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DEFINITION OF THE DEFINITE INTEGRAL

Nikita Shekutkovski

Abstract. In this paper we suggest a new approach for a definition of definite
integral of a real function in the first course in Mathematical Analysis. The definite
integral exists if for any sequence of partitions, the upper sum and the lower sum of
Darboux have the same limit. If the definite integral of a real function exists, then we
can simply compute it, as a limit of a sequence of integral sums of Riemann.
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The most usual way of defining definite integral of a real function f : [a, b] → R
in the contemporary literature is by integral sums of Riemann.

If T = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b is a partition of
[a, b], ∆xi = xi+1 − xi, and ui ∈ [xi, xi+1] are arbitrarily chosen points, for i =
0, 1, . . . , n− 1, the sum

R(T ) =
n−1∑
i=0

f(ui)∆xi

is called the integral sum of Riemann of the function f on the interval [a, b] (for
the given partition T and for the chosen points ui).

Let h(T ) = max{∆xi | i = 0, 1, . . . , n − 1}. The definite integral is defined in
the following way.

Definition. The real function f : [a, b] → R is integrable (in the sense of
Riemann) if there exists a real number I such that for every ε > 0, there exists
δ > 0 such that for any partition T = {x0, x1, . . . , xn−1}, with and any choice of
points ui ∈ [xi, xi+1], for i = 0, 1, . . . , n− 1,

∣∣∣
n−1∑
i=0

f(ui)∆xi

∣∣∣ < ε.

The real number I is called the definite integral of f in the sense of Riemann and
we put I =

∫ b

a
f(x) dx.

An easy theorem is that if a function is integrable in the sense of Riemann
then it is bounded.
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Proving the properties of the definite integral just using the definition of Rie-
mann is a very difficult task, because the definition contains too many variables.
In older books there appears mainly a definition of definite integral as a limit

∫ b

a

f(x) dx = lim
h(T )→0

n−1∑
i=0

f(ui)∆xi.

This limit is not exactly described and in fact the existence of this limit is the same
as the definition of definite integral (in the sense of Riemann) by the first definition.

In this paper we will show how the existence of the definite integral
∫ b

a
f(x) dx

can be checked as a limit of sequence. If the definite integral
∫ b

a
f(x) dx exists, then

we can simply compute it as a limit of a sequence of integral sums of Riemann.
Suppose the function f is bounded on the segment [a, b], and

T = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b is a partition of [a, b]. As usual,
we introduce the notations

Mi = sup{ f(x) | x ∈ [xi, xi+1] }, and mi = inf{ f(x) | x ∈ [xi, xi+1] }
and

S(T ) =
n−1∑
i=0

Mi∆xi, s(T ) =
n−1∑
i=0

mi∆xi.

The sums S(T ) and s(T ) are known as the upper and the lower sum of Darboux.

Theorem 1. If (Tk) is a sequence of partitions of [a, b] such that

T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · ,

then the limits limk→∞ s(Tk) and limk→∞ S(Tk) exist and are finite.

Proof. Since s(T1) 6 s(T2) 6 · · · is an increasing sequence and since s(Tk) 6
S(T1), the sequence is bounded from above. It follows that there exists a finite
limk→∞ s(Tk).

Similarly, since S(T1) > S(T2) > · · · , there exists a finite limk→∞ S(Tk).
The following theorem is well known and it is easy to prove.

Theorem 2. If T ⊆ T ′, and T ′ is obtained from T by adding of p new points,
then:

0 6 S(T )− S(T ′) 6 p(M −m)h(T )

and
0 6 s(T ′)− s(T ) 6 p(M −m)h(T ),

where M = sup{ f(x) | x ∈ [a, b] }, m = inf{ f(x) | x ∈ [a, b] }.
Definition. The function f defined on the interval [a, b], is integrable on [a, b],

if for any ε > 0, there exists a partition T such that S(T )− s(T ) < ε.

Theorem 3. If the function f : [a, b] → R is integrable, then for any ε > 0
there exists δ > 0 such that h(T ) < δ implies S(T )− s(T ) < ε.
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Proof. We choose T ′ such that S(T ′)−s(T ′) < ε/3. If T ′ has p points in (a, b),
we choose δ <

ε

3(M −m)p
and we choose a partition T such that h(T ) < δ. Then

S(T )− S(T ∪ T ′) < p(M −m)h(T ) < p(M −m)
ε

3(M −m)p
=

ε

3
,

i.e., S(T ) − S(T ∪ T ′) <
ε

3
, and similarly s(T ∪ T ′) − s(T ) <

ε

3
. Adding the two

previous inequalities we obtain

S(T )− s(T ) < S(T ∪ T ′)− s(T ∪ T ′) +
2ε

3
.

