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1. Introduction

Solving concrete mechanical and astronomical problems was one of the main
mathematical tasks until the beginning of XX century (among others, see the work
of Euler, Lagrange, Hamilton, Abel, Jacobi, Kovalevskaya, Chaplygin, Poincare).
The majority of problems are unsolvable. Therefore, finding of solvable systems
and their analysis is of a great importance.

In the second half of XX century, there was a breakthrough in the research
that gave a basis of a modern theory of integrable systems. Many great mathemati-
cians such as P. Laks, S. Novikov, V. Arnold, J. Mozer, B. Dubrovin, V. Kozlov
contributed to the development of the theory, which connects the beauty of classi-
cal mechanics and differential equations with algebraic, symplectic and differential
geometry, theory of Lie groups and algebras (e.g., see [1–4] and references therein).

The aim of this article is to present the basic concepts of the theory of integrable
systems to readers with a minimal prior knowledge in the graduate mathematics,
so we shall not use a notion of a manifold, symplectic structure, etc.

The most of mechanical and physical systems are modelled by Hamiltonian
equations. We shall introduce Hamiltonian systems with one of the easiest prob-
lems, the system of n independent harmonic oscillators (Section 2). The corre-
sponding equations, as linear, are easily solvable. The solutions are expressed as a
trigonometric functions of time and the dynamics is linearized on invariant tori.

It turns out that much more complex Hamiltonian problems, if they have a
sufficient number of integrals of motion (conservation laws), have qualitatively a
similar behavior. It is a content of the Liouville-Arnold theorem which we state
without a proof in Section 4. In Section 3, we define the canonical Poisson brack-
ets. This is a very important geometric structure that makes possible to study
Hamiltonian systems using analytical, algebraical and geometrical methods.
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Finally in Section 5, the system of two identical harmonic oscillators is consid-
ered. It is shown that this system provides a natural description of an important
geometrical object, the Hopf fibration.

2. Hamiltonian equations and harmonic oscillators

2.1. We have learned already in a high school about the harmonic oscillator,
describing the motion of a material point under the influence of a force −aq, a > 0,
where q is a shift from the equilibrium position q = 0 (for example, a motion of
a material point related to the elastic spring with the elastic coefficient a). The
system is described by the equation:

(1) mq̈ = −aq,

where m is the mass of a material point.
By introducing of a new variable p = mq̇ (the moment) and the function

h(q, p) = 1
2mp2 + a

2 q2 (the sum of kinetic and potential energy of the system), the
second order equation (1) takes the form of the system of two first order equations
in the space R2(q, p):

(2) q̇ =
p

m
=

∂h

∂p
, ṗ = −aq = −∂h

∂q
.

Fig. 1. The system of n independent harmonic oscillators

Now, let us consider the system of n independent harmonic oscillators (e.g.,
the system of n elastic springs). As above, we can write equations of motion in the
space R2n(q, p) = R2n(q1, . . . , qn, p1, . . . , pn):

(3) q̇i =
pi

mi
=

∂h

∂pi
, ṗi = −aiqi = − ∂h

∂qi
, i = 1, . . . , n

(mi, ai > 0), where h(q, p) =
∑n

i=1(p
2
i /mi +aiq

2
i )/2 represents the total mechanical

energy of the system.

2.2. The system of equations

(4) q̇i =
∂h

∂pi
, ṗi = − ∂h

∂qi
, i = 1, . . . , n

defined in a region U of the space R2n(q1, . . . , qn, p1, . . . , pn) is called a Hamiltonian
system. The function h is called Hamiltonian, while the region U is called the phase
space of the system. By introducing the variable x = (q1, . . . , qn, p1, . . . , pn) and a
Hamiltonian vector field

(5) Xh =
(

∂h

∂p1
, . . . ,

∂h

∂pn
,− ∂h

∂q1
, . . . ,− ∂h

∂qn

)
,

system (4) reads simply ẋ = Xh(x).



What are integrable Hamilton systems 3

2.3. Let us recall some basic notions from the theory of ordinary differential
equations. Consider the equations

(6) ẋ = X(x), x = (x1, . . . , xd) ∈ U ⊂ Rn,

where X = (X1(x), . . . , Xd(x)) is a smooth vector field on U . By the theorem on
existence and uniqueness of solutions, through each point x0 ∈ U and a moment of
time t0, there is a unique solution x(t), such that x(t0) = x0.

