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POLYNOMIAL DIVISION AND GRÖBNER BASES

Samira Zeada

Abstract. Division in the ring of multivariate polynomials is usually not a part
of the standard university math curriculum. However, the algorithm is elementary
and it has very important consequences for algebraic computations. In this paper, the
algorithm is explained and illustrated with some examples, and the importance of the
choice of monomial ordering is stressed. The notion of Gröbner basis is introduced
and explained on examples. The paper can be used by math students and teachers
as a brief description of this very important topic and introduction for reading more
detailed textbooks.
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The most important algorithm in the polynomial ring is the division algorithm,
which is responsible for many nice properties of rings of integers Z and polynomials
K [x] over a field K. Classical division algorithm for integers goes back to ancient
times, and its main properties are described in Euclid’s “Elements”, including the
important Euclidean algorithm for determining the greatest common divisor of
two numbers. The corresponding division algorithm for polynomials is possible
due to the existence of a natural ordering of monomials 1 < x < x2 < · · · <
xn < xn+1 < · · · which corresponds to natural ordering of their powers, i.e., of
integers: 0 < 1 < 2 < · · · < n < n + 1 < · · · . All math students are (or at least,
should be) familiar with this division and its properties, including the Euclidean
algorithm for polynomials. However, in the multivariate polynomial ring there is
no such natural linear ordering. Therefore, there is no natural division algorithm
in the ring of polynomials with many variables K [x1, . . . , xn]. There are various
conventions, leading to a number of different possible “orderings” of monomials
and division algorithms. Certainly it is not enough to compare the (total) degree
of multivariate monomials, since this would leave us unclear as to whether x3y2z <
x3yz2 or x3y2z > x3yz2. It is clear that ordering of monomials is equivalent to
ordering of their power exponents: there is a correspondence between a monomial
xα = xα1

1 xα2
2 · · ·xαn

n and its multiindex or exponent α = (α1, . . . αn) ∈ Nn
0 (the set

of nonnegative integers will be denoted by N0). Monomial orderings are a particular
concern in computation and the results of certain important algorithms, such as
the division algorithm, can vary depending on which monomial ordering is chosen.

Definition. Let K be a field. A monomial ordering on K [x1, . . . , xn] is any
partial order relation < on Nn

0 (or equivalently, any partial order relation on the
set of monomials xα = xα1

1 xα2
2 . . . xαn

n , α = (α1, · · · , αn) ∈ Nn
0 ) such that:



Polynomial division and Gröbner bases 23

1. < is a total (linear) ordering on Nn
0 (this means that every two elements are

comparable);
2. if α < β ∈ Nn

0 and γ ∈ Nn
0 then α + γ < β + γ (the additive property);

3. < is a well-ordering on Nn
0 (this means that every nonempty subset of Nn

0

has a smallest element under <).

Lemma. The element o = (0, . . . 0) ∈ Nn
0 is necessarily the smallest element

in Nn
0 under any such ordering.

Proof. If α < o then, since α ∈ Nn
0 , the additive property implies that α+α <

o + α or 2α < α. We could repeat this argument to conclude that o > α > 2α >
3α > . . . . But then the set {0, α, 2α, . . . } does not have a smallest element and the
ordering is not a well-ordering.

Note that we have defined a monomial ordering as an ordering on n-tuples α =
(α1, . . . , αn) ∈ Nn

0 . Since there is a one-to-one relationship between the monomials
in K [x1, . . . xn] and Nn

0 so that monomial xα = xα1
1 xα2

2 · · ·xαn
n corresponds to n-

tuple α (its exponent), the ordering < on Nn
0 gives us an ordering on monomials in

K [x1, . . . , xn]. This is, if α < β then xα < xβ . Obviously, the additive property
changes to multiplicative property in this case. The monomial ordering in one
variable case can also be thought of simply as divisibility. That is, x is smaller
than x2, since x divides x2. One can easily see that divisibility is not a monomial
ordering in K [x1, . . . , xn] for n > 1, since divisibility cannot help us to decide in
general whether one monomial is greater than another. In the terms of exponents,
divisibility corresponds to addition: xα | xβ ⇔ ∃γ : β = α + γ. This implies, but is
not equivalent to α < β. We must have some way of ordering these variables.

Examples of monomial orderings

1. Lexicographic order
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn

0 . We say that α <lex β if,
in the difference β − α ∈ Zn, the left-most nonzero entry is positive. So, we say
xα <lex xβ if α <lex β. It is important to realize that there are many lex orders,
corresponding to how variables are ordered. So far, we have used lex order with
x1 > x2 > · · · > xn. But given any linear ordering of the variables x1, . . . , xn,
there is a corresponding lex order. For example, if the variables are x and y, then
we get one lex order with x < y and another with y < x. In the general case of n
variables, there are n! lex orders.

