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Abstract. This paper is addressed primarily to those high school students with
an intensive interest in mathematics, who are often in search for some extra reading
materials not being on school curriculum, as well as to their teachers. We have chosen
to offer here a material elaborating how the Euler formula could be used to establish
non-planarity of some graphs, and results about the colorings of maps on surfaces.
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1. Introduction

The Euler characteristic is a topological notion appearing in many different
topics throughout mathematics. The Euler formula shows that the expression of
the Euler characteristic in terms of numbers of vertices, edges and regions (faces
of different dimension in higher-dimensional cases) is a topological invariant. This
formula is a powerful tool used in establishing many important mathematical re-
sults, from the classification of regular polyhedra to the non-planarity criterium for
graphs.

This formula is also used, among many other ideas, in [3] by M. Marjanović
and his co-authors in their approach to the problem of recognizing the shape of
figures (of letters, in particular).

We intend to describe how this result is used to determine the minimal number
of colors needed to color any map in the plane, or more generally, on any given
surface.

2. Graphs and maps

Let us start by introducing some necessary notions.

By an (undirected, finite) graph we will mean an ordered pair G = (V,E),
where the elements of the finite set V are called vertices, and elements of the finite
set E are called edges, and each edge corresponds to a pair of vertices. (We think of
the edges as intervals joining the corresponding two vertices.) Loops and multiple
edges among two vertices are allowed. For the reader introduced to the notion of
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simplicial complex, a graph without loops and multiple edges is a 1-dimensional
simplicial complex.

Let us also mention some special classes of graphs. By Kn we will denote the
complete graph with n vertices, where each pair of different vertices is joined by
an edge. By Km,n we will denote a complete bipartite graph on two groups of m
and n vertices respectively, where each vertex from the first group is joined to each
vertex of the second group, and no two vertices from the same group are joined.

A map on some surface S (including the plane) is an injective continuous
mapping ϕ : G → S from some graph G to S. With no ambiguity, the images of the
vertices are also called vertices, and the images of the edges are also called edges.
So, edges of the map are some “curves” on surface S with no self-intersection, each
two of which could intersect only at possible common vertex. We could think of a
map as of some “curved” image of a graph embedded in the surface.

If there is a map of the graph G to surface S, we say that graph G could
be embedded in S. If a graph could be embedded in the plane, than it could be
embedded in the sphere as well, since the sphere without one point is homeomorphic
to the plane. The vice-versa is true as well. Namely, if there is an embedding of
a graph in the sphere, there is a point on the sphere not belonging to the image
of the embedding. (Otherwise this embedding would be a homeomorphism, which
of course could not exist.) But, then a graph could be embedded in the sphere
without a point, which is homeomorphic to the plane. We call such graphs planar.

The connected components of the complement of the map are called its regions,
and each map determines a finite number of regions.

If we consider a map in the plane, then some of its regions are unbounded
and the other regions are bounded. On every closed surface (compact, without
boundary), all regions have compact closures.

We will be especially interested in the maps on closed surfaces whose regions are
homeomorphic to an open disc. Note that this forces the graph G to be connected.
In the case of the plane (the unique remaining case that we will consider), there
is one unbounded region which could not be homeomorphic to an open disc, and
the graph G need not to be connected. In this case we impose the additional
condition to the graph G to be connected. (The readers familiar with some notions
of topology, could easily see that this is equivalent to the requirement that the
unbounded region is homotopy equivalent to the circle. We choose to require the
graph G to be connected, in order to avoid the usage of the notion, which might be
not familiar to some readers.) In this text we reduce our attention to such maps.

If we consider the image of a bipartite graph, then each region is bounded by
at least four vertices and edges.

Each map ϕ : G → S determines a graph G∗ (in some sense) dual to the graph
G, where the vertices of G∗ correspond to the regions of the map, and two vertices
of G∗ are joined if and only if corresponding regions share a common edge on their
boundaries. Note that this dual graph G∗ comes with a natural embedding in the
surface S. Note also that this notion depends on a map of the graph G, and not
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only on the graph G itself. It is obvious that a dual graph contains no loops or
multiple edges by definition.

