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A GEOMETRIC MAXIMIZATION PROBLEM

Aaron Melman

Abstract. We consider an area maximization problem to illustrate the impor-
tance of analytical work before solving an equation numerically.
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1. Introduction

The problem we consider is the following (see Figure 1): given a circle of radius
r with center C and an external point P at a distance d = |PD| from the circle, find
the angle θ that maximizes the area inscribed in the circle by rotating the rays PA
and PB through 2θ. Such a problem occurs when approximating polynomial zero
exclusion regions in the complex plane of the form |zk − a| < ρ (with k a positive
integer, a a complex number, and ρ a positive real number such that ρ < |a|) by
optimally inscribed annular sectors which are much simpler.

At first sight, this appears to be just another calculus example. However, its
solution, which involves geometry, trigonometry, and calculus, as well as numerical
methods, has something in it for everyone, and is a good illustration of the analytical
work necessary to construct an efficient numerical method. The latter is the main
objective of this note.

Although we will limit ourselves to this particular problem, an unlimited supply
of similar problems is obtained by varying the geometry. One could use a half-circle
facing towards or away from the point P , or one could replace the circle with an
ellipse, diamond, or any other regular (or even irregular) geometric shape. One
can also change the way the area is inscribed by using straight lines instead of arcs
and so on. Moreover, the whole construction can be revolved around the horizontal
axis passing through P , turning it into a maximum volume problem. One can also
change the variables, e.g., fix θ and maximize the area as a function of d. Some
of these problems have analytical solutions, but many do not, and the equations
defining the optimal angles and their properties vary considerably. They are quite
well suited for small class projects.



36 A. Melman

ar

b

d P

C

A

B

D

Fig. 1. Area inscribed in a circle by two rays

2. Area equation

We begin by computing the area of the shaded area in Figure 1 as a function
of the angle θ, for which we need the quantities a = |PA| and b = |PB|. Using the
cosine rule for the two triangles 4CPA and 4CPB with |PC| = |PD| + |DC| =
d + r, |PA| = a, and |PB| = b, we obtain the two equations

a2 + (d + r)2 − 2a(d + r) cos θ = r2 and b2 + (d + r)2 − 2b(d + r) cos θ = r2,

i.e., a and b are the solutions of the quadratic equation in x

x2 − 2(d + r) cos θ x + (d + r)2 − r2 = 0.

A little bit of algebra leads to

a = (d+r) cos θ−
√

r2 − (d + r)2 sin2 θ and b = (d+r) cos θ+
√

r2 − (d + r)2 sin2 θ.

Note that (d + r) sin θ is the orthogonal distance from C to the ray PB, which is
obviously less than the radius r, so that the expression under the square root is
positive.

The shaded area S(θ) inscribed in the circle in Figure 1 is then given by
θ(b2 − a2), which can be written as

S(θ) = θ(b− a)(b + a) = 4(d + r)θ cos θ

√
r2 − (d + r)2 sin2 θ.

Defining τ = d/r, the area can be expressed as

(1) S(θ) = 4r2(1 + τ)θ cos θ

√
1− (1 + τ)2 sin2 θ.

The angle θ lies in [0, θmax], where θmax = arcsin (r/(r + d)) = arcsin (1/(1 + τ)),
namely the angle for which PA and PB are tangent to the circle. Clearly, S(0) =
S(θmax) = 0. To avoid notation overload and because its meaning will be clear
from the context, we will write θmax instead of θmax(τ), and treat most other
quantities that also depend on τ similarly. We are now ready to find the angle θ
that maximizes S(θ).
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3. Area maximization

The solution for d = 0 will be obtained later on as a limit, so from here on we
assume that d > 0 (or τ > 0), which means that

θmax = arcsin
(

1
1 + τ

)
<

π

2
.

Since S(0) = S(θmax) = 0, S(θ) must reach its maximum for an angle in (0, θmax)
where its derivative vanishes. For θ ∈ [0, θmax), S′(θ) is given by:

S′(θ)
4r2(1 + τ)

= cos θ

√
1− (1 + τ)2 sin2 θ

− θ sin θ




√
1− (1 + τ)2 sin2 θ +

(1 + τ)2 cos2 θ√
1− (1 + τ)2 sin2 θ




(2)

=
cos θ

(
1− (1 + τ)2 sin2 θ

)− θ sin θ
(
1− (1 + τ)2 sin2 θ + (1 + τ)2 cos2 θ

)
√

1− (1 + τ)2 sin2 θ
.