Under integrability of the system (6), in broadest context, we mean the finding
of the solutions x(t) for a general initial condition x(t0) = x0.

The most important objects in solving the equation are (first) integrals of the
motion. A function F is a first integral of equation (6) if it is constant along
solutions: f(x(t)) = const. It is clear that f is an integral if and only if the
derivative of f in the direction vector field X identically equals to zero:

X(f) =
d∑

i=1

Xi
∂f

∂xi
≡ 0.

Geometrically, this means that if at some point of time t0 a trajectory x(t) belongs
to Mc = {f(x) = c}, then it lies within Mc for every t. If the differential df is
different from zero on Mc, then Mc is a smooth hyper-surface. The vectors X(x)
are tangent to Mc for every x ∈ Mc.

Fig. 2. Invariant surface

Now, if equation (6) have l functionally independent integrals, the problem re-
duces (for general values of the parameters c = (c1, . . . , cl)) to solving the restricted
system on (d− l)-dimensional smooth invariant surface

Mc : f1(x) = c1, . . . , fr(x) = cl.

It is clear that the existence of d− 1 integrals implies solvability of (6).
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2.4. As we shall see soon, in the framework of Hamiltonian mechanics, for
solving equation (4) there should be “only” n integrals. Even more, the phase
space of a completely integrable Hamiltonian system has a very fine structure: it
is, almost everywhere, decomposed on invariant n-dimensional tori in which the
dynamics is linearized.

We mentioned that we shall skip using of manifolds. However, there is one
exception. The main geometrical object in the theory of integrable systems is a
torus, and we hope readers will become familiar with its use.

A torus (n-dimensional) Tn is a direct product of n circles:

Tn = S1 × · · · × S1

︸ ︷︷ ︸
n

.

Let (ϕ1, . . . , ϕn) be linear coordinates of the vector space Rn. Then we have a
natural mapping π : Rn → Tn, π(ϕ) = ϕ mod 2π, where ϕi (mod 2π) is the
angular variable on the i-th circle. The mapping π is 2π-periodic in each variable.
Thus, we can represent torus as an n-dimensional cube [0, 2π]n ⊂ Rn(ϕ1, . . . , ϕn)
with identified opposite sides of the cube:

(ϕ1, . . . , ϕi−1, 0, ϕi+1, . . . , ϕn) ≡ (ϕ1, . . . , ϕi−1, 1, ϕi+1, . . . , ϕn), i = 1, . . . , n.

A linear (quasi-periodic, conditionally periodic) motion on Tn is a projection of a
line with the mapping π:

(7) ϕi(t) = ϕ0
i + ωit, i = 1, . . . , n.

The numbers ω1, . . . , ωn are called frequencies. The trajectory (7) is called a wind-
ing of the torus, as well.

Fig. 3. Linear trajectories on a two-dimensional torus for ω2/ω1 /∈ Q,

ω2/ω1 ≈ 3/2 (non-periodic) and ω2/ω1 = 3/2 (periodic), respectively.

2.5. One can solve (2) easily. First note that the energy h is an integral:

d

dt
h(q, p) =

1
2m

2pṗ +
a

2
2qq̇ =

1
m

apq − 1
m

apq = 0.
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The equation h(q, p) = E, for E > 0 defines the ellipse ME in R2(q, p). Let us
introduce an angular variable ϕ (mod 2π) on ME (see Fig. 2):

(8) q =
√

2E/a cos(ϕ), p = −
√

2Em sin(ϕ).

From the equations of motion (2) we get ϕ̇ =
√

a/m. Hence, by integration, we
obtain the well known expressions

q(t) =
√

2E/a cos
(√

a/mt + ϕ0
)

, p(t) = −
√

2Em sin
(√

a/mt + ϕ0
)

.

The constants E ≥ 0 (energy) and ϕ0 ∈ [0, 2π) are determined from the initial con-
dition (q(t0), p(t0)). The initial condition (q(t0), p(t0)) = (0, 0) gives the equilibrium
position, namely the solution is (q(t), p(t)) ≡ (0, 0).