Under some assumptions, there would be a construction in the opposite direc-
tion. Starting from the graph G∗ embedded in S, there would be such graph G and
a map ϕ : G → S so that the dual graph is exactly the original graph G∗. However,
we will not use it here.

3. Euler characteristic

Given a graph G = (V,E) with v vertices and e edges, its Euler characteristic
is defined to be χ(G) = v − e.

For a graph G embedded in the plane, the following idea was used in [3] to
simply determine its Euler characteristic. In order to simplify the presentation,
we present the idea in the case of the graph with no loops, although it works in
general.

Let us choose a line l in that plane, and project the drawing of G to the line l.
We could choose a generic line l in the plane, so that no two vertices of G project to
the same point in l, and so that every point x on l is the projection of finitely many,
n(x), points from G. This function n(x) is constant in some intervals and let us
denote by a0, a1, . . . , ak the successive endpoints of these intervals in one direction.
These are the points of the line l in which function n(x) changes its value. We
want that every point which is projected to some of these points is a vertex of G.
If some point which is not a vertex projects to some ai, we could introduce it as
a vertex and split the edge containing it in two edges. In this process we increase
the number of vertices and edges by 1 and so, preserve the Euler characteristic.

If some vertex projects to a point in some open interval (ai, ai+1), it is an
endpoint of two edges, and such a vertex could be removed from the set of vertices
by joining these two edges in one edge (in a kind of reverse process). Notice that
the Euler characteristic is again preserved, since we decrease the number of vertices
and edges by 1.

By applying these two processes we obtain an embedded graph whose vertices
(and only vertices) are all projected to the points a0, a1, . . . , ak. So, the number of
vertices of this graph is

∑k
i=0 n(ai). Also, the vertices of every edge are projected

to two consecutive points in the order a0, a1, . . . , ak.

Let us now choose some points b1 ∈ (a0, a1), . . . , bk ∈ (ak−1, ak) arbitrarily in
these intervals. Each point projected to the point bi belongs to an edge connecting
two vertices which are projected to the points ai−1 and ai. Different points project-
ed to the same point bi correspond to different edges of G, and so n(bi) counts the
number of edges whose vertices project to the points ai−1 and ai. So, the number
of edges of this graph is

∑k
i=1 n(bi), and we summarize all this in the following

theorem.

Theorem 3.1. χ(G) =
∑k

i=0 n(ai)−
∑k

i=1 n(bi).
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Let us now consider a map ϕ : G → S on the closed surface S, with v vertices,
e edges, which determines r regions, all of which are homeomorphic to a disc.

The Euler characteristic of this map is defined to be χ(ϕ) = v − e + r.
In the case of the plane we denote by r the number of bounded regions (so we

do not count one unbounded region), and also define the Euler characteristic in the
same way as χ(ϕ) = v − e + r. In this case, we require that all regions except for
the unbounded one are homeomorphic to the disc, and that graph G is connected.

The Euler-Poincaré formula expresses this quantity in terms of Betti numbers
of the surface S (their alternating sum). As a consequence, it turns out that the
Euler characteristic is a topological invariant of the surface, and it does not depend
on a map but only on the surface. We denote it by χ(S).

We provide an elementary proof of this fact. Let ϕ1 : G1 → S and ϕ2 : G2 → S
be two maps on the surface S whose regions are homeomorphic to a disc (except
for the unbounded one in the case of the plane). We want to show χ(ϕ1) = χ(ϕ2).
Without lack of generality we could assume that no vertex of one map belongs to
any edge of the other map, and that edges of different maps intersect transversal-
ly. (This requirement could be easily fulfilled by small perturbation of one map.)
Similarly, we could require, without lack of generality, that at least one edge of
ϕ1 intersects some edge of ϕ2, i.e., that neither of these maps is contained in one
region determined by the other map.

