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1. On derivation and derivatives

In On Proof and Progress in Mathematics William Thurston describes how
people develop an “understanding” of mathematics [31]. He uses the example
of derivatives, that can be approached from very different viewpoints, allowing
individuals to develop their own understanding of derivatives.

“The derivative can be thought of as:
(1) Infinitesimal: the ratio of the infinitesimal change in the value of

a function to the infinitesimal change in a function.
(2) Symbolic: the derivative of xn is nxn−1, the derivative of sin (x)

is cos (x), the derivative of f ◦ g is f ′ ◦ g × g′, etc . . .

(3) Logical: f ′ (x) = d if and only if for every ε there is a δ, such that
0 < |∆x| < δ when

∣∣∣∣
f(x + ∆x)− f(x)

∆x
− d

∣∣∣∣ < δ 1

(4) Geometric: the derivative is the slope of a line tangent to the
graph of the function, if the graph has a tangent.

(5) Rate: the instantaneous speed of f (t) = d, when t is time.
(6) Approximation: The derivative of a function is the best linear

approximation to the function near a point.

1This is taken literally from [31].
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(7) Microscopic: The derivative of a function is the limit of what you
get by looking at it under a microscope of higher and higher power.

. . . . . .

(37) The derivative of a real-valued function f in a domain D is the
Lagrangian section of the cotangent bundle T ∗ (D) that gives the connec-
tion form for the unique flat connection on the trivial R-bundle D×R for
which the graph of f is parallel.”
Thurston provides this partial list but states that this list can be still extended.

With respect to ‘individual’ understanding, “one person’s clear mental image is
another person’s intimidation. Human understanding does not follow a single path,
as a computer with a central processing unit; our brains are much more complex and
capable of far more than a single path” [31]. In addition, we should not forget that
it has taken mathematicians thousands of years to come to a good understanding
of the concept.

In this article we will use (2) and show how this reduces to a game of cubes
and unit elements. The same procedure underlies important special polynomials in
mathematics, as recent research shows. Essentially the game component of cubes
and beams, very clear to mathematicians from the 16th and 17th century, and
the unified approach for polynomials are the same. Many of the other different
definitions of derivatives simply follow from these observations.

2. The geometry of means

Throughout the article we will only use very simple arguments, starting from
geometric means, beams and cubes and unit (or neutral) element. To develop the
argument we use a method proposed by the second author, a geometrical represen-
tation of the nth-arithmetic, nth-geometric and nth-harmonic means [32–34].

x =
2a + b

3
= AM 1

3

y =
a + 2b

3
= AM 2

3

x = 3
√

a2b = GM 1
3

y = 3
√

ab2 = GM 2
3

Fig. 1. Division of an interval [a, b] into three parts according to AM or GM

For n = 2 the geometric mean GM and arithmetic mean AM are geometry in
the sense that they are solutions to one of the oldest optimization problems: For a
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given rectangle with sides a and b, AM between a and b is the side of a square with
the same perimeter as the given rectangle and GM between a and b is the side of
a square with the same area as the given rectangle with sides a and b. Coefficient
n = 2 refers to the use of a square root in GM . In general on any straight line,
an interval [a, b] can be divided in 2 or more parts following the construction in
Figure 1, where the number of intervals is n = 3 with the relations given by the
equations in Figure 1.

The intervals in the left graph show a composition of translations with itself.
In the case of GM the subsequent divisions define homothetic transformations.
An interval can be divided in n intervals with n = any natural number. The
second author studied the inverse question: “Can x and y, z . . . be determined
graphically using only parallel lines?” This is straightforward in the case of AM
but impossible in the case of GM . However, a construction using only parallel lines
yields the harmonic mean HM which is the ratio between AM and GM (Figure 2).

Fig. 2. Graphical construction of the harmonic means HM for n = 3

This leads to the following relations for the division of an interval in three
parts (Figure 2)

(1) AM 1
3
HM 2

3
= ab, AM 2

3
HM 1

3
= ab, GM 1

3
GM 2

3
= ab.