2. Graded lexicographic order
Let α, β ∈ Nn

0 . We say that α <grlex β if |α| =
∑n

i=1 αi < |β| =
∑n

i=1 β1 or
|α| = |β|. and α <lex β. The number |α| is called the degree of α.

3. Graded reverse lexicographic order
Let α, β ∈ Nn

0 . We say that α <grevlexβ if |α| =
∑n

i=1 αi < |β| =
∑n

i=1 β1 or
|α| = |β| and in β − α ∈ Zn the right-most nonzero entry is negative.
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4. Matrix ordering
Let α, β ∈ Nn

0 and let A ∈ GL(n,R) be an invertible matrix over real numbers.
We define a relation <A on Nn

0 by the condition

α <A β ⇐⇒ A




α1
...

αn


 <lex A




β1
...

βn


 .

This is a total ordering since A is invertible. It is monomial if for all α ∈ Nn
0 the

first nonzero term of A (α1 · · · αn )> is positive (because the monomial 1 is the
minimal element on M = {xα : α ∈ Nn

0}, the set of monomials in K [x1, . . . , xn]).
Here are some examples of matrix orderings.
The matrix associated with lexicographic ordering in three variables is

E =




1 0 0
0 1 0
0 0 1


, deglex is given by




1 1 1
1 0 0
0 1 0


, and degrevlex is given by




1 1 1
0 0 −1
0 −1 0


. The matrix associated with the given monomial ordering is clear-

ly not uniquely determined.

Definition. Let f =
∑

α aαxα be a nonzero polynomial in K [x1, . . . , xn] and
let < be a monomial order. Then: the multidegree of f is multdeg (f) = max{α ∈
Nn

0 : aα 6= 0} (the maximum is taken with respect to <); the leading coefficient of
f is LC (f) = amultdeg(f) ∈ K; the leading monomial of f is LM (f) = xmultdeg (f)

(with coefficient 1); the leading term of f is LT (f) = LC (f) · LM(f).

A division algorithm for polynomials

In the division algorithm for polynomials in one variable, for the input of a
divisor and a dividend we are guaranteed a unique and well defined output of a
quotient and remainder. However, in the case of multivariate polynomials, the
“quotients” and remainder depend on the monomial ordering and on the order
of the divisors in the division. The division algorithm in the multivariable case
allows us to divide f ∈ K [x1, . . . , xn] by f1, . . . , fs ∈ K [x1, . . . , xn], so that we can
express f in the form f = q1f1 + · · ·+qsfs +r. The strategy is to repeatedly cancel
the leading term of f by subtracting off an appropriate multiple of one of the fi.
However, the result of the division algorithm fails to be unique for multivariate
polynomials because there may be a choice of divisor at each step.

The division algorithm is described in what follows.
1. Start with q1 = q2 = · · · = qi = r = 0.
2. If f = 0, stop. Otherwise, for each i = 1, . . . , s check if LT (fi) divides LT (f).

If so, replace f by f− LT (f)
LT (fi)

, add LT (f)
LT (fi)

to qi and then return to the beginning
of 2). If LT(gi) does not divide LT(f) for any i, continue to 3.
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3. Add LT (f) to r, replace f by f − LT (f), and then return to the beginning
of 2.
This algorithm always terminates, because we have built in the definition of a

monomial order that it is well-ordered, and the multidegree of f is reduced in each
iteration.

Recall that an ideal I in a commutative ring R is an additive subgroup in R
which has the ideal property: a ∈ R, b ∈ I ⇒ ab ∈ I. The ideal I = 〈b1, . . . , bn〉 ⊂ R
generated by b1, . . . , bn ∈ R is the set of all elements of the form a1b1 + · · ·+ anbn,
where a1, . . . , an ∈ R. Now, if the remainder when f is divided by f1, . . . , fs is
zero, then clearly f is in the ideal generated by fi. However, as examples show, the
converse does not hold.

Theorem (Division algorithm in K [x1, . . . , xn]). Fix a monomial order < on
Nn

0 , and let G = (f1, . . . , fs) be an ordered s-tuple of polynomials in K [x1, . . . , xn].
Then every f ∈ K [x1, . . . xn] can be written as f = q1f1 + · · · + qsfs + r where
qi, r ∈ K [x1, . . . , xn], and either r = 0 or r is a linear combination, with coefficients
in K of monomials none of which is divisible by any of LT (f1), . . . , LT (fs). We
call r a remainder of f in division by G. Furthermore, if qifi 6= 0 then we have
multdeg(f) = multdeg(qifi).