Let us denote by ϕ “the union” of these two maps. More precisely, let the
vertices of ϕ be the vertices of ϕ1, the vertices of ϕ2, and the intersection points
of an edge of ϕ1 and an edge of ϕ2. These intersection points (new vertices of ϕ)
will subdivide the edges of ϕ1 and ϕ2 in the edges of ϕ. It is easy to see that we
could obtain the map ϕ from the map ϕ1 (or ϕ2) in the finitely many steps of the
following three types:

(i) Add a vertex in the interior of some edge and divide this edge in two edges.
In this step the number of vertices and edges increase both by 1, and so the Euler
characteristic does not change;

(ii) Add a vertex in the interior of some region and connect it to one vertex
of that region. In this step, also, the number of vertices and the number of edges
increase by 1. Again, the Euler characteristic does not change;

(iii) Connect two vertices of some region by an edge. In such step the number
of edges and the number of regions increase by 1. So, the Euler characteristic does
not change in such step, either.

Consequently, χ(ϕ) = χ(ϕ1). In the same way we obtain χ(ϕ) = χ(ϕ2), which
proves our claim.

An alternative elementary proof of this fact in the case of the sphere could be
found in [4].

As a consequence, we could determine the Euler characteristic of some surface
S by counting the number of vertices, edges and regions of some conveniently
chosen map on S. It is a trivial exercise for a reader now to see that χ(R2) = 1
and χ(S2) = 2.
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It is well known that every oriented closed surface is homeomorphic to some
surface Mg (the sphere with g handles, or equivalently, connected sum of g tori M1),
g = 0, 1, 2, . . . . Of course, M0 is a sphere, M1 is a torus (surface of a doughnut),
and M2 could be visualized like this:

Fig. 1

The surface Mg could be obtained from the wedge of 2g circles α1, . . . , αg,
β1, . . . , βg by gluing 4g pieces of the boundary of a disc to these circles along the
“word” α1β1α

−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g . (Note that in the case of the sphere M0 = S2

there are no circles, and the boundary of a disc is glued to a point.) So, the Euler
characteristic of Mg could be determined as χ(Mg) = 1 − 2g + 1 = 2 − 2g. The
same answer could be obtained by computing the Betti numbers of Mg.

Every non-oriented closed surface is homeomorphic to some of surfaces Nh

(connected sum of h projective planes), h = 1, 2, . . . . These surfaces are difficult
to visualize since they cannot be embedded in the three-dimensional space. How-
ever, the reader is encouraged to visit the web-page http://vimeo.com/22409616
(Vimeo) or the web-page http://www.youtube.com/watch?v=9gRx66xKXek (You
Tube), at which he/she could view the animation by Dušan Živaljević, in order
to get some geometric insight in this sequence of surfaces, the projective plane
N1 = RP2. This animation contains the description of the embedding of the pro-
jective plane in R3 with “transversal” self-intersection.

The surface Nh could be obtained from the wedge of h circles γ1, . . . , γh by
gluing 2h pieces of the boundary of a disc to these circles along the “word” γ2

1 · · · γ2
h.

So, the Euler characteristic of Nh could be determined as χ(Nh) = 1−h+1 = 2−h.
Again, the same answer could be obtained by computing the Betti numbers of Nh.

Remark. We could also consider maps not satisfying the properties that the
regions are homeomorphic to open discs and that the graph is connected. In this
case the quantity v − e + r depends on a map. However, it could be verified that,
by the above steps of type (i), (ii) and (iii), the original map could be turned into
a map whose regions are homeomorphic to open discs (except for one in the case of
plane), the resultant graph is connected, and such that the quantity v− e + r does
not increase. The only difference in this case is that in the step of type (iii) the
number of regions could remain the same, and so the quantity v − e + r decreases.

