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Abstract. This article is intended for first year undergraduate students. In
this work, we explore the technique of tabular integration, and apply it for evaluating
Fourier series and Laplace transform.
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Introduction

Integration by parts and tabular integration are used to integrate product of
two functions. The technique of tabular integration is very well known [1, 2]. But
still it has not find its way into textbooks [3]. Traditionally we teach integration of
product of two functions by technique of integration by parts. It is our experience
that students take more time to learn and successfully apply this technique. Espe-
cially when we need to repeatedly apply the technique of integration by parts. We
find that students make mistakes. On the other hand, we find that students easily
apply the tabular integration technique even in complex situations. Classically the
technique of integration by parts is given as follows:

(1)
∫

u dv = uv −
∫

v du.

In the above equation, it is preferred to choose as u a function which is easy to
differentiate, and whose derivative may vanish. Such as polynomial functions. In
many situations, we may need to repeatedly employ the integration by parts until
the differentiation of u vanishes. Let us implement the technique of integration by
parts for evaluating the integral

(2) I =
∫

x2 sin x dx.

Since the third derivative of x2 is null, it is appropriate to pick x2 as u. Thus,

u = x2 and dv = sin x dx,

du = 2x dx and
∫

dv =
∫

sin x dx,

du = 2x dx and v = − cosx.
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Substituting u, v, dv and du in the equation (1), we obtain

(3)
∫

x2 sin x dx = −x2 cos x + 2
∫

x cos x dx.

Now for evaluating
∫

x cosx dx, we again need to use the integration by parts. Let
us now choose:

u = x and dv = cos x dx,

du = dx and
∫

dv =
∫

cos x dx,

du = dx and v = sin x.

Substituting u, v, dv and du in the equation (1), we obtain
∫

x cos x dx = x sin x−
∫

sin x dx = x sin x + cos x.

(We omit the integration constant.) Now substitution the above integral in the
equation (3) gives the desrired integral:

∫
x2 sin x dx = −x2 cos x + 2(x sin x + cos x)

= −x2 cos x + 2x sin x + 2 cos x.

Let us now evaluate the same integral by using tabular integration. In this
technique, we form a table consisting of two columns. The first column contains
successive derivatives of the function which is easy to derivate or whose higher order
derivatives may vanish. After that, all entries of the first column are alternately
appended with plus or minus signs. While, the second column contains successive
integrals (antiderivatives). The first column is designated by D and the second
one by I. Now the last step is to find the successive terms of the integral. They
are given by multiplying each entry in the first column by the entry in the second
one which lies just below it. Finally the integral is equal to the sum of the terms
obtained. For evaluating the integral (2), we can form Table 1. Thus by the tabular
integration:

∫
x2 sin x dx = −x2 cosx + 2x sin x− 2 cos x + 0

= −x2 cosx + 2x sin x + 2 cos x.

The number of terms is finite only if the higher order derivatives of the function
u vanish. For example, the third order derivative of the function x2 is null (see
Table 1). Otherwise at any level the process of integration can be terminated by
forming a remainder term defined as the integral od the product of the entry in the
first column and the entry in the second column that lies directly across it.
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Table 1. Table for integrating
∫

x2 sin x dx Table 2. Table for integrating
∫

f(x)g(x) dx

Let us now understand the tabular integration through the integration∫
f(x)g(x) dx.

Table 2 is the integration table for this integral. In this table, f i(x) denotes the ith

derivative of the function f(x). While, g[i] denotes the ith integration (antideriva-
tive) of g(x). From Table 2, the integration is:∫

f(x)g(x) dx = f(x)g[1](x) + f2(x)g[3](x)− · · ·

+ (−1)nfn(x)g[n+1](x) + (−1)n+1

∫
fn+1(x)g[n+1](x) dx

=
n∑

i=0

(−1)if i(x)g[i](x) + (−1)n+1

∫
fn+1(x)g[n+1](x) dx.

Let us now apply the tabular integration technique for finding the Fourier
series of the following even function:

f(x) = x2k, −π 6 x 6 π.

The Fourier series is given as:

(4) f(x) = a0 +
∞∑

n=0

[an sin nx + bn cos nx].

Here,

a0 =
1
2π

∫ π

−π

f(x) dx, an =
1
π

∫ π

−π

f(x) cos nx dx, bn =
1
π

∫ π

−π

f(x) sin nx dx.

Let us first evaluate a0.

a0 =
1
2π

∫ π

iπ

x2k dx =
2
2π

∫ π

0

x2k dx [since x2k is even](5)

=
1
π

[
x2k+1

2k + 1

]π

0

=
π2k

2k + 1
.
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Table 3. Table for integrating
∫

f(x) cos nx dx. Function f(x) is differentiated 2k + 1 times,

while cos nx is integrated 2k1 times.

bn = 0 since x2k sin nx is odd. Let us evaluate an.

an =
1
π

∫ π

−π

f(x) cos nx dx =
2
π

∫ π

0

f(x) cos nx dx [f(x) cos nx is even].