In general:

AM i
n

=
(n− i)a + ib

n
, GM i

n
= n
√

an−ibi, HM i
n

=
nab

ia + (n− i)b

AMn−i
n

=
ia + (n− i)b

n
, GMn−i

n
= n
√

aibn−i, HMn−i
n

=
nab

(n− i)a + ib
(2)

AM i
n
HMn−i

n
= ab, AMn−i

n
HM i

n
= ab, GM i

n
GMn−i

n
= ab

These relationships can be proven using the similarity of triangles, or from a pro-
jective point of view, using double ratios as follows. The double ratio [a, b, p, x] is
harmonic, so [a, b, p, x] = −1. If we take p and q at infinity, then x = a+b

2 = AM 1
2
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Fig. 3. Projective method for n = 2

and
[
a, b, a+b

2 ,∞]
= −1. If we take p = 0 and q at infinity, then x = 2ab

a+b = HM 1
2

and
[
a, b, 2ab

a+b , 0
]

= −1 (Figure 3).

In general the double ratio [a, b, x, y] is calculated as the quotient of the share
ratio’s [a, b, x] and [a, b, y], so [a, b, x, y] = [a,b,x]

[a,b,y] . The share ratio [a, b, x] is calcu-
lated by x−a

x−b .

If the abscissa of x towards (a, b) is i
n then x = AM i

n
for x−a

b−a = i
n so x =

(n−i)a+ib
n and [a, b, x,∞] = [a, b, x] = x−a

x−b = i
i−n = k. If we take now [a, b, y, 0] =

i−n
i = 1

k then [a, b, x,∞] [a, b, y, 0] = 1 and y = HMn−i
n

, for [a, b, y, 0] = i−n
i =

[a,b,y]
[a,b,0] . Since y−a

y−b = a
b

i−n
i , so y = nab

(n−i)a+ib = HMn−i
n

and AM i
n
HMn−i

n
= ab.

This method provides for a recursive method for the calculation of roots [32–
34]. The n-th root n

√
c of a positive number can be interpreted as GM 1

n
= n
√

1n−1c1

of the interval [1, c]. Let x be an approximation of n
√

c, smaller than n
√

c, then the
interval

[
xi, c

xn−i

]
includes n

√
ci. For this interval

AM i
n

=
(n− i)xn + ic

nxn−i
and HMn−i

n
=

ncxn−i

(n− i)xn + ic
, AM i

n
HMn−i

n
= c.

So one could iterate on AM i
n

as well as on HMn−i
n

in:

(3) n−i

√
HMn−i

n
= n−i

√
ncxn−i

(n− i)xn + ic
< n
√

c <
i

√
(n− i)xn + ic

nxn−i
= i

√
AM i

n
.
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Here x is smaller then n
√

c so we iterate on the interval
[
xi, c

xn−i

]
that contains

n
√

ci. If we take i = 1 then we obtain:

(4) n−1

√
HMn−1

n
= n−1

√
ncxn−1

(n− 1)xn + c
< n
√

c <
(n− 1)xn + c

nxn−1
= AM 1

n
.

On the right-hand side we recognize the formula of Newton for the zero value n
√

c
of the function f(x) = xn − c. The derivative of f is f ′(x) = nxn−1. So with the
tangent method we obtain:

(5) x− f(x)
f ′(x)

= x− xn − c

nxn−1
=

(n− 1)xn + c

nxn−1
.

This algorithm however, is the shortest of all possible algorithms of this kind. The
speed of convergence is higher with a higher value of i. So the algorithm on the
left side of the last expression is the fastest for the root exponent (n − 1) has the
highest level.

3. Geometric means and Pascal’s Triangle

It is remarkable that these formulae can be generated with simple geometry
and algebra, represented in beautiful nomograms, without the sophisticated tools
of analysis. It is thus possible to understand various means of different order n
geometrically and algebraically. The arguments over which the nth-root is taken are
also the various entries of Pascal’s Triangle wherein the normal rules of arithmetic
are encoded. The coefficients for each term in the expansion of (a + b)n can be
derived using the Binomial theorem of Newton. Every product between a and b in
the Triangle is the argument of the geometric mean of some order between numbers
a and b (Figure 4).