Consequently, for any map on S we have v − e + r ≥ χ(S).
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4. Planarity of graphs

The problem of characterizing the planar and non-planar graphs was one of
very important and well-known mathematical problems until it was solved almost
simultaneously by Kuratowski and Pontryagin at the end of 1920’s. Their result
says that a graph is non-planar if and only if it contains one of the graphs K5 and
K3,3 as a minor (more geometrically, if its drawing contains a drawing of one of
these graphs). This result is beyond the scope of this text, and here we prove only
the easier implication in this equivalence.

Theorem 4.1. The graphs K5 and K3,3 are not planar.

Proof. Let us suppose, to the contrary, that the graph K5 is embedded in
the sphere S2. Since K5 has 5 vertices and 10 edges, by Euler formula each of its
maps in the sphere determines 7 regions, each of which has at least 3 edges on its
boundary (K5 has no loops or multiple edges). So, these 7 regions are bounded
by at least 21 edges, where each edge is counted twice. We obtain 21 ≤ 2e = 20,
which is a contradiction.

Let us suppose now, to the contrary, that the graph K3,3 is embedded in the
sphere S2. Since the graph K3,3 has 6 vertices and 9 edges, any of its maps in the
sphere determines (by the Euler formula) 5 regions. As we have noticed before, any
map of a bipartite graph determines regions with at least 4 edges. So, there are at
least 20 edges on the boundary of these regions. Each edge is counted twice. So,
we obtain 20 ≤ 2e = 18, which is a contradiction.

5. Coloring of maps

Consider now an embedding of a graph G in the surface S (a map on S). We
want to color the regions of this map so that adjacent regions (sharing a common
edge on their boundaries) are colored with different colors. We call such colorings
proper. It is clear from the definition that such a coloring of a map induces a proper
coloring of the vertices of the dual graph, where the adjacent vertices of the dual
graph are colored with different colors. Also, if we have a proper coloring of the
dual graph, we immediately obtain a proper coloring of the original map.

For each surface S (including the plane R2), we define κ(S), the coloring num-
ber of S as the minimal number of colors needed to properly color any finite map
on S. Similarly as for the maps themselves, the proper colorings of the maps in the
plane and the maps in the sphere induce one each other, and so the coloring num-
bers of the plane and the sphere coincide. This enables us to reduce our attention
(when dealing with colorings of maps on surfaces) to the case of closed surfaces.

If the graph G could be embedded in the surface S, and the dual graph contains
the complete graph Kn as a subgraph, then the coloring number of S is at least n.
Considering the map on the sphere obtained as the image of K4 (1-skeleton of a
tetrahedron), we see that the coloring number of the sphere (and the plane) is at
least 4.
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The problem of determining the coloring number of the plane asks (in everyday
language) for the minimal number of colors needed for a proper coloring of the
countries (which are required to be connected regions—so the countries like U.S.A.
are not allowed!), in any possible geographic map on the Earth. This problem was
raised by Guthrie already in 1852. The first false “proof” that 4 colors suffice was
provided by Kempe in 1878. Heawood, in 1890, pointed to the error in this “proof”,
and showed that five colors suffice to color any map in the plane.

The conjecture that four colors suffice has become widely known as the four-
color conjecture. It attracted a lot of attention, and became one of the best known
and most important problems in mathematics in general for a long period of time.
It was confirmed only after a lot of incorrect “proofs” and more than a century
of unsuccessful attacks on the problem in 1976, by Appel and Haken, who used a
computer to check a huge number of different cases. By the way, that was the first
well-known case of the problem whose solution relied on the use of computer so
heavily.

Of course, this proof is beyond the scope of this text. Here we present the
proof of Heawood’s five-color theorem instead. We start by a lemma.

Lemma 5.1. Every planar graph contains a vertex with at most 5 neighbors.

Proof. Let G be a planar graph, and let us denote by G′ the graph obtained
from G by removing its loops and taking only one of the edges among two vertices
with multiple edges. Obviously, the graph G′ is also planar, and each vertex in G′

has the same number of neighbors as in G. So, it suffices to prove that there is a
vertex in G′ with at most 5 neighbors.

Let us denote by v, e and r the numbers of vertices, edges and regions deter-
mined by some embedding of G′ in the sphere S2.

