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THE FIBONACCI SEQUENCE AND THE GOLDEN QUADRATIC

Abstract. The fact that the golden mean (Φ = 1.61803 . . . ) appears both as
the limit of the ratio of consecutive Fibonacci numbers, as well as one of the solutions
of the golden quadratic, prompted us to conduct a graphical analysis of this equation
in order to ascertain what kind of connection its geometry has with the Fibonacci
sequence. Our results indicate that the following are all subsumed by the geometry of
this equation: the Fibonacci sequence, a sequence of powers of Φ, Division in Extreme
and Mean Ratio, Φ, as well as the golden rectangle.
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Analysis

That a connection exists between the golden quadratic and the Fibonacci se-
quence can be seen in the fact that the golden mean appears as one of the solutions
of the former, and as the limit of the sequence of ratios of consecutive terms of the
latter. In order to investigate if any connection could be established between the
geometry of this equation and the Fibonacci sequence, we started by recognizing
that when expressed as x2−x−1 = 0, the golden quadratic can be read as the first
step in the solution process of system y = x2 − x− 1, y = 0. The fact that this is
the simplest of all the possible systems into which this equation can be re-expressed
[1], made it our first choice to guide our inquiry. Its graph is shown in Figure 1.

Its solution is represented there by the intersections of the parabola and the
x-axis: A(1.6180, 0) and B(−0.6180, 0). The parabolas y-intercept is given by point
C(0,−1). The coordinates of the remaining points shown in Figure 1 are as follows:
D(1/2,−5/4), E(1,−1), F (1.618,−1), and G(−0.618,−1).

By looking at these intersections, it is easy to realize that segments OC and
OB are the golden sections of line OA. It can also be seen that segments OA
and OC correspond to the sides of a golden rectangle with an area of 1.618, while
segments OB and OC correspond to the sides of a smaller golden rectangle with
an area of 0.618. These golden rectangles are made apparent by drawing segments
AF , BG, and FG. These considerations prove here, as done in our earlier work for
system y = 1/(x− 1), y = x, that the geometry of the golden quadratic subsumes
its alternative interpretations [1]. As Figure 1 indicates, the intersections of these
golden rectangles with the parabola bring forward a number of geometric figures.
It was the geometric richness made apparent by this construction that suggested
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Figure 1. The graph of the golden quadratic in the form of system and is shown here. In it,
intersections A, B, and C bring forward, via auxiliary lines AF , BG, and FG, golden rectangles
OAFC and OCGB. The intersections of the former of these rectangles with the parabola define,
among others, the three figures which have been represented as ‘a’, ‘b’, and ‘c’. The question
motivating this work is to be answered through the evaluation and comparison of the areas of
these three figures.

the connection between the geometry of the golden quadratic and the Fibonacci
sequence.

Our first intuitive effort, which proved to be a fruitful one, consisted of the
evaluation and further comparison of the areas of the figures defined by the in-
tersection of the parabola and golden rectangle OAFC; that is, of regions a, b,
and c. These areas, respectively designated as Sa, Sb, and Sc, were evaluated by
integration [2], and the results obtained shown in Table 1.

Region Area integral Result

a
∫ Φ

0
[0− (x2 − x− 1)] dx−Area c Sa = 5Φ/6

b
∫ Φ

1
[x2 − x− 1− (−1)] dx Sb = Φ/6

c
∫ 1

0
[−1− (x2 − x− 1)] dx Sc = 1/6

Table 1. The area integrals and their respective evaluations are here shown for the highlighted
geometrical figures appearing in Figure 1.

Out of these three numbers, the one corresponding to region a was taken as the
basis of comparison. A number of ratios were then taken and the results obtained
shown in Table 2, which is the center of the following discussion.

Discussion

As previously stated, our original goal was to unveil a connection between the
geometry of the golden quadratic and the Fibonacci sequence. Once Figure 1 was
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drawn and the areas of regions a, b, and c were evaluated, our goal narrowed to that
of exploring the possibility of extracting the Fibonacci sequence from some kind of
interplay between these areas. We decided to take the largest area Sa, and keep
it unchanged in the numerator of a series of ratios rn whose denominators were
to be determined through a trial and error procedure via the combination of areas
Sb and Sc, in a way such as to make every ratio approximate a Fibonacci number.
The original criterion guiding this effort consisted in comparing the number coming
out of a given ratio via substitution of Φ by 1.618034, with the Fibonacci numbers.
The ratio selected was the one producing the closest match with a given Fibonacci
number. Inspection of the area values of Table 1, allowed us to realize from the
very beginning that number 5 could be precisely reproduced by the quotient

Sa

Sb + 0Sc
=

5Φ/6
Φ/6

= 5.

Both areas Sb and Sc are shown in the previous quotient to stress the fact that it
was the addition or subtraction of multiples of these areas, what was to allow for
the production of lower or higher valued ratios. With the previous quotient in sight,
it seemed only natural to try the following ratios: Sa/(0Sb +Sc), and Sa/(Sb +Sc).
Upon the indicated substitution of Φ for 1.618034, the former reduced to 8.1, while
the latter to 3.1. The fact that the denominators of these two fractions were
logical extensions of the denominator of the ratio precisely reproducing number 5,
combined with the close match between these values and Fibonacci numbers 8 and
3, convinced us that these were the ratios sought, even if no other candidates were
brought forward.