Definition. We write fG for the remainder in the division of f by the (or-
dered) list of polynomials G = {g1, . . . , gj}.

Example. If G = (x3y2 − y2z, xy2 − yz), then using lex order on monomials
(x5y3)G = yz3 since by the division algorithm we have

x5y3 =
(
x2y

) (
x3y2 − y2z

)
+

(
xyz + z2

) (
xy2 − yz

)
+ yz3

Example. We will divide f = x3y2 +xy+x+1 by f1 = x3 +1 and f2 = y2 +1
using lex order with y < x. Then according to our algorithm we get the following:

(x3y2 + xy + x + 1) : (x3 + 1) = y2

−(x3y2 + y2)

xy + x− y2 + 1 : (y2 + 1) = −1 → xy + x

−(−y2 − 1)
2 → xy + x + 2

The graphical representation used above for the division process is standard. After
dividing f by the leading term of f1, we get the polynomial xy + x − y2 + 1 with
no terms that are divisible by the leading term of f1. Furthermore, the first low
terms, xy and x are not divisible by the leading term of f2, and so these go to the
remainder column r. We are left with −y2 + 1 and we divide this by the leading
term of f2. We obtain q1 = y2. After dividing by the leading term of f2, we get the
2, and so this term is sent to the remainder column and we have a total remainder
xy + x + 2. Thus we obtain q2 = −1 and

x3y2 + xy + x + 1 = y2(x3 + 1) + (−1)
(
y2 + 1

)
+ (xy + x + 2).
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Example. Let f1 = x2y − 2x, f2 = y3 + 4 ∈ K[x, y]. We will use lex order
with y < x.

Let f = x2y3−2xy2 ∈ K[x, y]. Our first case will be f = (f1, f2). Then, by the
procedure described above we obtain x2y3− 2xy2 = y2

(
x2y − 2x

)
+0

(
y3 + 4

)
+0.

If, however, we take f = (f2, f1) in the second case, then we obtain x2y3 − 2xy2 =
x2

(
y3 + 4

)
+ 0

(
x2y − 2x

) − 2xy2 − 4x2. So we can see that the two cases in the
example produce two different remainders, 0 and −2xy2− 4x2, respectively, due to
a switch in the order of polynomials in f .

The need for a well defined remainder upon division is one of the motivations
for the definition of “Gröbner” basis.

Monomial ideals and Gröbner basis

As we have seen, in general we do not obtain a uniquely determined remainder
from the division algorithm. However, the subsequent definition of a Gröbner basis
will have the quality that the division of f by G yields the same remainder, no
matter how the elements of G are ordered in the division. Since we will show
that every ideal I has a Gröbner basis, we are able to resolve the ideal membership
problem with a necessary and sufficient condition for a polynomial f to be a member
of an ideal I, namely that division of f by the Gröbner basis of I returns a remainder
of 0.

Definition. A monomial ideal is an ideal generated by a set of monomials.

This is, I is a monomial ideal, if there is a subset A ⊂ Nn
0 such that I consists

of all polynomials which are finite sums of the form
∑

α∈A hαxα , where hα ∈
K [x1, . . . , xn]. We write I = 〈xα : α ∈ A〉. For example I =

〈
x5y2z, x2yz2, xy3z2

〉
⊂ K [x, y, z] is a monomial ideal. For all monomial ideals we have the fact that
if xβ lies in I, then xβ is divisible by xα for some α ∈ A. Furthermore, for every
polynomial f in a monomial ideal I, we can say that every term of f lies in I and
that f is a K-linear combination of the monomials in I.

Definition. Let I ⊂ K [x1, . . . , xn] be a nonzero ideal.

1. Let LT (I) be the set of leading terms of element of I:

LT (I) = { cxα : there exists f ∈ I with LT (f) = cxα }

2. We denote by 〈LT (I)〉 the ideal generated by the elements of LT (I).

Note that if we are given a finite generating set for I, say I = 〈g1, . . . , gs〉, then
〈LT (g1) , . . . , LT (gs)〉 and 〈LT (I)〉 are not always the same.

Example. Let I = 〈f1, f2〉 where f1 = x3 − 2xy and f2 = x3y − 2y2 + x, and
use lex ordering on the monomials in K [x, y]. Then

f3 := y
(
x3 − 2xy

)− (
x3y − 2y2 + x

)
= −2xy2 + 2y2 − x
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So f3 ∈ I and LT (f3) = −2xy2 ∈ LT (I), but not in 〈LT (f1) , LT (f2)〉 since it is
not divisible by the leading terms of f1 or f2.