Fig. 4. The phase space of a harmonic oscillator

2.6. System (3) has n independent integrals:

(9) fi(q, p) = fi(qi, pi) =
1

2mi
p2

i +
ai

2
q2
i , i = 1, . . . , n

(the energy of i-th harmonic oscillator) and the phase space is foliated on invariant
surfaces

(10) Mc = {(q1, . . . , qn, p1, . . . , pn) ∈ R2n | f1 = c1, . . . , fn = cn}.

In general, if all constants ci are greater then zero, Mc is a product of ellipses:
Mc = Ec1×· · ·×Ecn , Eci = {(qi, pi) | fi = ci} and represents an n-dimensional torus
Tn. If one of the constants ci is zero, the invariant manifold Mc is less dimensional
torus.

The energy of the system, for the motions on Mc, is given by E = c1 + · · ·+cn.
On the other side, the iso-energetic hyper-surface h = E > 0 is a (2n − 1)-sphere
S2n−1. It is the union of all possible tori Mc with E = c1 + · · ·+ cn (we shall use
this observation in the last section).

Equations (3) on Mc, in angular variables (ϕ1, . . . , ϕn) defined by

qi =
√

2ci/ai cos(ϕi), pi = −√2cimi sin(ϕi), i = 1, . . . , n,
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are quasi-periodic:

(11) ϕ̇i = ωi =
√

ai/mi, i = 1, . . . , n.

Therefore, a general solution of the system is:
(12)

qi(t) =
√

2ci/ai cos
(
ωit + ϕ0

i

)
, pi(t) = −√2cimi sin

(
ωit + ϕ0

i

)
, i = 1, . . . , n,

where constants ci ≥ 0 and ϕ0
i ∈ [0, 2π) are determined from the initial conditions.

In particular, the equilibrium position of the system is (q1, . . . , qn, p1, . . . , pn)|t0 = 0
(zero-energy level).

3. Poisson brackets

3.1. Let us consider a Hamiltonain system (4) defined in a region U of the
space R2n(q, p) and let f : U → R be an arbitrary smooth function. A direct
computation shows that the derivative of f along a trajectory (q(t), p(t)) of (4) is

(13)
d

dt
(f(q(t), p(t)) =

n∑

i=1

(
∂f

∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi

)∣∣∣∣
(q,p)=(q(t),p(t))

.

Therefore, in order that f is the integral of a motion, the expression on the right-
hand side of (13) must be zero. From (13) we can see that the Hamiltonian h itself
is the integral of a motion (the conservation of energy for the natural mechanical
systems).

Definition 1. A canonical Poisson bracket within a region U ⊂ R2n(q, p) is
the mapping {·, ·} : C∞(U)× C∞(U) → C∞(U), defined via:

(14) {f, g} =
n∑

i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

In particular, for the coordinate functions qi, pj we have canonical relations:

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij , i, j = 1, . . . , n.

As a reformulation of the definition we get the following algebraic characterization
of the first integrals:

Corollary 1. A function f is the first integral of the Hamiltonian system
(4) if and only if it commutes with h: {h, f} = 0.

Proposition 1. The Poisson bracket is a bilinear, skew-symmetric mapping
(15) that satisfies Leibniz’s rule (16) and the Jacobi identity (17):

{αf + βg, h} = α{f, h}+ β{g, h}, {f, g} = −{g, f},
(15)

{fg, h} = f{g, h}+ g{f, h},
(16)

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, α, β ∈ R, f, g, h ∈ C∞(U).
(17)
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Exercise 1. Prove Proposition 1.

Corollary 2. The Poisson bracket of two first integrals f1, f2 of a system
with Hamiltonian h is again the first integral.

Proof. By the Jacobi identity

{f1, f2}, h} = {f1, {f2, h}}+ {f2, {h, f1}} = 0 + 0,

as was to be shown.
Remark 1. In this way, by knowing two first integrals, we can find a third,

fourth, etc, by a simple computation. Of course, not all the integrals we get will
be essentially new, since there cannot be more than 2n independent functions on
R2n. On the other side, if first integrals f1 and f2 commute, we do not get a new
integral, but we have the following geometrical property: the functions h, f1, f2

are all constant along the Hamiltonian vector fields Xh, Xf1 and Xf2 , that is, the
vector fields Xh, Xf1 and Xf2 are all tangent to the invariant surfaces h = c0,
f1 = c1, f2 = c2.