Our next move was directed to find the ratio reproducing number 2. Continu-
ing with the procedure started before consisting in methodically increasing the coef-
ficients of areas Sb and Sc, we decided to try the following quotients: Sa/(2Sb+Sc),
Sa/(Sb + 2Sc), and Sa/(2Sb + 2Sc). In the order given, the ratios produced the
following numbers: 1.9, 2.2, and 1.5, According to the ‘close-match’ criterion pre-
viously mentioned, we decided in favor of the first of these ratios. Having produced
‘close-match’ ratios for Fibonacci numbers 2, 3, 5, and 8 we decided to make a
pause in the calculations in order to take a close look at the selected ratios. Inspec-
tion of the denominators of these ratios allowed us to realize that the coefficients
of the area terms there appearing were Fibonacci numbers themselves. Some fur-
ther trial and error was needed in order for us to become aware of the connection
existing between the coefficients of neighboring ratios. This connection, to be de-
scribed below, allowed us in turn to write the corresponding ratios for numbers 1,
1, 13, 21, 34 and 55. All of these ratios, either in terms of Sa, Sb, and Sc, or in
the corresponding re-expressions in terms of Φ (to be referred from now on as the
‘Φ version’ of the area ratio expression), are shown in column 3 of Table 2. The
approximate Fibonacci number to which each of those ratios reduces upon the in-
dicated substitution is given in column 4. The percentage difference between each
of those numbers and their respective Fibonacci counterparts is given in column 5.

A simple down-the-table inspection of the coefficients of the two terms con-
stituting these ratio’s denominators makes it evident that they reproduce, in a
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crisscross pattern, the elements of two Fibonacci sequences unfolding backwards
into the domain of negative Fibonacci numbers. Looking at the coefficients of the
Sb terms, as they transit from n = 1 to n = 10, we find that they produce the
sequence 5, 3, 2, 1, 1, 0, 1, −1, 2, and −3. The coefficients of the Sc terms, along
the same transit, produce on their part, the following sequence: 3, 2, 1, 1, 0, 1, −1,
2, −3, 5.

n fn rn rn(Φ) % Φ′n rn(Φ′n) Rn

1 1
Sa

5Sb + 3Sc
=

5Φ
5Φ + 3

= 5Φ−4 0.7 27

2 1
Sa

2Sc + 3Sb
=

5Φ
2 + 3Φ

= 5Φ−3 1.2 20 1 1
5Φ + 3
2 + 3Φ

= Φ

3 2
Sa

2Sb + Sc
=

5Φ
2Φ + 1

= 5Φ−2 1.9 5 2 2
2 + 3Φ
2Φ + 1

= Φ

4 3
Sa

Sc + Sb
=

5Φ
1 + Φ

= 5Φ−1 3.1 3 3/2 3
2Φ + 1
1 + Φ

= Φ

5 5
Sa

Sb + 0Sc
=

5Φ
Φ + 0

= 5Φ0 5 0 5/3 5
1 + Φ
Φ + 0

= Φ

6 8
Sa

Sc + 0Sb
=

5Φ
1 + 0Φ

= 5Φ1 8.1 1 8/5 8
Φ + 0
1 + 0Φ

= Φ

7 13
Sa

Sb − Sc
=

5Φ
Φ− 1

= 5Φ2 13.1 1 13/8 13
1 + 0Φ
Φ− 1

= Φ

8 21
Sa

2Sc − Sb
=

5Φ
2− Φ

= 5Φ3 21.2 1 21/13 21
Φ− 1
2− Φ

= Φ

9 34
Sa

2Sb − 3Sc
=

5Φ
2Φ− 3

= 5Φ4 34.3 1 34/21 34
2− Φ
2Φ− 3

= Φ

10 55
Sa

5Sc − 3Sb
=

5Φ
5− 3Φ

= 5Φ5 55.5 1 55/34 55
2Φ− 3
5− 3Φ

= Φ

Table 2. Ten members of the Fibonacci sequence are given in column 2 in reference to the position
index ‘n’ shown in column 1. A number of ratios rn in terms of the magnitudes of area regions
‘a’, ‘b’ and ‘c’, alongside their respective re-expression in terms of Φ, are shown in column 3. As
described in the text, these ratios were used in a series of arguments producing the results shown
in the remaining columns.

The fact that the ‘Φ version’ of these denominators could be reduced to the
form f6−nΦ + f5−n, n > 1 allowed us to arrive at two interesting results. The first
is embodied in the following two equivalent expressions for rn:

rn =
Sa

f6−nSb + f5−nSc
, n > 1,(1)

rn =
5Φ

f6−nΦ + f5−n
, n > 1.(2)

The second consisted in recognizing that all of the said denominators, being consti-
tuted by the sum of an integer and an integer multiple of the golden mean, could be
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replaced by a power of Φ [2]. This property of the golden mean, in the form it takes
for the case under consideration, has been algebraically represented in equation

(3) Φ6−n = f6−nΦ + f5−n.