If we denote by n(x) the number of neighbors of the vertex x, we have n(x)
edges starting from x, and so

∑
x∈V n(x) = 2e (since each edge has 2 vertices).

Suppose to the contrary that every vertex has at least 6 neighbors. Then we have
2e ≥ 6v, or v ≤ e

3 .
If we denote by m(R) the number of edges on the boundary of the region R, we

have
∑

R m(R) = 2e (since each edge bounds 2 regions). Every region is bounded
by at least 3 edges (since the graph G′ has no loops or multiple edges), and so we
obtain 2e ≥ 3r, or r ≤ 2e

3 .
Substituting in the Euler formula, we have

2 = χ(S2) = v − e + r ≤ e

3
− e +

2e

3
= 0.

This contradiction proves the lemma.

Theorem 5.2. Any map in the plane could be properly colored with 5 colors.

Proof. We reformulate the problem in terms of graphs. Any map in the plane
determines its dual graph which is planar. So, we have to prove that every planar
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graph could be properly colored by 5 colors. We prove this by induction on the
number of vertices. For the graphs with at most 5 vertices the statement is trivial.

Suppose each planar graph with n vertices could be properly colored with 5
colors, and consider the planar graph G with n + 1 vertices. By lemma, there is a
vertex x ∈ G with at most 5 neighbors. Consider the graph G′ obtained from G
by removing the vertex x and edges having x as a vertex. The graph G′ is planar
and it has n vertices, and so it could be properly colored with 5 colors by induction
hypothesis.

If there are at most four neighbors of x in G, or if they are colored with at most
4 different colors, we could extend the coloring of G′ to the one of G by assigning
the fifth color to x.

Suppose now that neighbors of x are vertices x1, x2, x3, x4, x5 in the cyclic
order, and that they are colored with five different colors c1, c2, c3, c4, c5 respectively.
Consider now the subgraph G1,3 of G′ consisting of the vertices colored with c1

and c3, and of all edges of G′ connecting these vertices. If x1 and x3 belong to
the different connected components of G1,3, we could reverse the coloring on the
component containing x1 and obtain new proper coloring of G′. But, no neighbor
of x is colored with c1 in this new coloring, and we could assign the color c1 to the
vertex x to obtain the proper coloring of G.

If the vertices x1 and x3 belong to the same component of G1,3, there is a path
p1,3 between these two vertices containing only vertices colored with c1 and c3 and
edges joining such vertices.

Now we consider the subgraph G2,4 of G′ consisting of the vertices colored
with c2 and c4, and of all the edges of G′ connecting these vertices. If x2 and x4

belong to the different connected components of G2,4, we could, in the same way
as before, obtain new proper coloring of G′ which could be extended to the proper
coloring of G.

If the vertices x2 and x4 belong to the same component of G2,4, there is a path
p2,4 between these two vertices containing only vertices colored with c2 and c4 and
edges joining such vertices. The path p1,3 together with the edges connecting x
to x1, and x to x3 respectively determines a loop bounding a curved disc which
contains either the vertex x2 or the vertex x4, but not the both of them. So, it is
obvious that the paths p1,3 and p2,4 have to intersect each other in the graph G,
but this is impossible since their vertices are colored with different colors and so
have to be different. (Notice that this is also a consequence of the non-planarity of
the graph K5.) This contradiction completes the proof.

We could ask the same question for any closed surface S: What is the coloring
number of S? It turns out, surprisingly, that the most difficult case (by far) is the
case of the sphere, which we discussed above.

Heawood conjectured that for every closed surface S, its coloring number κ(S),
equals the following number H(S), which is called the Heawood number of the
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surface S:

H(S) =

[
7 +

√
49− 24χ(S)

2

]
.

Note that H(S2) = 4, and κ(S2) = H(S2) is the four-color theorem of Appel and
Haken. In what follows we describe the answer to Heawood’s conjecture in other
cases.

First we prove the following.

Theorem 5.3. For any closed surface S, H(S) colors suffice to color any map
on S, or κ(S) ≤ H(S).

