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THE FUNDAMENTAL THEOREM
ON SYMMETRIC POLYNOMIALS

Hamza Elhadi S. Daoub

Abstract. In this work we are going to extend the proof of Newton’s theorem
of symmetric polynomials, by considering any monomial order > on polynomials in n
variables x1, x2, . . . , xn over a field k, where the original proof is based on the grad-
ed lexicographic order. We will introduce some basic definitions and propositions to
support the extended proof.
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The fundamental theorem of symmetric polynomials is, as its name suggests, a
key result in the subject of root identities. The theorem states that any symmetric
polynomial can be represented in terms of the elementary symmetric polynomi-
als. Newton had made an extensive study of symmetric root polynomials as early
as the mid-1660s, and was very likely aware of the fundamental theorem at that
time. Edwards adds “It must be admitted, however, that neither a careful state-
ment nor a proof of it seems to have been published before the nineteenth century.
Everyone seemed familiar with it and used it without inhibition.” Kline credits
Vandermonde with the first published proof of the fundamental theorem in 1771.
However, it should be noted that Vandermonde’s version of the result was stated
in terms of roots and coefficients of a polynomial. Edwards makes the point that
the fundamental theorem is properly about symmetric polynomials in n variables,
independent of the context of coefficients and roots of a polynomial. Such a for-
mulation sidesteps any philosophical issues concerning the existence or nature of
roots.

Definition 1.1. A polynomial f ∈ k[x1, x2, . . . , xn] is symmetric if

f(xτ(1), xτ(2), . . . , xτ(n)) = f(x1, x2, . . . , xn)

for every possible permutation xτ(1), xτ(2), . . . , xτ(n) of the variables x1, x2, . . . , xn.

Definition 1.2. Given variables x1, x2, . . . , xn, we define σ1, σ2, . . . , σn ∈
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k[x1, x2, . . . , xn] by

σ1 = x1 + x2 + · · ·+ xn

. . .

σr =
∑

τ(1)<τ(2)<···<τ(r)

xτ(1)xτ(2) · · ·xτ(r)

. . .

σn = x1x2 · · ·xn

And σi is a symmetric polynomial for all i = 1, . . . , n.

Definition 1.3. A monomial ordering on k[x1, x2, . . . , xn] is any relation > on
Zn
≥0, or equivalently, any relation on the set of monomials xα, α ∈ Zn

≥0 satisfying:
i. > is a total ordering on Zn

≥0.
ii. If α > β and γ ∈ Zn

≥0, then α + γ > β + γ.
iii. > is well-ordering on Zn

≥0. This means that every non-empty subset of Zn
≥0

has a smallest element under >.

Proposition 1.4. An order relation > on Zn
≥0 is a well-ordering if and only

if every strictly decreasing sequence in Zn
≥0

α(1) > α(2) > α(3) > · · ·
eventually terminates.

Definition 1.5. Let f =
∑

α aαxα be a nonzero polynomial in k[x1, x2, . . . , xn]
and let > be a monomial order.

The multidegree of f is multideg(f) = max(α ∈ Zn
≥0 : aα 6= 0).

The leading coefficient of f is LC(f) = amultideg(f) ∈ k.

The leading monomial of f is LM(f) = xmultideg(f).
The leading term of f is LT (f) = LC(f) · LM(f).

Proposition 1.6. For f(x1, x2, . . . , xn), g(x1, x2, . . . , xn) ∈ k[x1, x2, . . . , xn]
we have

LT (fg) = LT (f)LT (g).

Let > be any monomial order of the variables x1, x2, . . . , xn such that

xτ(1) > xτ(2) > · · · > xτ(n).

According to the Definition 1.3, we notice that

xτ(1)xτ(2) > xτ(1)xτ(i), where i = 3, . . . , n

xτ(1)xτ(2)xτ(3) > xτ(1)xτ(2)xτ(i), where i = 4, . . . , n
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and so on. The leading term of σi is defined as follows:

LT (σ1) = xτ(1)

LT (σ2) = xτ(1)xτ(2)

. . .

LT (σn) = xτ(1)xτ(2) · · ·xτ(n)

Now, suppose that f ∈ k[x1, x2, . . . , xn] be any nonzero symmetric polyno-
mial, and c1x

a1
1 xa2

2 · · ·xan
n be a leading term of f . Consider g = σα1

1 σα2
2 · · ·σαn

n .
According to Proposition 1.6, the leading term of g is defined as follows:

LT (g) = LT (σα1
1 σα2

2 · · ·σαn
n )

= LT (σα1
1 )LT (σα2

2 ) · · ·LT (σαn
n )

= (xτ(1))α1(xτ(1)xτ(2))α2 . . . (xτ(1)xτ(2) · · ·xτ(n))αn

= xα1+α2+···+αn

τ(1) xα2+···+αn

τ(2) · · ·xαn

τ(n)

Therefore, we can find the values of αi, where

LT (f) = LT (cg) ⇔ c1x
a1
1 xa2

2 · · ·xan
n = c1x

α1+α2+···+αn

τ(1) xα2+...αn

τ(2) · · ·xαn

τ(n)

⇔ aτ(1) = α1 + α2 + · · ·+ αn

and aτ(2) = α2 + α3 + · · ·+ αn

. . .

and aτ(n) = αn

Thus,

αn = aτ(n)

αn−1 = aτ(n−1) − aτ(n)

αn−2 = aτ(n−2) − aτ(n−1)

. . .