Fig. 4. First rows of Pascal’s Triangle

We observe that the order n decreases from n to 0, from left to right for a
and increases for b in the same direction. If we write 1a2 we understand at the
same time that this is equal to b0a2. In the one direction we have a lowering of
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the exponent of a or b, in the other direction an increase according to the following
rules:

xn → nxn−1(6)

(n + 1)xn ← xn+1(7)

The procedure with Equation (6) is also known as derivation (definition (2) Sym-
bolic). Performing this in two directions and using proper normalization dividing
by n! the normal binomial coefficients come out.

(8)
1a4 → 4a3 → 12a2 → 24a1 → 24

24 ← 24b ← 12b2 ← 4b3 ← 1b4

Multiplying term by term
(9) 24a4 96a3b 144a2b2 96ab3 24b4.

Adding all terms and dividing each term by n! = 4!
(10) 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4.

4. Geometrically: A game of cubes and beams

Geometrically, each entry in a given row of Pascal’s Triangle has the same
dimension. The fourth row for example, consists of cubes with side a and b (and
respective volumes a3 and b3, one of each), beams with sides a, a and b (and volume
a2b, three of them) and beams with sides a, b and b (and volume ab2, also three of
them) [14].

Any row in the Triangle contains pure n-cubes an and bn (Figure 4, numbers
in bold) on the one hand, and n-beams on the other hand (Figure 4, in grey, non-
bold), whose sum is equal to a hypercube (a + b)n. Hypercubes or n-cubes are
n-dimensional cubes (with n > 3, with side a or b), hyperbeams or n-beams are
n-dimensional beams (with n > 3) of which at least one side is different from all
other sides (for example anbm).

Fig. 5. Simon Stevin of Bruges [29]
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It is in fact also very easy to turn beams like anbm of dimension (n + m)
into cubes of the same dimension. For each hyperbeam anbm one can construct
a hypercube with the same volume by taking the (n + m)-th root of anbm. This
gives the side of the n + m dimensional cube. Which is the procedure discussed in
part 2, on geometric means of a particular order, all of the same dimension. More
specifically for GMi/n between two numbers and b, we specificy i, n, a and b (either
a or b can be 1). So, n

√
a = GM 1

n
of the interval [1, a] since n

√
1n−1a1 =

√
a and

thus n+m
√

anbm = GM 1
n+m

of the interval [1, anbm].

Simon Stevin (1548–1620) (Figure 5) reasoned and thought about geometric
numbers (Figure 6). Stevin was one of the greatest mathematicians of the 16th

century and his work was both of a pure and applied nature providing a bridge
between the old and the new sciences [27]. His equilibrium of forces and the par-
allelogram rule was the beginning of abstract algebra and of higher dimensional
geometry [29, 32].

In Figure 6 the examples are given of the powers of 2 (upper row) and the
powers of 1 (lower row). 23 is a cube, and 24 (= 16) are two cubes of the size 23.
Likewise 25 (= 32) are 4 of these cubes. For a cube with all sides equal to 1, the
results remain the same for any power. It is the neutral element and any number
of multiplications of 1 by itself always yields the same result.

Fig. 6. Stevin’s Geometric numbers [14, 29]

An object like b4 (arithmetically the product b× b× b× b) can be understood
geometrically in many different ways. The object b4 is not only a four-dimensional
volume of a hypercube with side b, but it is also b times a three-dimensional volume
b3 (side of this cube is b). At the same time it can be seen as b × b times an area
of b2, but b2 could also be interpreted as a beam of volume 1× b2. This beam can
then be made into a cube with the same volume, but with side (1 × b2)1/3, the
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one-third geometric mean between b2 and 1, or the second geometrical mean of 1
and b, GM2/3 of [1, b] is 3

√
13−2 × b2 = 3

√
b2, GM1/3 of

[
1, b2

]
is 3
√

1× b2 = 3
√

b2.
And so on.