Proof. Let us denote N = κ(S), and let ϕ : G → S be a map on S requiring
N colors for its coloring. This means that its dual graph G∗ could be colored by
N , and could not be colored by N − 1 colors (where different colors are assigned to
neighboring vertices of G∗).

We could take a minimal such graph, with the respect to the operation of
removing one vertex and the edges incident to it.

We prove that every vertex in this minimal graph G∗ is incident to at least
N − 1 edges. Suppose to the contrary, that some vertex x is incident to at most
N − 2 edges. After removing the vertex x and all the edges incident to x from the
graph G∗, we obtain the graph G′ which could be colored by N − 1 colors (since
G∗ was minimal). Since we assumed that x has at most N − 2 neighbors, there is
one of these N − 1 colors not used for the coloring of any of its neighbors. Then,
we could assign this color to x, and obtain in this way the coloring of G∗ by N − 1
colors, which is a contradiction.

So, every vertex of G∗ is incident to at least N − 1 edges, and we have (N −
1)v ≤ 2e, where again v, e and r denote the number of vertices, edges and regions
determined by the graph G∗ embedded in S.

Since a dual graph contains neither loops nor multiple edges, each region has
at least 3 edges on its boundary, which implies 3r ≤ 2e, or r ≤ 2e

3 .
The graph G∗ need not to have regions homeomorphic to open discs. However,

by the remark at the end of section 3, we have χ(S) ≤ v − e + r. So,

χ(S) ≤ v − e + r ≤ v − e

3
,

(N − 1)v ≤ 2e ≤ 6v − 6χ(S),

N − 1 ≤ 6− 6χ(S)
v

.

We have already discussed the case S = S2. Let now S = RP2. Then χ(S) = 1,
and the above inequality gives N −1 ≤ 6− 6

v < 6, which implies N ≤ 6 = H(RP2).
Finally, for any other surface S, we have χ(S) ≤ 0. Since the coloring of G∗

requires N colors, we certainly have v ≥ N , and so

N − 1 ≤ 6− 6χ(S)
N

,
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which implies N2−7N +6χ(S) ≤ 0. Therefore, the number N is contained between
the roots of the quadratic equation x2 − 7x + 6χ(S) = 0. So, it is not greater than
bigger of these roots, i.e.,

N ≤ 7 +
√

49− 24χ(S)
2

= H(S).

It remains to check whether H(S) colors are necessary for coloring of the maps
on the surface S. To show this to be the case, one needs to find a map on S, which
requires that many colors.

In the case of the sphere S2, a trivial example is provided by a map of four
regions each two of which are neighbors. Its dual graph is the complete graph on
four vertices. Below, we provide the examples in the cases of the torus T and the
projective plane RP2, showing κ(T ) = 7 and κ(RP2) = 6.

Exercise 5.4. There is a map on the torus requiring 7 colors.
We use the standard quotient model of the torus T obtained from the square

in which the opposite sides are identified in pairs.

-

-

6 6

a

a

b b

1

1 1

1

2

3

4

5

6

7

Fig. 2

Due to the described identification, the above map on T has 7 regions which
are connected and each two of which are adjacent. So, its dual graph is the complete
graph on 7 vertices K7, and its coloring requires 7 colors. Remember, not even K5

could have been embedded in S2, and here we described the embedding of K7 in T .
Exercise 5.5. There is a map on the projective plane requiring 6 colors.
We use the standard quotient model of RP2 obtained from the square in which

the opposite boundary points are identified.
Check that the map on RP2 (Fig. 3) has 6 connected regions each two of which

are adjacent. So, its dual graph is the complete graph on 6 vertices K6, and its
coloring requires 6 colors.
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Fig. 3

The similar examples are constructed in all other cases, except for the case of
the Klein bottle K = N2, in which case it turned out that its coloring number is
6 rather than H(K) = 7. So, Heawood’s conjecture is not true in the case of the
Klein bottle and it is true in all other cases.
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