3.2. As it is usual in mathematics, having a class of objects with a certain
structure, we consider appropriate mappings that preserve the given structure. Let
U and V be regions within R2n(q, p) endowed with the canonical Poisson brackets.
A diffeomorphism Ψ: U → V 1 is a Poisson isomorphism (canonical transformation)
if it preserves the Poisson bracket:

{f ◦Ψ, g ◦Ψ} = {f, g} ◦Ψ, f, g ∈ C∞(V ).

If Ψ: U → V is a canonical transformation, so it is Ψ−1 : V → U . Also, a
composition of two canonical transformations is a canonical transformation.

Proposition 2. A diffeomorphism Ψ: U → V given by the functions Qi =
Qi(q, p), Pi = Pi(q, p), i = 1, . . . , n is a canonical transformation if and only if the
functions Qi, Pj satisfy canonical relations:

{Qi, Qj} = 0, {Pi, Pj} = 0, {Qi, Pj} = δij , i, j = 1, . . . , n.

Corollary 3. Let Ψ: U → V be a canonical transformation, given by func-
tions Qi = Qi(q, p), Pi = Pi(q, p), i = 1, . . . , n. The Hamiltonian equation in new
coordinates (Q,P ) have the same form:

Q̇i =
∂H

∂Pi
, Ṗi = − ∂H

∂Qi
, i = 1, . . . , n,

where H(Q, P ) = h(q(Q,P ), p(Q,P )). The functions qi = qi(Q,P ), pi = pi(Q,P )
represent the inverse canonical transformation Ψ−1.

1Recall that a differentiable mapping Ψ: U → V (U, V ⊂ Rd)

yi = yi(x1, . . . , xd), i = 1, . . . , d

is a diffeomorphism if it is a bijection and the Jacobian det(∂yi/∂xj) is different from zero on U .
One can consider (y1, . . . , yd) as a new coordinate system within U as well.
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4. Complete integrability

4.1. Notice, the integrals (9) of the system of n independent harmonic oscil-
lators commute between themself.

Definition 2. A Hamiltonian system (4) is called completely integrable if
there are n Poisson-commuting smooth integrals f1, . . . , fn:

{fi, fj} = 0, i, j = 1, . . . , n,

whose differentials are independent in an open dense subset of U .

The global regularity of dynamics in the case of complete integrability follows
from the following classical Liouville-Arnold theorem:

Theorem 1. (Liouville-Arnold [1]) Suppose that the equations (4) have n
Poisson-commuting smooth integrals f1, . . . , fn and let

Mc = {f1 = c1, . . . , fn = cn}
be a common invariant level set.

(i) If Mc is regular (the differentials of f1, . . . , fn are independent on it), com-
pact and connected, then it is diffeomorphic to the n-dimensional torus.

(ii) In a neighborhood of Mc there exist canonical variables I, ϕ mod 2π, called
action-angle variables:

{ϕi, Ij} = δij , {ϕi, ϕj} = 0, {Ii, Ij} = 0, i, j = 1, . . . , n.

such that the level sets of the actions I1, . . . , In are invariant tori and h =
h(I1, . . . , In). Thus, the Hamiltonian equations are linearized:

ϕ̇1 = ω1(I) =
∂h

∂I1
, . . . , ϕ̇n = ωr(I) =

∂h

∂In
, İ1 = 0, . . . , İn = 0.

