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Dedicated to Professor Milosav Marjanović on the occasion of his 80th birthday

Abstract. We show that for each positive integer k there is a sequence Fn : Rk→
R of continuous functions which represents via point-wise limits arbitrary functions
G : Xk →R defined on domains X ⊆R of sizes not exceeding a standard cardinal
characteristic of the continuum.
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1. Introduction

More than sixty years ago Sierpiński posed a general problem1 asking for which
index-sets X and for which families G of real functions defined on X can we find
a single sequence fn of real functions defined on X with the property that every
g ∈ G is a point-wise limit of a subsequence of fn. In [2], Rothberger showed that
this is the case when both the family G and the index-set X have cardinalities at
most ℵ1. In Theorem 6.4 of [3], we have extended Rothberger’s results to families
and index-sets of size at most p (a characteristic of the continuum defined below)
that appears to be a result of optimal generality. The purpose of this note is to
reinterpret this idea and prove the following result as well as its extensions to all
other finite dimensions.

1.1. Theorem. There is a sequence

Fn : R2 → R

of continuous functions such that for every set X of reals of size at most p and
every function

G : X2 → R
there is a one-to-one map h : X → R such that for all (x, y) ∈ X2,

G(x, y) = lim
n→∞

Fn(h(x), h(y)).

1See Fund. Math., vol. 27 (1936) p. 293, problème de M. Sierpiński.
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Recall that p is the minimal cardinality of a family F of infinite subsets of N
such that

⋂F0 is infinite for all finite F0 ⊆ F but there is no infinite subset b of N
such that b ⊆∗ a for all a ∈ F , where, as customary, b ⊆∗ a denotes the fact that
b \ a is a finite set, the fact that the set a almost includes the set b. This is a well
studied cardinal characteristic which while not provably equal to the continuum it
has this maximal value under many standard assumptions such us, for example,
the Continuum Hypothesis. One of its most useful formulation of this cardinal
characteristic of the continuum is that it is exactly equal to the Baire-category
number for the class of compact separable spaces. More precisely, p is the minimal
cardinality of a family of dense open subsets of some separable compact Hausdorff
space with empty intersection (see [1]). We shall use below the dual form of this
formulation of p.

2. Two variables

Note that when proving Theorem 1.1, without loosing generality, we can re-
place the reals with the Cantor set 2N. Thus, if we identify 2N with the power-set of
N in the natural way, the irrationals correspond to the collection of infinite subsets
of N. Let us first show that there is a sequence Fn : 2N → 2 of continuous {0, 1}-
valued functions universal in this way for functions G : X2 → 2 defined on sets of
irrationals of size at most p. In this case it will also be convenient to identify 2N

with its cube 2N×2N×2N in some natural way so that a given x ∈ 2N gets its three
coordinates (x)0, (x)1 and (x)2. For a given integer n, we define Fn : (2N)2 → 2 by
setting

Fn(x, y) =
{

1, if max((x)1 ∩ {0, 1, . . . , n}) ∈ (y)2,
0, otherwise.

Clearly, this defines a continuous function from (2N)2 into 2 = {0, 1}. Let us show
that the sequence Fn is universal for mappings G : X2 → 2 with domains X ⊆ 2N\Q
of cardinality at most p.2 Given such a mapping G : X2 → 2, we apply Theorem
6.4 of [3] and find a sequence (xa, ya) (a ∈ X) of pairs of infinite and co-infinite
subsets of N such that
(a) G(a, b) = 1 implies xa ⊆∗ yb, and
(b) G(a, b) = 0 implies xa ⊆∗ N \ yb.

Then it is readily seen that h : X → 2N× 2N× 2N defined by h(a) = (a, xa, ya)
is the required map satisfying the conclusion

G(a, b) = lim
n→∞

Fn(h(a), h(b))

for all (a, b) ∈ X2.
Now we treat the general case of finding a sequence Fn : R2 → R of continuous

functions that codes an arbitrary mapping G : X2 → R defined on a set of reals of
size at most p. Again we work with the Cantor set 2N instead of the set of reals.

2In this context, by 2N \Q, we denote the set of all x ∈ 2N that are not eventually constant.
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However we shall now identify 2N with its infinite power (2N)N and so every x ∈ 2N

decomposes naturally as a sequence (x)n of its coordinates. We shall again need to
identify 2N with the power-set of N and in order to simplify the notation and avoid
the confusion, for an infinite subset x of N and an integer n, we let

x[n] = max(x ∩ {0, 1, . . . , n}),
where we set max(∅) = 0. This way we make the distinction with the notation x(n)
which is the value of the characteristic function at n, i.e., x(n) = 1 iff n ∈ x. For
an integer n define Fn : (2N)2 → 2N by setting

Fn(x, y)(k) =
{

1, if k ≤ n and (x)2k+1[n] ∈ (y)2k+2,

0, otherwise.