(3)

It is easily verified that S′(0) > 0 and limθ→θ−max
= −∞, indicating that S′ vanishes

at least once on (0, θmax), but further analysis of S′ is complicated because of
its cumbersome form (both (2) and the numerator in (3)), which also makes it
difficult to construct a numerical method to solve S′(θ) = 0 (there is no analytical
solution) that should preferably be simple, fast, and guaranteed to converge from
an appropriate starting point. Using sec2 θ = 1 + tan2 θ, we therefore rewrite (3)
as follows:

S′(θ)
4r2(1 + τ)

=
cos θ

(
1− (1 + τ)2 + (1 + τ)2 cos2 θ

)− θ sin θ
(
1− (1 + τ)2 + 2(1 + τ)2 cos2 θ

)
√

1− (1 + τ)2 sin2 θ

=

(
1− τ(τ + 2) tan2 θ

)− θ tan θ
(
1 + (1 + τ)2 − τ(τ + 2) tan2 θ

)

sec3 θ
√

1− (1 + τ)2 sin2 θ
.

This means that, on the interval (0, θmax), S′(θ) = 0 if and only if

(4) ψτ (θ) ≡ θ tan θ − 1− τ(τ + 2) tan2 θ

1 + (1 + τ)2 − τ(τ + 2) tan2 θ
= 0,

where

(5) tan2 θmax =
sin2 θmax

cos2 θmax
=

sin2 θmax

1− sin2 θmax

=
1/(1 + τ)2

1− 1/(1 + τ)2
=

1
τ(τ + 2)

,
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so that 1 − τ(τ + 2) tan2 θ ≥ 0 for θ ≤ θmax < π/2, which shows that ψτ is well-
defined on the closed interval. To see if this is any better than what we had before,
we examine the derivatives of ψτ . To do this efficiently we first define

gτ (x) ≡ − 1− τ(τ + 2)x
1 + (1 + τ)2 − τ(τ + 2)x

= −1 +
(1 + τ)2

1 + (1 + τ)2 − τ(τ + 2)x
,

which is an increasing convex function of x for τ(τ + 2)x < 1 + (1 + τ)2. From (4)
we then have that ψτ (θ) = θ tan θ + gτ (tan2 θ), and it becomes a straightforward
exercise to show that ψτ is an increasing convex function on [0, θmax]. More-
over, one verifies with the help of (5) that ψτ (0) = −1/(1 + (1 + τ2)) < 0 and
ψτ (θmax) = θmax/

√
τ(τ + 2) > 0, implying that ψτ has a unique root θ? on the

interval (0, θmax), at which the inscribed area S achieves its unique maximum.
The root θ? decreases monotonically as τ increases since ∂ψτ/∂τ > 0, so that

ψτ1 > ψτ2 for τ1 > τ2. Figure 2 shows ψτ for τ = 3/2, 2, 3 from right to left,
respectively.
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Fig. 2. The function ψτ for τ = 3/2, 2, 3 from right to left, respectively

In the limit case when τ → 0+ (or d → 0+), we have θmax = π/2. On the
other hand, ψτ (π/4) = π/4 + (1 + τ)2/2 − 1 > 0 for any τ ≥ 0, implying that
0 < θ? < π/4. This means that, in this case, ψτ (θ) = 0 has a unique solution on
(0, π/4), an interval on which tan θ is finite. Consequently, as τ → 0+, the equation
for θ? becomes θ tan θ = 1/2, whose (numerical) solution is θ? ≈ 0.6533 ( 37.43◦ ).

The function ψτ turned out to be useful in the analysis of S, but that is not
its only advantage: its convexity also suggests a simple and fast numerical method
to compute its root, namely, Newton’s method, defined by the iteration

zk+1 = zk − ψτ (zk)
ψ′τ (zk)

.

Here this method converges monotonically from any starting point in [0, θmax] that
is larger than the root, such as θmax. However, a much better starting point can
be determined from bounds on the optimal angle, which is our next objective.
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4. Bounds on the optimal angle

Yet another advantage of ψτ is that it provides a convenient way to determine
upper and lower bounds on θ?. We will use the standard results that θ < tan θ
for θ ∈ (0, π/2) and x < arcsin x for x ∈ (0, 1]. Since θ, tan θ, and ψτ (θ) are all
increasing convex functions of θ on [0, θmax], replacing θ by tan θ in the first term
of ψτ turns it into the equally increasing and convex function fτ (tan2 θ), where

fτ (x) ≡ x− 1− τ(τ + 2)x
1 + (1 + τ)2 − τ(τ + 2)x

= x− 1 +
(1 + τ)2

1 + (1 + τ)2 − τ(τ + 2)x
,

with fτ (tan2 θ) > ψτ (θ) for any θ ∈ (0, θmax), implying that it has a unique root
θ1 on (0, θ?). Note that solving fτ (x) = 0 amounts to solving a simple quadratic
equation. Likewise, replacing tan θ by θ in both terms of ψτ turns it once again into
an increasing convex function fτ (θ2) with fτ (θ2) < ψτ (θ) for any θ ∈ (θ?, θmax),
implying that it has a root θ2 > θ?. Figure 3 shows the functions fτ (tan2 θ), ψτ (θ),
and fτ (θ2) for τ = 1.
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Fig. 3. The functions fτ (tan2 θ), ψτ (θ), and fτ (θ2) for τ = 1

