k, we multiply each of the summands
a, b, etc. by k and the result is the sum of ak, bk, etc. If we have two pairs
of parentheses (a1 + b1 + c1 + · · · )(a2 + b2 + c2 + · · · ) we multiply each term
from one parentheses by each term from the other and the result is the sum of
all terms a1a2, a1b2, a1c2, b1a2, b1b2, etc. Finally, for any number of parentheses
(a1 + b1 + c1 + · · · )(a2 + b2 + c2 + · · · ) · . . . · (ar + br + cr + · · · ) we take one term
from each, multiply them and then evaluate the sum of all such products. Apply
this rule to our sum S′. The terms in the parentheses have the form pβ1

1 , pβ2
2 ,

. . . , pβr
r (0 6 βi 6 αi). Multiplying them we get pβ1

1 pβ2
2 · · · pβr

r , which is, in view
of (11), a divisor of n, and according to Theorem 8, each one appears only once.
Hence the sum S′ is equal to the sum of the divisors of n. On the other hand, the
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i-th parentheses, according to (12), is equal to
pαi+1

i − 1
pi − 1

, and the product of all
parentheses is

S =
pα1+1
1 − 1
p1 − 1

· pα2+1
2 − 1
p2 − 1

· . . . · pαr+1
r − 1
pr − 1

.

This is the formula for the sum of all divisors. But we have also found the
number of divisors. Indeed, in order to determine the number of divisors we have
to replace each summand in the sum of divisors by 1. Returning to the previous
proof, we see that it is enough to replace each summand in each parentheses of the
product S′ by 1. The first parentheses is then equal to α1 +1, the second to α2 +1,
. . . , the r-th to αr +1. Hence, the number of divisors is (α1+1)(α2+1) · · · (αr +1).
For example, the number of divisors of the number whose canonical factorization
is pαqβ is equal to (α + 1)(β + 1).

In the same way we can derive the formula for the sum of squares or cubes or
generally k-th powers of the divisors of n. The reasoning is the same as the one
applied for finding the sum of the divisors. Verify that the formula for the sum of
k-th powers of all divisors of the number n with the canonical factorization (10) is

(13) S =
p

k(α1+1)
1 − 1

pk
1 − 1

· p
k(α2+1)
2 − 1

pk
2 − 1

· . . . · p
k(αr+1)
r − 1

pk
r − 1

.

We can also investigate common divisors of two positive integers m and n. Let
their canonical factorizations be

(14) n = pα1
1 · . . . · pαr

r , m = pβ1
1 · . . . · pβr

r ,

where in any pair of numbers (αi, βi) one of them may have the value 0—this is
the case when a prime number divides one of the numbers m, n, but not the other.
Then on the basis of what we know about divisors we can say that the number k
is a common factor of m and n if and only if it has the form

k = pγ1
1 · . . . · pγr

r ,

where γ1 6 α1, γ1 6 β1, γ2 6 α2, γ2 6 β2, . . . , γr 6 αr, γr 6 βr. In other words
if σi denotes the smaller of the numbers αi, βi, these conditions become γ1 6 σ1,
γ2 6 σ2, . . . , γr 6 σr. Put

(15) d = pσ1
1 · . . . · pσr

r .

The above reasoning proves that the following theorem is true.

THEOREM 9. For any two numbers with canonical factorization (14), the
number d, defined by (15), divides both n and m, and any common factor of n and
m divides d.

The number d is called the greatest common divisor of n and m and is denoted
by g. c.d.(n,m). It is clear that among all divisors of n and m, d is the greatest,
but it is not obvious that all other common divisors divide it. This follows from
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Theorem 8 (about the uniqueness of prime factorization). That is why we proved
those properties which are usually given in school courses without proof.

As we said earlier, finding the prime factorization of a number is a very difficult
task. Hence we give a different method for finding the greatest common divisor
which does not use prime factorization—this method is often taught at schools. It
is based on Theorem 4. Let n and m be two positive integers and let n = mt + r,
0 6 r < m be the representation eastablished in Theorem 4.

LEMMA 5. If r 6= 0, then g. c.d.(n,m) = g. c. d.(m, r).

More than that: all common divisors of the pairs (n,m) and (m, r) are equal,
and so are the greatest which are divisible by the others. Indeed, any common
divisor d of numbers n and m is a divisor of m and of r, because r = n−mt, and
a common divisor d′ of m and r is a divisor of m and of n, because n = mt + r.