The indicated replacement of the said denominators by the corresponding power of
Φ dictated by equation (3), followed by simplification, transformed each of the ‘Φ
version’ area ratio expressions into a constant multiple of Φn−5, n > 1, as shown
by the rightmost term of column 3. A down-the-table inspection of these terms
shows their conformance to a sequence of powers of Φ. This leads to the following
version of rn, equivalent to those given by equations (1) and (2):

(4) rn = 5Φn−5, n > 1.

These interesting results prompted us to keep tinkering with the area ratio expres-
sions. When the ratio Rn = rn/rn−1, n > 2 was formed using the ‘Φ version’ of
these expressions, we witnessed the crisscross replication of the Fibonacci sequence
extending to the numerators of the resulting expressions. Further application of
equation (3) to these ratios reduced all of them to Φ. This result is in agreement
with that obtained when the ratio rn/rn−1, n > 2, is formed using the correspond-
ing elements of the power sequence described above. Rn is shown in the eighth
column of Table 2.

Even if the results shown in column 4 could have been taken as evidence for a
positive response to the question motivating this work, we considered the question
of what the requirement was for any given rn to precisely produce its corresponding
Fibonacci number fn.

What we did was to equate each of the ‘Φ version’ ratios with the Fibonacci
number they were expected to produce, and solve for Φ. In doing this we found
that in order to precisely reproduce the expected Fibonacci number, each ratio rn

required the replacement of Φ by its approximation Φ′n, quantified by the following
quotient:

(5) Φ′n =
fn

fn−1
, n > 2.

We decided to take a deeper look at this matter in order to explore the possibility
of generalizing this finding via a proof to the effect that:

(6) if Φ = Φ′n then rn(Φ′n) = fn, n > 2.

What we did was to substitute Φ by fn/fn−1 in equation (2). This equation was
selected as the starting point of this argument because in it rn is given explicit-
ly as a function of Fibonacci numbers. The indicated substitution, followed by
simplification, led us to:

(7) rn(Φ′n) =
5fn

f6−nfn + f5−nfn−1
.
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The fact made evident by this expression, that if f6−nfn + f5−nfn−1 = 5 is true,
rn(Φ′n) = fn is also true, opens a way to rephrase the tentative proof statement
previously advanced in (6), as follows:

(8) if f6−nfn + f5−nfn−1 = 5 then rn(Φ′n) = fn, n > 2.

The validity of statement (6) will be established by proving that

(9) f6−nfn + f5−nfn−1 = 5, ∀n.

Notice that the proof of statement (9) will be attempted for all integers n.
The direct proof offered below makes use of the following identities concerning

the Fibonacci sequence, all of them true for all integers n [3].

fn+1 = fn + fn−1,(10)

f−n = (−1)n+1fn,(11)

f1−n = (−1)nfn−1.(12)

f2
n − fn+1fn−1 = (−1)n+1,(13)

f1−n = (−1)n(fn+1 − fn).(14)

With these preliminaries in place, the proof starts with the repeated application of
formula (10) to f6−n and f5−n in order to produce their respective f1−n and f−n

versions, as follows:

(15) f6−n = 8f1−n + 5f−n, f5−n = 5f1−n + 3f−n.

Substitution of relations (15), and using formulas (11), (12) and (14) leads to:

f6−nfn + f5−nfn−1 = 5fnf−n + 5fn−1f1−n + 8fnf1−n + 3f−nfn−1

= 5(−1)n+1f2
n + 5(−1)n(fn+1 − fn)fn−1 + 8(−1)nfnfn−1 + 3(−1)n+1fnfn−1

= 5(−1)n+1(f2
n − fn+1fn−1).

Upon substitution of equation (13), the previous expression finally reduces to (9).
Being this so, then

(16) rn(Φ′n) = fn, n > 2

The proof’s conclusion shown in (16), a confirmation of our suspicion that
the Fibonacci sequence could be obtained through the manipulation of the area
ratio expressions derived from the geometry of the golden quadratic represents the
perfect colophon to our efforts. The process of reaching this conclusion gave us,
again, the opportunity to witness first hand the multilayered concatenation of order
inherent to this field. Here we transited from a quasi-Fibonacci sequence obtained
replacing Φ by 1.618034 in the area ratio expressions, to a perfect replication in the
denominators of these ratios. After this we witnessed the unfolding of a sequence
of powers of Φ, and then a perfect replication of the said sequence in both the
numerators and denominators of ratios Rn. This was followed by their eventual
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reduction to Φ, and from here, finally, to the confirmation of the declared goal of
this effort, represented by (16).

The remaining problems

It should be mentioned here that it is reasonable to expect similar results when
the geometry of algebraically equivalent re-expressions of the golden quadratic are
analyzed this way. These yet to be explored systems, written below, can be used by
those teachers/tutors interested in exposing their freshman or sophomore calculus
students to the research experience.

1. y = x2 − x, y = 1.
2. y = x2, y = x + 1.
3. y = x2 − 1, y = x.
4. y = x− 1, y = 1/x.
5. y = x, y = 1/(x− 1).
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