α2 = aτ(2) − aτ(3)

α1 = aτ(1) − aτ(2)

Then, the map

(a1, a2, . . . , an) 7→ (aτ(1) − aτ(2), aτ(2) − aτ(3), . . . , aτ(n−1) − aτ(n), aτ(n))

defines the relation between the leading terms of f and g.

Theorem 1.7. [Newton’s Theorem] Any symmetric polynomial in
k[x1, x2, . . . , xn] can be written as a polynomial in σ1, σ2, . . . , σn with coefficients
in k and this polynomial is unique.

Proof. We will follow the argument above. So let > be any monomial ordering
of the variables x1, x2, . . . , xn such that.

xτ(1) > xτ(2) > · · · > xτ(n)
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Let c1x
a1
1 xa2

2 · · ·xan
n be a leading term of f , and consider

g = σ
aτ(1)−aτ(2)
1 σ

aτ(2)−aτ(3)
2 · · ·σaτ(n)

n .

LT (c1g) = LT (c1σ
aτ(1)−aτ(2)
1 σ

aτ(2)−aτ(3)
2 · · ·σaτ(n)

n )

= c1(xτ(1))aτ(1)−aτ(2)(xτ(1)xτ(2))aτ(2)−aτ(3) · · · (xτ(1)xτ(2) · · ·xτ(n))aτ(n)

= c1x
aτ(1)

τ(1) x
aτ(2)

τ(2) · · ·x
aτ(n)

τ(n)

= LT (f)

for any permutation τ . This shows that f and c1g have the same leading term.
Hence f1 = f − c1g has a strictly smaller leading term according to the monomial
ordering, which is defined above. Since f and g are symmetric polynomials, then
so is f1.

Now we repeat this process, starting with f1 instead of f , where f1 has a
leading term with coefficient c2 and exponent b1 < b2 < · · · < bn. As above, there
is a symmetric polynomial g1 such that f1 and c2 g1 have the same leading term.
It follows that

f2 = f1 − c2g1 = f − c1g − c2g1

has a strictly smaller leading term. Continuing in this way, we get polynomials:

f, f1 = f − c1g, f2 = f − c1g − c2g1, f3 = f − c1g − c2g1 − c3g1, . . .

where at each stage the leading term gets smaller according to the ordering mono-
mial. This process will terminate when we find some m with fm = 0; if not, then
the above would give an infinite sequence of nonzero polynomials with strictly de-
creasing leading term, which contradicts Proposition 1.4. Hence, this process must
terminate.

Once we have fm = 0 for some m, we obtain

f = c1g + c2g1 + · · ·+ cmgm−1

where each gi is a product of the σi to various powers, which proves that f is a
polynomial in the elementary symmetric polynomials.

To prove the uniqueness, suppose that k[y1, y2, . . . , yn] be a polynomial ring
with new variables y1, y2, . . . , yn. Since the evaluation map which sends yi to σi ∈
k[x1, x2, . . . , xn] defines a ring homomorphism

ϕ : k[y1, y2, . . . , yn] → k[x1, x2, . . . , xn]

Then, if g = g(y1, y2, . . . , yn) ∈ k[y1, y2, . . . , yn] , we get

ϕ(g) = g(σ1, σ2, . . . , σn)

Recall that the set of all polynomials in the σi with coefficient in k is a subring of
k[x1, x2, . . . , xn], so we can write ϕ as a map

ϕ : k[y1, y2, . . . , yn] → k[σ1, σ2, . . . , σn]

where k[σ1, σ2, . . . , σn] is the set of all polynomials in σi with coefficients in k.
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The last map is onto by the definition. To prove the uniqueness we need to
prove that ϕ is one to one. It is sufficient to show that kerϕ = 0, which means for
any nonzero polynomial g in yi, then g(σ1, σ2, . . . , σn) 6= 0.

Let cub1
1 ub2

2 · · ·ubn
n be any nonzero term in g. Applying ϕ gives g =

σb1
1 σb2

2 · · ·σbn
n . As we mentioned before the theorem, the leading term of g =

σα1
1 σα2

2 · · ·σαn
n is

cxb1+b2+···+bn

τ(1) xb2+···+bn

τ(2) · · ·xbn

τ(n).

Since g is the sum of its terms, so the corresponding polynomial ϕ(g) is sum of
cσb1

1 σb2
2 · · ·σbn

n .
The crucial fact is that the map

(bτ(1), bτ(2), . . . , bτ(n)) 7→ (b1 + b2 + · · ·+ bn, b2 + · · ·+ bn, . . . , bn)

is one to one, so the leading terms cannot all cancel, and ϕ(g) cannot be the zero-
polynomial. Hence the uniqueness follows.
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