
THE TEACHING OF MATHEMATICS

2013, Vol. XVI, 1, pp. 18–21

A SOMEWHAT UNEXPECTED CONCAVITY

Aaron Melman

Abstract. This classroom note considers the slightly counterintuitive concavity
of a rational function.
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Introduction

As many calculus students will recognize, 1/x for x > 0 is a convex function,
and so is 1/x2, or any inverse power of x. But what about, e.g., 1/(x+x2)? Based
on a small nonscientific experiment in my classes, most of the students seemed to
think that this function was also convex, and they were right—it is (see Figure 1
on the left). However, their intuition broke down with 1/(x+x20), which they also
thought was convex. They were wrong! There is a finite interval of the positive
real axis on which that function is concave (see Figure 1 on the right).
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Fig. 1. The functions 1/(x + x2) (left) and 1/(x + x20) (right)

The reason for this phenomenon is the rapid change in the function’s leading
behavior when x crosses the value 1. When x < 1, x dominates x + x20, so that
the function essentially behaves like 1/x, whereas for x > 1, x20 dominates and the
functions’s behavior is essentially that of 1/x20. This means that, as x crosses 1 from
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left to right, the function drops down abruptly to a much lower value. Its derivative
must therefore decrease precipitously (in this case, become more negative), making
the second derivative negative, thereby causing the function’s shape to become
concave. As x continues to increase, the function once again becomes convex.

Clearly, the behavior of a function of the form 1/(xp + xq) with p, q > 0 for
x > 0 depends on the relative magnitudes of p and q. In what follows, we will
investigate the slightly more general function

f(x) =
1

xp + αxq

for x > 0, with p, q, α > 0 and q > p. It is an easy calculus exercise to compute the
interval on which f is concave (if such an interval exists). Let us consider the more
interesting problem of deriving a condition on the parameters of f that guarantees
concavity. We begin by computing the derivatives of f :

f ′(x) = −pxp−1 + αqxq−1

(xp + αxq)2
,

f ′′(x) =
2(pxp−1 + αqxq−1)2 − (p(p− 1)xp−2 + αq(q − 1)xq−2)(xp + αxq)

(xp + αxq)3

=

(
α2q(q + 1)x2(q−p) − α(2(q − p)2 − q(q + 1)− p(p + 1))xq−p + p(p + 1)

)
x2(p−1)

(xp + αxq)3
.

This means that the sign of f ′′, which determines the shape of f , is determined by
the first factor in the numerator of f ′′. Setting y = xq−p, this factor becomes

g(y) = α2q(q + 1)y2 − α(2(q − p)2 − q(q + 1)− p(p + 1))y + p(p + 1).

If the quadratic g has two positive roots y1 and y2 with y1 < y2, then g(y) < 0
for any y such that y1 < y < y2, implying that f ′′(x) < 0 for any x such that
y
1/(q−p)
1 < x < y

1/(q−p)
2 . Since its leading and constant coefficients are positive,

the quadratic g can have two positive or two negative roots, the latter being of
no interest to us. The roots will be positive if and only if both of the following
inequalities are satisfied:

2(q − p)2 > q(q + 1) + p(p + 1)

and
(2(q − p)2 − q(q + 1)− p(p + 1))2 > 4q(q + 1)p(p + 1).

This is equivalent to requiring that

2(q − p)2 > q(q + 1) + p(p + 1) + 2
√

q(q + 1)p(p + 1),

which can be rewritten as

2(q − p)2 >
(√

q(q + 1) +
√

p(p + 1)
)2

,

i.e.,

(1)
√

2q −
√

q(q + 1) >
√

2p +
√

p(p + 1).
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Inequality (1) is therefore a necessary and sufficient condition for the function f to
become concave on an interval. It depends on the powers p and q, but not on the
parameter α. The interval on which f is concave is (y1/(q−p)

1 , y
1/(q−p)
2 ), where y1

and y2 are the roots of g (which do depend on α).
We conclude by examining inequality (1) a little further. First of all, p > 0,

which means that
√

2q −
√

q(q + 1) > 0, and therefore q > 1. Let us now compute
the threshold value of q that makes f concave on an interval, as a function of p.
With γ =

√
2p +

√
p(p + 1), inequality (1) becomes

√
2q − γ >

√
q(q + 1),

which, since necessarily q ≥ γ/
√

2, is equivalent to

2q2 − 2
√

2γq + γ2 > q2 + q,

i.e.,

(2) q2 − (1 + 2
√

2γ)q + γ2 > 0.

The left-hand side of inequality (2) is is a quadratic in q, which is positive outside
the interval determined by its positive roots. The reader is invited to prove that the
smaller of these roots is less than γ/

√
2, which means that inequality (2) implies

that

(3) q >
1
2

(
1 + 2

√
2γ +

√
4γ2 + 4

√
2γ + 1

)
.

The right-hand side of inequality (3) represents the threshold value of q causing f
to be concave on an interval. Figure 2 shows this threshold value as a function of
p for small values of p on the left and for larger values of p on the right.
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Fig. 2. Threshold value for q as a function of p

A suggested exercise for the reader is to derive directly from inequality (1) the
following simple sufficient condition for f to be concave on an interval p:

q ≥
(√

2 + 1√
2− 1

)
p +

1√
2− 1

.
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When p = 1, as in the example we started out with, this condition becomes q ≥
8.2427 which is clearly satisfied for q = 20. For comparison, the exact condition
from (3) is q > 8.

Although it would certainly be more complicated than this note, it may be an
interesting project to investigate what happens when the function f has additional
powers of x in its denominator.
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