Remark 2. Let us comment on the fact that the invariant manifold Mc is a
torus. As in Remark 1, we get that the Hamiltonian vector fields Xf1 , . . . , Xfn are
tangent to Mc. Further, from the independency of differentials df1, . . . , dfn on Mc

and the definition (5), the vector fields Xf1 , . . . , Xfn are also independent at Mc.
For the dimensional reason, they span the tangent spaces TxMx for all x ∈ Mc.
An important property of the Poisson bracket is that the Poisson-commutativity
{fi, fj} = 0 implies the commutativity of vector fields [Xfi , Xfj ] = 0 (see [1]). Since
Mc is compact, vector fields Xfi are complete. Now, the complete commuting vector
fields Xf1 , . . . , Xfn determine a locally free, transitive action of an Abelian group
Rn on Mc with a discrete isotropy group Γ.2 Therefore Mc is diffeomorphic to
Rn/Γ. Again, since Mc is compact, the rank of Γ equals n (Γ ∼= Zn) and Rn/Γ is

2The readers not familiar with the above notions can skip this remark.



What are integrable Hamilton systems 9

Fig. 5. Fibration of the phase space on invariant tori

a torus. The Hamiltonian vector field Xh is a linear combination of vector fields
Xfi . Thus, the Hamiltonian equations medelled on a torus Rn/Γ are linear.

We see that the study of integrability of the Hamiltonian systems consist of
two basic nontrivial problems: the finding of enough commuting first integrals and
the explicit description of the solutions (e.g., see [2, 3, 4]).

Completely integrable Hamiltonian systems are very rare: if we choose a “ran-
dom” Hamiltonian, the associated Hamilton equations will be non-integrable. How-
ever, the Kolmogorov-Arnold-Mozer (KAM) theorem states that if we have a com-
pletely integrable system with Hamiltonian h0(x) and perform the perturbation
h(x) = h0(x) + εh1(x), then the system with Hamiltonian h(x) keeps certain prop-
erties of the original integrable system. Namely, some invariant tori “survive” the
perturbation (see [1]).

For example, consider our solar system and imagine that it consists only of
the Sun which is stationary and the eight planets moving in the same plane. If we
neglect the interaction among the planets, and take into account only the gravi-
tational attraction of the sun and each planet individually, Kepler’s laws give us
that the bounded motion of planets, take place in ellipses where Sun is in one of
the focuses. It is a completely integrable system. In reality, the planets attract
each other, which corresponds to a perturbation of the system. The real problem is
non-integrable. We can approximate the motion of planets by ellipses for a certain
period of time, but we can not predict a long-term dynamics (when time goes to
infinity). In some sense, the regularity of dynamics of the planets we observe is a
“shadow” of the underlying integrable model.

Remark 3. Action variables can be found by the integration of the form
pdq = p1dq1 + · · ·+ pndqn along the basic cycles γ1, . . . , γn of the torus Mc:3

Ii|Mc =
1
2π

∮

γi

p dq

(see [1]). In the case of the harmonic oscillator (1), applying the Green formula,

3Ibid.
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we get

(18) I =
1
2π

∮

ME

p dq =
1
2π

∫

Π

dp dq = E

√
m

a
= h

√
m

a
=

h

ω
,

where Π is a region within the ellipse ME : h = 1
2mp2 + a

2 q2 = E.

Exercise 2. Show that the functions (8) and (18) satisfy the canonical rela-
tion {ϕ, I} = 1, i.e., (I, ϕ) are action-angle coordinates for the harmonic oscillator.
What are action-angle coordinates for the system of n independent harmonic oscil-
lators (3)?

4.2. A quasi-periodic motion (7) is nonresonant if the frequencies ωi are
independent over the field of rational numbers: if ω1k1 + · · · + ωnkn = 0, ki ∈ Z
then k1 = · · · = kn = 0. A nonresonant winding (7) is uniformly distributed on the
torus Tn. More precisely, the following averaging theorem holds (see [1]).

Theorem 2. Let f : Tn → R be a Riemann-integrable function and let
ω1, . . . , ωn be independent over the field of rational numbers. Then for every point
ϕ0 ∈ Tn, there exist the limit

lim
s→∞

1
s

∫ s

0

f(ωt + ϕ0) dt

(the time average of f) and it is equal to

1
(2π)n

∫ 2π

0

· · ·
∫ 2π

0

f(ϕ) dϕ1 . . . dϕn

(the space average of f).