It is not immediately clear that θ2 < θmax, so let us have a closer look. For
ease of writing, we set γ = (1 + τ)2. The solutions of fτ (x) = 0 are then given by
the solutions of (γ − 1)x2 − 2γx + 1 = 0, which are the positive numbers

x1 =
γ −

√
γ2 − γ + 1
γ − 1

and x2 =
γ +

√
γ2 − γ + 1
γ − 1

.

Clearly, x1 < x2, which means that tan2 θ1 = θ2
2 = x1, or θ1 = arctan

√
x1 and

θ2 =
√

x1. Furthermore, we have that

θ2 =

(
γ −

√
γ2 − γ + 1
γ − 1

)1/2

=

(
1

γ +
√

γ2 − γ + 1

)1/2

<
1√
γ

< arcsin
1√
γ

= θmax.
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As a result, we conclude that

0 < arctan

(
1

γ +
√

γ2 − γ + 1

)1/2

< θ? <

(
1

γ +
√

γ2 − γ + 1

)1/2

< θmax,

γ = (1 + τ)2. To have an idea of the quality of these bounds, Figure 4 shows the
ratio (θ2 − θ1)/θ1, (which is larger than (θ2 − θ1)/θ?) for τ ∈ [0, 5]. That ratio is
never more than 0.15 and decreases rapidly as τ increases.

If we compute θ? with Newton’s method starting from θ2, then at most five
iterations are necessary to compute it to 16 correct significant digits, regardless of
the value of τ .
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Fig. 4. The ratio (θ2 − θ1)/θ1

5. Concluding remarks

• The expressions for θ1 and θ2 are written in terms of γ (and therefore in
terms of τ), but they can also be expressed in terms of the angle θmax. Since
sin θmax = 1/

√
γ, we have

γ +
√

γ2 − γ + 1 = csc2 θmax +
√

csc4 θmax − csc2 θmax + 1

= csc2 θmax

(
1 +

√
1− sin2 θmax + sin4 θmax

)

= csc2 θmax

(
1 +

√
1− sin2 θmax + sin2 θmax (1− cos2 θmax)

)

= csc2 θmax

(
1 +

√
1− sin2 θmax cos2 θmax

)

=
1 +

√
1− sin2 θmax cos2 θmax

sin2 θmax

=
1 +

√
1− 1

4
sin2 2θmax

sin2 θmax

.
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From the expressions for the bounds, we obtain

θ2 =
sin θmax(

1 +
√

1− 1
4

sin2 2θmax

)1/2
and θ1 = arctan θ2.

Since 0 ≤ | sin 2θmax| ≤ 1, we obtain after some algebra that

θ? < θ2 ≤
√

2 sin θmax(
2 +

√
3
)1/2

=
(√

3− 1
)

sin θmax =
√

3− 1
1 + τ

<
(√

3− 1
)

θmax,

with
√

3− 1 ≈ 0.7321. This inequality can also be obtained directly from the
original expression for θ2. Using its upper bound (

√
3− 1)(1 + τ)−1 – instead

of θ2 itself – as a starting point for Newton’s method still reaches the same
accuracy as before in at most five iterations. One similarly obtains a lower
bound on θ1, resulting in

0 < arctan

(√
2/2

1 + τ

)
< θ? <

√
3− 1

1 + τ
< θmax.

Although these bounds on θ? are cruder than θ1 and θ2, their advantage is
that they are very simple.

• As τ → +∞ then both θ? and θmax go to zero, but it might be interesting
to see what happens to their ratio. This does not turn out to be difficult
and we proceed with a moderate amount of handwaving. As τ → +∞, then
θmax ≈ 1/

√
γ, and tan θ ≈ θ on [0, θmax], so that θ? ≈ θ1 ≈ θ2. This implies

that

lim
τ→+∞

θ?

θmax
= lim

γ→+∞

(
1

γ +
√

γ2 − γ + 1

)1/2√
γ =

√
2

2
.

In fact, a slightly more careful analysis using Taylor series shows that

lim
τ→+∞

θ?

θmax
=
√

2
2

(
1 +

1
8(1 + τ)2

+O
(

1
τ4

))
.
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