We want to obtain ideals that have the property that 〈LT (I)〉 =
〈LT (g1) , . . . , LT (gs)〉, i.e., that the ideal of the leading terms is generated by
the leading terms of the original ideal’s generators. We want to eliminate cases like
the above by making sure that our basis generates all of 〈LT (I)〉. This motivates
the following definition.

Definition. Let a monomial ordering on K [x1, . . . , xn] be fixed. A finite
subset G = {g1, . . . , gs} of an ideal I is said to be a Gröbner basis of the ideal I if
〈LT (g1) , . . . , LT (gs)〉 = LT (I).

As a corollary to the Hilbert Basis Theorem applied to 〈LT (I)〉 we have the
following.

Corollary. Let I be a nonzero polynomial ideal, then I has a Gröbner basis.

While this corollary proves the existence of a Gröbner basis, its proof is not
constructive and offers us little insight as to how to actually obtain one. We would
like to obtain a generating set such that all that leading terms of the polynomials
in the set generate the leading terms of the ideal I. This fails when there is a can-
cellation of leading terms of the kind in the previous example. To better determine
when this cancellation occurs, Buchberger constructed a special polynomial that
produces new leading terms.

Definition. Let f, g ∈ K [x1, . . . , xn] be nonzero polynomials.
1. If multidegrees multdeg (f) = α and multdeg (g) = β, then let γ = (γ1, . . . , γn)

where γi = max(αi, βi) for each i. We call xγ the least common multiple of
LT (f) and LT (g).

2. The S-polynomial (S stands for “syzygy”, from Latin syzygia “conjunction”,
or Greek συ′ζυγoς – syzygos, “yoked together”) of f and g is the combination
S (f, g) = xγ

LT (f)f − xγ

LT (g)g.

Example. Let f = x4yz+x2y3z+xz and g = 2x2y2z+xy2 +xz3 in Q [x, y, z]
with the lexicographic ordering on monomials. Then γ = (4, 2, 1) and we have:

S (f, g) =
x4y2z

x4yz
f − x4y2z

2x2y2z
g = yf − 1

2
x2g = −1

2
x3y2 − 1

2
x3z3 + x2y4z + xyz.

Notice the cancellation of the leading terms occurred by the construction of the
S-polynomial. Once a basis contains all the possible S-polynomials of polynomials
in the ideal generating set, there are no extra polynomials in 〈LT (I)〉 that are not
in 〈LT (I)〉 = 〈LT (g1) , . . . , LT (gs)〉. This leads to a very important criterion.

Theorem (Buchberger’s criterion). Let I be a polynomial ideal. Then a basis
G = {g1, . . . , gs} for I is a Gröbner basis for I if and only if for all pairs i 6= j, the
remainder on division of S(gi, gj) by G is zero.
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Theorem (Buchberger’s algorithm). Let I = 〈f1, . . . , fs〉 6= (0) be a polyno-
mial ideal. Then a Gröbner basis for I can be constructed in a finite number of
steps.

Buchberger’s algorithm proceeds like this. Let F = (f1, . . . , fs) be a list of
the polynomials defining I. For each pair of polynomials fi, fj in F calculate their
S-polynomial S, and divide it by the polynomials f1, . . . , fs in F obtaining SF . If
SF 6= 0, add SF to F and start again with F = F ∪{

SF
}
. Repeat the process until

all S-polynomials of polynomials in F have remainder 0 after division by F . This
process ends after a finite number of steps.

The Gröbner basis is determined by choice of a term order. Once we have
chosen it, we can apply Buchberger’s algorithm to obtain a Gröbner basis in that
term order. Here are some examples of computing the Gröbner basis of an ideal
with respect to different monomial orders.

Example. Let I =
〈
x2 + xy2, x2 − y3, y3 − y2

〉
. First, let <lex be the lexico-

graphic order with y < x as our term order. Using Buchberger’s algorithm we get a
Gröbner basis for I, G = (x2 + xy2, x2 − y3, y3 − y2, xy2 + y2) in one step. Second,
let <grlex be the graded lexicographic order. For the same I by using Buchberger’s
algorithm we get a different Gröbner basis G = (xy2 + x2,−y3 + x2, y3 − y2, x3 +
x2y, x2y + xy2,−x2 + y2) in three steps.

Example. For I =
〈
xy + y2, x2y + xy2 + x2

〉
, the Gröbner basis with re-

spect to the lex order with y < x is G =
(
xy + y2, x2y + x2 + xy2,−x2,−y3

)
, but

the Gröbner bases with respect to the lex order with x < y is G =
(
y2 + xy ,

xy2 + x2y + x2,−x2
)
.
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