In particular, let f be a characteristic function of a Zhordan measurable region
D ⊂ Tn (f(ϕ) = 1, ϕ ∈ D; f(ϕ) = 0, ϕ /∈ D) of the measure µ(D). Let τD(s) be
the amount of time that in the interval [0, s] of time, the trajectory ϕ(t) is inside
of D. Then

lim
s→∞

τD(s)
s

=
µ(D)
(2π)n

.

This means that the time the trajectory (7) spends in D is proportional to the
measure of D. In particular, a nonresonant winding is dense on the torus.

The theorem on averages may be found implicitly in the work of Laplace,
Lagrange and Gauss on celestial mechanics. A rigorous proof was given in 1909
by P. Bohl, V. Sierpinski and H. Weyl. As an example, consider the torus (10),
where parameters ci are greater then zero. The projection of Mc to the space
Rn(q1, . . . , qn) is a cube Kc = {(q1, . . . , qn) ∈ Rn | 0 ≤ qi ≤ ci, i = 1, . . . , n}. If the
frequencies are nonresonant, the projection of a solution (12):

q(t) =
(√

2c1/a1 cos
(
ω1t + ϕ0

1

)
, . . . ,

√
2cn/an cos

(
ωnt + ϕ0

n

))
, t ∈ R
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Fig. 6. Lissajous figures for ω2/ω1 /∈ Q,

ω2/ω1 ≈ 3/2 and ω2/ω1 = 3/2.

is everywhere dense in Kc. In the case n = 2, curves (q1(t), q2(t)) are called
Lissajous figures. They are closed curves within rectangular KE for ω1/ω2 being a
rational number, while they fill the rectangle densely for ω1/ω2 being an irrational
number.

5. Hopf fibration

The Hopf fibration of a sphere S3 is one of the basic examples of a nontrivial
fibration in geometry and topology. It appears that the Hopf fibration has a natural
description by the use of a system of two identical independent harmonic oscillators
(a1 = a2,m1 = m2). Note that in this case ω1/ω2 =

√
a1/m1/

√
a2/m2 = 1

and Lissajous figures are ellipses, segment of lines and a point (0, 0) (equilibrium
position, c1 = c2 = 0). We note that an interesting description of the system of
two harmonic oscillators is given in [5].

For simplicity, let us consider the harmonic oscillators with all parameters
equal to one: a1 = a2 = m1 = m2 = 1:

(19)
q̇1 = p1 =

∂h

∂p1
, q̇2 = p2 =

∂h

∂p2
,

ṗ1 = −q1 =
∂h

∂q1
, ṗ2 = −q2 =

∂h

∂q2
, h =

1
2
(q2

1 + p2
1 + q2

2 + p2
2).

The angular variables (ϕ1, ϕ2) on invariant tori

(20) Mc1,c2 : f1 =
1
2
(q2

1 + p2
1) = c1, f2 =

1
2
(q2

2 + p2
2) = c2

are defined by
(21)
q1 =

√
2c1 cos(ϕ1), p1 = −√2c1 sin(ϕ1), q2 =

√
2c2 cos(ϕ2), p2 = −√2c2 sin(ϕ2).

The corresponding equations of motion read

ϕ̇1 = 1, ϕ̇2 = 1.
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Therefore, all trajectories are 2π-periodic and an arbitrary 2π-periodic function
of ϕ1 − ϕ2 is an additional first integral of the system. As an example, from the
trigonometric identity cos(ϕ1−ϕ2) = cos(ϕ1) cos(ϕ2)+sin(ϕ1) sin(ϕ2) and (21) we
get the integral (q1q2 + p1p2)/

√
f1f2. Since

√
f1f2 is also an integral, we obtain an

additional integral in the form:

m1 =
1
2
(q1q2 + p1p2).

Exercise 3. Let m2 = 1
2 (q2p1 − p2q1), m3 = 1

2 (f2 − f1). Prove the following
relations:

{m1, f1} = {f2,m1} = m2, {f1, m2} = {m2, f2} = m1, {f1, f2} = 0,

{m1,m2} = m3, {m2,m3} = m1, {m3,m1} = m2.

Note that the integral m2 corresponds to the functions sin(ϕ1 − ϕ2). Also, since
the phase space R4(q, p) is four-dimensional, integrals f1, f2,m1,m2 are not all
independent. Indeed,

f1f2 = m2
1 + m2

2.