The transition from the pair (n,m) to the pair (m, r) is fruitful since r < m.
We can now apply the same reasoning to the pair (m, r). Let m = rt1 + r1,
0 6 r1 < r. If r1 6= 0, then g. c. d.(m, r) = g. c. d.(r, r1). We continue this process
as long as we can. But the process ends when we get the remainder 0, for example
ri = ri+1ti+2 +0 (ri+2 = 0). But then ri+1 divides ri and clearly g. c. d.(ri, ri+1) =
ri+1. Therefore, the last nonzero remainder in the process of dividing n by m, m
by r, r by r1, etc. is equal to g. c.d.(n,m). This method of finding the g. c. d. is
called Euclid’s algorithm, and it can be found in Euclid. For instance, in order to
find g. c.d.(8891, 2329) we make the following divisions:

8891 = 2329 · 3 + 1904; 2329 = 1904 · 1 + 425;
1904 = 425 · 4 + 204; 425 = 204 · 2 + 17; 204 = 17 · 12 + 0,

and conclude: g. c. d.(8891, 2329) = 17.
The numbers n and m are said to be relatively prime if they have no common

divisor other than 1. This means that g. c.d.(n,m) = 1. Hence, using Euclid’s
algorithm we can find whether two numbers are relatively prime, without knowing
their prime factorizations.

At the end of this chapter we return to the question with which we started:
the question of irrationality. We shall prove a very wide generalization of our first
assertion regarding the irrationality of

√
2. It is in connection with the concept to

which we devote the next chapter and so this can be treated as a kind of introduction
to that chapter.

An expression of the form axk, where a is a number, x is unknown and k a
natural number or 0 (in which case we simply write a), is called monomial. The
number k is its degree, and a is its coefficient. In general, we can consider monomials
in several unknowns, such as ax2y8, but at the moment we are concerned only with
monomials in one unknown. A sum of monomials is a polynomial. If a polynomial
contains several monomials of the same degree, for example axk and bxk, we can
replace them by one monomial, namely (a + b)xk. Having this in mind, we shall
always assume that a polynomial contains only one member of a given degree k
and we write it in the form akxk; for k = 0 we simply have the number a0. The
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greatest degree of all monomials which comprise a polynomial is the degree of the
polynomial. For example, the degree of the polynomial 2x3 − 3x + 7 is 3 and its
coefficients are a0 = 7, a1 = −3, a2 = 0, a3 = 2. Thus, a polynomial of degree n
can be written in the form

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn,

where some of ak’s can be zero, but an 6= 0, because otherwise the degree of the
polynomial would be less than n. The term a0 is called the constant term of the
polynomial, an is its leading coefficient. The equation f(x) = 0 is called an algebraic
equation with one unknown. A number α is called its root if f(α) = 0. A root of
the equation f(x) = 0 is also called a root of the polynomial f(x). Degree of the
polynomial f(x) is the degree of the equation. Obviuosly, the equations f(x) = 0
and cf(x) = 0, where c is a number, distinct from 0, are equivalent.

Now we shall treat such equations f(x) = 0 whose coefficients a0, a1, . . . ,
an are rational numbers, some of which may be equal to 0 or negative. If c is
the common denominator of all, distinct from 0, coefficients, we can pass from the
equation f(x) = 0 to the equation cf(x) = 0 having integer coefficients. In the
sequel we shall treat only such equations. In this connection we shall have to deal
with the divisibility of (not only nonnegative) integers. Recall that an integer a is,
by definition, divisible by an integer b if a = bc for some integer c.

THEOREM 10. Let f(x) be a polynomial with integer coefficients and with
leading coefficient equal to 1. If the equation f(x) = 0 has a rational root α, then
α is an integer and it is a divisor of the constant term of the polynomial f(x).

Let us represent α in the form α = ±a

b
, where the fraction

a

b
is irreducible,

i.e. positive integers a and b are relatively prime. By the condition, the polynomial
f(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1 + xn has integer coefficients ai. Let us

substitute α into the equation f(x) = 0. By the assumption,

(16) a0 + a1

(
±a

b

)
+ · · ·+ an−1

(
±a

b

)n−1

+
(
±a

b

)n

= 0.

Multiply the equation by bn and transfer (±a)n to the right-hand side. All the
terms remaining on the left-hand side will be divisible by b:

(a0b
n−1 + a1(±a)bn−2 + · · ·+ an−1(±a)n−1bn−2)b = (±1)n−1an.

We see that b divides an. If α were not an integer, b would be > 1. Let p be some
of its prime divisors. Then it has to divide an, and by Theorem 5, p divides a, too.
However, by the assumption, a and b are relatively prime and we have obtained a
contradiction. Hence, b = 1 and α = a.