On the other hand,

S(T ∪ T ′)− s(T ∪ T ′) < S(T ′)− s(T ′) <
ε

3
,

and it follows that S(T )− s(T ) <
ε

3
+

2ε

3
= ε. .

Corollary. If the function f : [a, b] → R is integrable then limk→∞ h(Tk) = 0
implies that limk→∞(S(Tk)− s(Tk)) = 0.

Proof. Since the function f is integrable, for every ε > 0 there exists δ > 0 such
that h(T ) < δ implies S(T )−s(T ) < ε. limk→∞ h(Tk) = 0 implies that there exists
an integer k0 such that h(Tk) < δ, for all k > k0. It follows that S(Tk)− s(Tk) < ε,
i.e.

lim
k→∞

(S(Tk)− s(Tk)) = 0.

Theorem 4. If (Tk) is a sequence of partitions of [a, b] such that limk→∞ h(Tk)
= 0 and T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · , then the following conditions are equivalent

for the function f :

1) f is integrable on [a, b],

2) limk→∞ S(Tk) = limk→∞ s(Tk).

Proof. 1) =⇒ 2). By Theorem 1, there exist finite limk→∞ S(Tk) and
limk→∞ s(Tk). By the previous corollary,

lim
k→∞

S(Tk)− lim
k→∞

s(Tk) = 0, i.e., lim
k→∞

S(Tk) = lim
k→∞

s(Tk).

2) =⇒ 1). Suppose that limk→∞ S(Tk) = limk→∞ s(Tk), i.e., limk→∞ S(Tk)−
limk→∞ s(Tk) = 0. Then for a given ε > 0, there exists k0 ∈ N such that S(Tk) −
s(Tk) < ε for all k > k0, i.e., the function f is integrable.

The above theorems allow us to define the definite integral
∫ b

a
f(x) dx of an

integrable function f on [a, b], as a real number introduced in the following way:
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Definition. Let f be an integrable function on [a, b], and let (Tk) be a se-
quence of partitions of [a, b], such that T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · and limk→∞ h(Tk)
= 0. The definite integral is the real number

∫ b

a

f(x) dx = lim
k→∞

S(Tk) = lim
k→∞

s(Tk).

Remark. Instead of a sequence (Tk) of partitions of [a, b] such that T1 ⊆ T2 ⊆
· · · ⊆ Tk ⊆ · · · and limk→∞ h(Tk) = 0, we can require the sequence (Tk) to satisfy
only the condition limk→∞ h(Tk) = 0. However, in this case the proofs of theorems
become more complicated.

We have to show that the definite integral is well defined, i.e., it does not
depend on the choice of a sequence (Tk). We consider another sequence (T ′k) of
partitions of [a, b] such that T ′1 ⊆ T ′2 ⊆ · · · ⊆ Tk ⊆ · · · and limk→∞ h(T ′k) = 0.
Then

lim
k→∞

s(T ′k) 6 lim
k→∞

S(Tk) =
∫ b

a

f(x) dx = lim
k→∞

s(Tk) 6 lim
k→∞

S(T ′k).

Since the function f is integrable, the equality limk→∞ s(T ′k) = limk→∞ S(T ′k) is
satisfied, and we conclude that the definition does not depend on the choice of a
sequence of partitions.

Theorem 5. Let the function f be integrable on the interval [a, b] and let
(Tk) be a sequence of partitions of [a, b] such that T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · and
limk→∞ h(Tk) = 0. Then

(1) lim
k→∞

R(Tk) =
∫ b

a

f(x) dx.

Proof. Since s(Tk) 6 R(Tk) 6 S(Tk) and since f is integrable, we obtain that
(1) holds true.

Remark. By the previous theorem with a little use of computer programming
skills we can approximately compute any definite integral

∫ b

a
f(x) dx of an integrable

function. By taking a sequence of partitions (Tk) of [a, b] such that limk→∞ h(Tk) =
0, we can illustrate that the sequence of Riemann sums converges.