Let us consider the energy level set h = E > 0. It is a sphere of radius
√

2E:

(22) S3
E : q2

1 + q2
2 + p2

1 + p2
2 = 2E.

Trajectories of the system lying on S3
E defines the fibration of the sphere on circles,

which is exactly the Hopf fibration. The usual definition is as follows. Consider a
sphere S3 realized in a two-dimensional complex space C2(z1, z2) by the equation
|z1|2 + |z2|2 = 1. Then the complex projective line P1 ∼= S2 is defined as a quotient
of S3 with respect to the relation (z1, z2) ∼ (λz1, λz2), λ ∈ S1 = {eiθ}. The classes
of equivalences are circles that defines the Hopf fibration.

There is a mapping to a two-sphere

π : S3
E −→ S2

E ,

such that the inverse images π−1(x), x ∈ S2
E are trajectories of the system. By

using the integrals of the system, we can explicitly describe the mapping π:

π(q1, q2, p1, p2) = (m1, m2, m3) =
1
2

(
q1q2 + p1p2, q2p1− p2q1,

1
2
(q2

2 + p2
2− q2

1 − p2
1)

)
.

Namely, we have

m2
1 + m2

2 + m2
3 =

1
4
(4f1f2 + f2

1 − 2f1f2 + f2
2 ) =

1
4
(f1 + f2)2 =

1
4
h2,

so the point π(q1, q2, p1, p2) belongs to the sphere

(23) S2
E = {x ∈ R3 |x2

1 + x2
2 + x2

3 =
1
4
E2},

while from the independency of m1,m2,m3 we get that the inverse images π−1(x)
are trajectories of the system (19). Further, we also have the fibration of the
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sphere (22) on invariant tori (20), where c1 + c2 = E. Note that instead of (20),
in the definition of Mc1,c2 , we can use the equations h = f1 + f2 = E and m3 =
1
2 (f2 − f1) = 1

2 (c2 − c1).
Remark 4. A fibration on invariant tori for the system (19) is not unique.

For example, the invariant tori defined by h and m1 are different from (20).
Consider a decomposition of the sphere (23) on the antipodal points (the

“south” and “north pole”) and parallels:

S2
E = {(0, 0,−E/2)}

⋃

−E
2 <c< E

2

S1
c ∪ {(0, 0, E/2)}, S1

c = S2
E ∩ {x3 = c}.

With the above notation, it is clear that the inverse image of the circle S1
c is a

torus:

(24) Mc1,c2 = π−1(S1
c ), c1 =

1
2
(E−2c), c2 =

1
2
(E+2c), (c ∈ (−E/2, E/2)),

while the inverse images of the antipodal points (0, 0,−E/2) and (0, 0, E/2) are
circles

γ1 = π−1((0, 0,−E/2)) : f1 = E, f2 = 0,

γ2 = π−1((0, 0, E/2)) : f1 = 0, f2 = E.

Therefore, we have a decomposition of the sphere S3
E on circles γ1, γ2 and a family

of tori (24) This picture helps us to visualize the Hopf fibration, which can be
modelled as follows.

Fig. 7. The Hopf fibration

Let us realize the sphere S3
E as a 3-dimensional Euclidean space R3 with the

additional infinity point ∞. Let γ1 be a union of a line and the infinity point
∞ and let e ∈ R3 be an arbitrary point which does not belong to γ1. Consider a
fibration by circles F of the open half plane (γ1, e, without the point e, such that all
circles contain e in their interiors (see Figure 7). By the rotation of the point e and
the circles F around the line γ1 we obtain the circle γ2 and a family of rotational
surfaces T , respectively.
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Rotational surfaces T are tori that corresponds to (24) and the Hopf fibration
is an additional fibration of tori, given by cycles that wind once along the meridians
and once along the parallels.

Exercise 4. It is obvious that the circles γ1 and γ2 are linked in S3
E , i.e.,

one of the circles intersect an arbitrary disc bounded by the other circle. It is
also obvious that the circle γ1 (or γ2) is linked with on arbitrary closed trajectory
on invariant tori (24). Make sure yourselves that the closed trajectories laying on
invariant tori are linked between themselves as well.
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