Note that this indeed defines a continuous function from (2N)2 into 2N. We need
to show that the sequence Fn of continuous functions is universal for all mappings
G : X2 → R defined on sets X of reals of cardinality p. Clearly, we may assume
that X is a subset of 2N \Q and that the range of G is 2N rather than R. To this
end we apply the above argument to each of the coordinate functions Gk : X2 → 2
defined by Gk(x, y) = G(x, y)(k) getting the sequences (xk

a, yk
a) (a ∈ X) (k ∈ N) of

pairs of infinite and co-infinite subsets of N such that for all k ∈ N and (a, b) ∈ X2,
(c) Gk(a, b) = 1 implies xk

a ⊆∗ yk
b , and

(d) Gk(a, b) = 0 implies xk
a ⊆∗ N \ yk

b .
Finally, let h : X → (2N)N be defined by

h(a) = (a, x0
a, y0

a, x1
a, y1

a, . . . , xk
a, yk

a , . . . ).

We again leave to the reader the simple checking that

G(a, b) = lim
n→∞

Fn(h(a), h(b))

for all (a, b) ∈ X2.
2.1. Remark. Note that in general we cannot say much about the nature of

the mapping h since the set X might have more that continuum many maps of the
form G : X2 → R.

3. Higher dimensions

In this section we show how a higher dimensional version of the coding designed
above gives us the following more general result.

3.1. Theorem. For ever positive integer k there is a sequence

Fn : Rk → R

of continuous functions such that for every set X of reals of size at most p and
every function

G : Xk → R
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there is a one-to-one map h : R→ R such that for all (x1, . . . , xk) ∈ Xk,

G(x1, . . . , xk) = lim
n→∞

Fn(h(x1), . . . , h(xk)).

We again concentrate first on the case of representing {0, 1}-valued functions
G : Xk → 2 and we work with the Cantor space 2N instead of R. We shall use the
following variation of the coding of [3] which is proved along similar lines.

3.2. Lemma. For every set X of size at most p every positive integer k and
every G : Xk → 2 there exist a sequence ya (a ∈ X) of infinite subsets of N
and a sequence (x1

a, . . . , xk
a) (a ∈ X) of k-tuples of infinite subsets of N such that

G(a1, . . . , ak) = 1 if and only if

(1) (∃1 ≤ i ≤ k)(∀∞n)|(
k⋂

j=1

xj
aj

) ∩ {0, . . . , n}| ≥ |yai
∩ {0, . . . , n}|.

Proof. For the convenience of reader we sketch the proof. In fact, we shall prove
the symmetric version of the result, i.e., we shall first show how to code mappings
of the form G : [X]k → 2 defined on the family [X]k of all k-element subsets of X
rather than on the power Xk. We fix a well-ordering <w of X such that for all
b ∈ X, the set X(b) = {a ∈ X : a <w b} has cardinality < p. We shall first select
a sequence xa (a ∈ X) of infinite subsets of N such that for every s ∈ [X]k the set
xs :=

⋂
a∈s xa is infinite if and only if G(s) = 1. When this is done, for each b ∈ X,

we choose an infinite subset yb of N whose enumeration function grows much faster
than the enumeration function of any infinite set of the form

⋂
a∈t xa for t a finite

subset of X(b) ∪ {b}. In particular, we will have that for s ∈ [X]k,

G(s) = 1 iff (∀∞n) |xs ∩ {0, . . . , n}| ≥ min{|ya ∩ {0, . . . , n}| : a ∈ s}.
The sequence xa (a ∈ X) is selected by recursion on the well-ordering <w. The
extra inductive hypothesis at a given stage b ∈ X is that xp \

⋃
a∈q xa is infinite

for every pair p and q of disjoint finite subsets of X(b) such that |p| < k. This
extra inductive hypothesis guarantees (via the natural σ-centered poset P of finite
approximations) the existence of an infinite subset xb that is almost disjoint from
every element of the family

{xs : s ∈ [X(b)]k−1, G(s ∪ {b}) = 0}
and that will, if sufficiently generic, also have infinite intersection with every element
of the family

{xs : s ∈ [X(b)]k−1, G(s ∪ {b}) = 1}.
Moreover, if sufficiently generic, the set xb will also have infinite intersection with
every member of the family

{xp \
⋃
a∈q

xa : p ∈ [X(b)]<k−1, q ∈ [X]<ω, p ∩ q = ∅}
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and will not almost include any element of the family

{xp \
⋃
a∈q

xa : p ∈ [X(b)]<k, q ∈ [X]<ω, p ∩ q = ∅}.