In order to obtain the second assertion of the theorem, let us leave just a0 on
the right-hand side, and transfer all the other terms to the right-hand side (recall
that b = 1). All the terms on the right-hand side are divisible by a:

a0 = a(∓a1 − a2(±a)− · · · − an−1(±a)n−2 − (±a)n−1).

Obviously, it follows that a devides a0.
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Theorem 10 allows us to find rational roots of equations of the given form:
in order to do that we have to list all the divisors of the constant term (with
signs + and −) and check whether they are roots. For example, for the equation
x5 − 13x + 6 = 0 we have to check the numbers ±1, ±2, ±3, ±6. Only x = −2 is a
root.

In such a way, all the roots of a polynomial f(x) with integer coefficients
and the leading coefficinet equal to 1 are irrational, except integer roots which are
included as divisors of the constant term. That is just what we have proved in the
beginning of this Chapter: firstly for f(x) = x2 − 2 (Theorem 2), then for f(x) =
x2−3 (Theorem 3) and finally for f(x) = x2−c, where c is an integer (Theorem 6).
Now we have obtained the widest generalization of all these assertions. It has a lot
of other geometrical applications, besides Theorems 1, 2, 3, 6.

Consider, e.g., the equation

(17) x3 − 7x2 + 14x− 7 = 0.

By Theorem 10, its integer roots can be just divisors of the number −7, i.e. one
of the numbers 1, −1, 7, −7. Substitutions show that neither of these numbers
satisfies the equation. We can conclude that the roots of the equation are irrational
numbers. As a matter of fact, we do not know whether the equation (17) has roots
at all. But, we shall show later that it has roots and even very interesting ones. One
of its roots appears to be the square of the side of the regular heptagon, inscribed
in the circle of radius 1.

Moreover, the equation (17) has three roots, lying:
between 0 and 1, between 2 and 3 and between 3 and 4.
They are the squares of the diagonals of the regular hep-
tagon, inscribed into the unit circle. Here by a diagonal
we mean an arbitrary segment, joining two vertices of a
polygon, so that sides are included as diagonals. The reg-
ular heptagon has three diagonals of different length—
AB, AC and AD (fig. 5). In such a way, all these lengths
are irrational numbers.

Fig. 5

Problems

1. Show that Theorem 5 is not valid if concepts of a number and a “prime” are
understood as applied just to even numbers as has been discussed in the beginning
of this section. Which part of the proof of Theorem 5 appears to be wrong in that
case?

2. Prove that if integers m and n are relatively prime, then divisors of mn
are obtained multiplying divisors of m by divisors of n, and each divisor of mn
can be obtained in this way exactly once. Deduce that if S(N) denote the sum of
k-th powers of all divisors of N , m and n are relatively prime and N = mn, then
S(N) = S(m)S(n). Derive the formula (14) in that way.
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3. A positive integer n is called perfect if it is equal to the sum of its proper
divisors (i.e. the number itself is excluded from the set of its divisors). E.g. numbers
6 and 28 are perfect. Prove that if for some r the number p = 2r − 1 is prime, then
2r−1p is a perfect number (but recall that the formula on the sum of divisors S we
have deduced, includes the number n itself). This proposition was already known
to Euclid. Nearly 2000 years later Euler proved the inverse assertion: each even
perfect number is of the form 2r−1p, where p = 2r−1 is a prime. Proof does not use
any facts other than the ones presented previously, but is by no means easy. Try
to rediscover this proof! By now, it is not known whether there exist odd perfect
numbers.

4. If for two positive integers m and n there exist such integers a and b so that
ma + nb = 1, then obviously m and n are relatively prime: each of their common
divisors is divisible by 1. Prove the converse: for relatively prime numbers m and
n there always exist integers a and b such that ma + nb = 1. Use the division
algorithm and mathematical induction.

5. Using the result of problem 4 prove Lemmas 6 and 7 without using the
theorem on uniqueness of prime factorization. Show that in such a way a new
proof of this theorem (Theorem 8) can be obtained. This was just the way Euclid
proved it.

6. Find integer values of a such that the polynomial xn + ax + 1 has rational
roots.

7. Let f(x) be a polynomial with integer coefficients. Prove that if a reduced
fraction α = ±a

b
is a root of the equation f(x) = 0, then b divides the leading

coefficient and a divides the constant term. This is a generalization of Theorem 10
to the case of a polynomial with integer coefficients where the leading coefficient
need not be equal to 1.

I. R. Shafarevich,

Russian Academy of Sciences,

Moscow, Russia