The advantage of the definition above is illustrated by the following examples.
Examples. 1. (Newton-Leibnitz formula) If the function f is integrable on

the segment [a, b] and f has a primitive function F on [a, b] (i.e., f(x) = F ′(x) for
x ∈ [a, b]), then ∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let T = {x0, x1, . . . , xn} be a partition of [a, b]. By the Mean Value
Theorem, there exist points vi ∈ [xi, xi+1], such that

F (xi+1)− F (xi) = F ′(vi)(xi+1 − xi) = f(vi)(xi+1 − xi),
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for i = 0, 1, . . . , n− 1. It follows that

F (b)− F (a) =
n−1∑
i=0

(F (xi+1)− F (xi)) =
n−1∑
i=0

f(vi)∆xi,

s(T ) 6 F (b)− F (a) 6 S(T ).

If (Tk) is a sequence of partitions of [a, b] such that T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · and
limk→∞ h(Tk) = 0, then

s(Tk) 6 F (b)− F (a) 6 S(Tk).

Since f is integrable we obtain limk→∞ s(Tk) = F (b)− F (a) = limk→∞ S(Tk) and
∫ b

a

f(x) dx = F (b)− F (a).

2. If a < c < b, and f is integrable on [a, c] and [c, b] then f is integrable on
[a, b] and ∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

Proof. We choose an increasing sequence (T ′k) of partitions of the segment [a, c]
and an increasing sequence (T ′′k ) of partitions of the segment [c, b], such that

T ′1 ⊆ T ′2 ⊆ T ′3 ⊆ · · · , T ′′1 ⊆ T ′′2 ⊆ T ′′3 ⊆ · · · ,

lim
k→∞

h(T ′k) = 0, lim
k→∞

h(T ′′k ) = 0.

Then,

lim
k→∞

S(T ′k) =
∫ c

a

f(x) dx = lim
k→∞

s(T ′k),

lim
k→∞

S(T ′′k ) =
∫ b

c

f(x) dx = lim
k→∞

s(T ′′k ).

If we put Tk = T ′k ∪ T ′′k then

S(Tk) = S(T ′k) + S(T ′′k ), and s(Tk) = s(T ′k) + s(T ′′k ).

(Tk) is an increasing sequence of partitions of the segment [a, b], and such that
limk→∞ h(Tk) = 0. Moreover, we have

lim
k→∞

S(Tk) = lim
k→∞

S(T ′k) + lim
k→∞

S(T ′′k ) =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

= lim
k→∞

s(T ′k) + lim
k→∞

s(T ′′k ) = lim
k→∞

s(Tk).

It follows that
∫ b

a
f(x) dx exists, and

∫ b

a

f(x) dx = lim
k→∞

S(Tk) =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.
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3. (Length of the graph of a continuous function) The length of the graph of a
continuous real function f : [a, b] → R from the point (a, f(a)) to the point b, f(b))
is defined in the following way.

If T = {x0, x1, . . . , xn} is a partition of [a, b] we define

Q(T ) =
n−1∑
i=0

√
(xi+1 − xi)2 + (f(xi+1)− f(xi))2.

Then the length L of the graph of function f is defined by

L = sup{Q(T ) | T is a partition of [a, b] }.

Now, suppose that f : [a, b] → R has a continuous derivative f ′. If T =
{x0, x1, . . . , xn} is a partition of [a, b], by the theorem of Lagrange, there exist
points vi ∈ (xi, xi+1) such that

f(xi+1)− f(xi) = f ′(vi)∆xi,

for i = 0, 1, . . . , n−1. It follows that the length of the segment connecting the points
(xi, f(xi)) and (xi+1, f(xi+1)) is

√
1 + f ′(vi)2 ∆xi. The sum of these lengths for

i = 0, 1, . . . , n− 1 is

Q(T ) =
n−1∑
i=0

√
1 + f ′(vi)2 ∆xi.

On the other hand, this is the sum of Riemann for the function
√

1 + f ′(x)2 and
for the partition T , i.e.,

R(T ) =
n−1∑
i=0

√
1 + f ′(vi)2 ∆xi.

If (Tk) is an increasing sequence of partitions of [a, b] such that limk→∞ h(Tk) = 0,
and limk→∞Q(Tk) = L, then

L = lim
k→∞

R(Tk) =
∫ b

a

√
1 + f ′(x)2 dx.
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