Table 3 is our integration table for the above integral. Integrating by parts 2k + 1
times gives:

∫ π

0

f(x) cos nx dx =
[
f(x)

sinnx

n
+ f1(x)

cos nx

n2
− f2(x)

sin nx

n3

− f3(x)
cos nx

n4
+ · · ·+ (−1)k−1f2k−1(x)

cos nx

n2k

+ (−1)kf2k(x)
sin nx

n2k+1

]π

0

+ (−1)k+1

∫ π

0

f2k+1(x)
sin nx

n2k+1
dx.
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Since sinnπ = sin 0 = 0, the previous integral is equal to

=
[
f1(x)

cos nx

n2
− f3(x)

cosnx

n4
+ · · ·+ (−1)k−1f2k−1(x)

cosnx

n2k

]π

0

+ (−1)k+1

∫ π

0

f2k+1(x)
sin nx

n2k+1
dx

=
[ k∑

i=1

(−1)i−1 f2i−1(x) cos nx

n2i

]π

0

+ (−1)k+1

∫ π

0

f2k+1(x)
sinnx

n2k+1
dx.

Now for the function f(x) = x2k,

f2i−1(x) = 2k · (2k − 1) · (2k − 2) · . . . · (2k − 2i + 2)x2k−2i+1

=
(2k)!

(2k − 2i + 1)!
x2k−2i+1

and f2k+1 = 0, and thus

∫ π

0

f(x) cos nx dx =
[ k∑

i=1

(−1)i−1 (2k)!
(2k − 2i + 1)!

x2k−2i+1 · cos nx

n2i

]π

0

.

Since cos nπ = (−1)n, we have

∫ π

0

f(x) cos nx dx =
k∑

i=1

(−1)i−1 (2k)!
(2k − 2i + 1)!

π2k−2i+1 · (−1)n

n2i
.

Substituting the above integral in the equation gives an:

an =
2
π

k∑

i=1

(−1)i−1 (2k)!
(2k − 2i + 1)!

π2k−2i+1 · (−1)n

n2i
.

Substituting a0, an and bn in the equation (4) we finally obtain

(6) x2k =
π2k

2k + 1
=

∞∑
n=1

[
2
π

k∑

i=1

(−1)i−1 (2k)! π2k=2i+1

(2k − 2i + 1)!
· (−1)n

n2i

]
cos nx,

for −π 6 x 6 π. Substituting x = 0 and k = 1 in the equation (6) gives:

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

Similarly, substituting x = π and k = 1, resp. x = 0 and k = 2, gives:

∞∑
n=1

1
n2

=
π2

6
, resp.

∞∑
n=1

(−1)n+1

n4
=

7π4

720
.
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Table 4. Table for evaluating Laplace transform L{sin ωt}.

Let us now apply the technique of tabular integration for finding Laplace trans-
forms. Laplace transform of a function f(t) is defined as

(7) F (s) = L{f(t)} =
∫ ∞

0

f(t)e−st dt = lim
T→∞

∫ T

0

f(t)e−st dt.

Let us find out the Laplace transform of sinωt. For evaluating it, we can form
Table 4.

L{sin ωt} =
∫ ∞

0

e−st sinωt dt

=
[−e−st sinωt

s
− ωe−st cosωt

s2

]∞

0

− ω2

s2

∫ ∞

0

e−st sin ωt dt

︸ ︷︷ ︸
L{sin ωt}

and thus

L{sin ωt}
(

1 +
ω2

s2

)
= lim

T→∞

[− sin ωT

sesT
− ω cos ωT

s2esT

]

︸ ︷︷ ︸
0

−
[
0− ω

s2

]
,

L{sin ωt} =
ω

s2 + ω2
.

Let us now find the Laplace transform of tneat. Table 5 presents tabular
integration technique for evaluating this transform. Using the table, we obtain

L{tneat} =
∫ ∞

0

tne(a−s)t dt

=
[
tne(a−s)t

a− s
− nt(n−1)e(a−s)t

(a− s)2
+

n(n− 1)tn−2e(a−s)t

(a− s)3
− · · ·

+ (−1)n n! e(a−s)t

(a− s)n+1

]∞

0

=
(−1)n+1n!
(a− s)n+1

=
n!

(s− a)n+1
.
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Table 5. Table for evaluating Laplace transform L{tneαt}.

For the purpose of exposition, we may see that for s > a:

lim
T→∞

Tne(a−s)T

a− s
= lim

T→∞
Tn

(a− s)e(s−a)T
= 0

(applying L’Hospital rule n times).
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