Since ‘sufficiently generic’ requires meeting only < p dense open sets of the σ-
centered poset P, Bell’s formulation of the number p (see [1]), gives us a choice of
xb that will preserve all our inductive hypotheses.

To deduce the general case from the symmetric one, consider an arbitrary
G : Xk → 2. Let X̄ = X × {1, . . . , k} and choose a mapping Ḡ : [X̄]k → 2 such
that for all (a1, . . . , ak) ∈ Xk,

Ḡ({(a1, 1), . . . , (ak, k)}) = G(a1, . . . , ak).

Obtain sequences x̄a (a ∈ X̄) and ȳa (a ∈ X̄) of infinite subsets of N such that for
all s ∈ [X̄]k, we have that Ḡ(s) = 1 if and only if

(∃a ∈ s)(∀∞n) |x̄s ∩ {0, . . . , n}| ≥ |ȳa ∩ {0, . . . , n}|.
Then if for a ∈ X and 1 ≤ i ≤ k, we set xi

a = x̄(a,i), and if we set ya to be
any infinite subset of N whose enumeration function is faster than the enumeration
functions of each of the sets ȳ(a,i) (1 ≤ i ≤ k), we will obtain sequences satisfying
the conclusion of the lemma.

In order to define the corresponding sequence Fn : (2N)k → 2 of continuous
functions we identify 2N with (2N)k+1 in the natural way so that for a given x ∈ 2N

and i ≤ k we have well defined coordinate (x)i. Thus, for a given integer n, we
define Fn : (2N)k → 2 by setting Fn(x1, . . . , xk) = 1 if and only if there is some
j ∈ {1, 2, . . . , k} such that the intersection

⋂k
i=1(xi)i has at least as many points

below n as the set (xj)0. Clearly, each Fn is a continuous function on (2N)k. Let us
show that this sequence captures an arbitrary G : Xk → 2 where X is a set of reals
of size at most p. We apply the coding of Lemma 3.2 and get a sequence ya (a ∈ X)
of infinite subsets of N and a sequence (x1

a, . . . , xk
a) (a ∈ X) of k-tuples of infinite

subsets of N such that G(a1, . . . ., ak) = 1 if and only if the inequality (1) is satisfied
for all but finitely many n. We may assume a 7→ ya is a one-to-one mapping on X.
Recalling our identification of 2N and (2N)k+1 we define h : X → 2N as follows

(h(a))0 = ya and (h(a))i = xi
a for i = 1, . . . , k.

It follows from the equation (1) and our definition of Fn that

G(a1, . . . , ak) = lim
n→∞

Fn(h(a1), . . . , h(ak))

for all (a1, . . . , ak) ∈ Xk. To treat the general case we work again on the Cantor
space and identify 2N with its infinite power (2N)N so that every x ∈ 2N decomposes
naturally as a sequence (x)n of its coordinates. Note that given an arbitrary G :
Xk → 2N defined on a set of reals X of size at most p, we can apply the coding of
Lemma 3.2 to each of the coordinate functions Gm(a1, . . . , ak) = G(a1, . . . , ak)(m)
and obtain a sequence ya (a ∈ X) of infinite subsets of N and a sequence (x`

a, . . . , x`
a)
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(a ∈ X) (` ∈ N+) such that for all (a1, . . . , ak) ∈ Xk and all m ∈ N, we have that
Gm(a1, . . . , ak) = 1 if and only if

(2) |(
k⋂

i=1

xkm+i
ai

) ∩ {0, . . . , n}| ≥ min{|yai
∩ {0, . . . , n}| : 1 ≤ i ≤ k}

for all but finitely many n. Again we assume that a 7→ ya is a one-to-one mapping
on X.

Having in mind the identification of 2N and (2N)N, for each integer n we define
Fn : (2N)k → 2N by letting Fn(x1, . . . , xk)(m) = 1 if and only if there is some
j ∈ {1, 2, . . . , k} such that the intersection

⋂k
i=1(xi)km+i has at least as many

points below n as the set (xj)0. Clearly, each Fn is a continuous function on (2N)k.
To see that the sequence Fn is as required let G : Xk → 2N be an arbitrary function
defined on a set of reals X of size at most p. Apply the above coding procedure
and obtain ya (a ∈ X) and (x`

a, . . . , x`
a) (a ∈ X) (` ∈ N+) satisfying the inequality

(2) for all m and all but finitely many n. Define h : X → 2N as follows

(h(a))0 = ya and (h(a))` = x`
a for ` ∈ N+.

Then it readily follows that

G(a1, . . . , ak) = lim
n→∞

Fn(h(a1), . . . , h(ak))

for all (a1, . . . , ak) ∈ Xk.
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