For the four-dimensional volume, it is important to be reminded how Pascal
thought about the fourth dimension: “Et l’on ne doit pas être blessé par cet qua-
trième dimension” [3]. Which means that intelligent people should not be put off by
something like the fourth dimension, because in reality it is about multiplication.

Stevin’s approach of geometrical numbers was directly related to arithmetic
and in Definition XXXI [29] he states that any number can be square, cube etc.,
or that also roots are numbers: “Que nombres quelconques peuvent estre nombres
quarrez, cubiques etc. Aussie que racigne quelconque est nombre”. From this Stevin
reaches the fundamental conclusion that there are no absurd, irrational, irregular,
inexplicable or surd numbers, “Qu’il ny a aucuns nombres absurdes, irrationels,
irreguliers, inexplicables, ou sourds” [29].

A contemporary of Stevin, François Viète (1540–1603) prefers to deal exclusive-
ly with numbers avoiding all geometrical connotations. In his “Logistices speciosae
canonica praecepta” (canonical rules of species calculation [22]), the main law (Lex
homogeneorum) states that only species of the same kind (homogeneous species)
can be added or subtracted. In a typical row of Pascal’s Triangle, all n-cubes and
n-beams are of the same dimension or the same species (speciosa), but in general
polynomials (for example in one variable) this is not the case and here the Lex
homogeneorum rules, according to “common sense”. This “in fact-not-so-common-
sense” is one of the main reasons for the split between arithmetic and geometry.

Contrary to Viète’s Lex homogeneorum however, it is very easy to get the same
dimension for any term of a polynomial using the unit element. For example, a
polynomial like x4 +x3 +x can be written as (x×x×x×x)+(x×x×x×1)+(x×
1× 1× 1); all of the same dimension and actually, all geometric means of different
orders between x and the unit element 1 can be written this way [32]

(11) x3 + x2 + x = x3 +
(

3
√

(1× x2)
)3

+
(

3
√

(12 × x)
)3

.

It is of interest to add here another definition of Stevin in his first book on arith-
metic, namely Definition XXVI “Multinomie algebraique est un nombre consistent
de plusieurs diverses quantitez”. This definition introduces the reader to algebraic
multinomials or polynomials, “Comme 3z + 5y − 4x + 6 s’appele multinome alge-
braique. Et quand il aura de quantitez comme 2x + 4y s’appelent binomie, et de
trois quantitez s’appellera trinomie, etc.” [29].

5. The decimal principle and fluxions

All this was very natural for mathematicians like Simon Stevin and his contem-
poraries. René Descartes wrote: “Just as the symbol c1/3 is used to represent the
side of a cube a3 has the same dimension as a2b” [19]. The relation between prod-
ucts and rectangles was frequently used for didactical reasons, for example by John
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Colson in his “perpetual comment” to Newton’s Method of fluxions and infinite
series – To which is subjoin’d: A perpetual comment upon the whole work, consist-
ing of annotations, illustrations and supplements in order to make this treatise A
Compleat Institution for the use of learners [21].

This treatise brings out a nice historical connection between Stevin and New-
ton, going back to the complete arithmetical treatment with natural numbers by
Stevin in the decimal system in 1585. Stevin showed in his book De Thiende that
a complete arithmetical control of the real number system is achieved by explicitly
demonstrating how all operations on and with real numbers can be carried out when
expressing these numbers in the decimal system. Stevin added in an appendix to De
Thiende [28] that the decimal principle should be advocated in “all human accounts
and measurements”, thereby “anticipating the (partial) realization of this simple
idea by two centuries”. The importance of the decimal principle for geometry and
for science cannot be overemphasized. It opened the way to Descartes algebraic
geometry and inspired Newton to write his Method of fluxions and infinite series
with its application to the geometry of curve-line [21] from the following motivation:

“Since there is a great conformity between the Operations in Species, and
the same Operations in common Numbers; nor do they seem to differ, ex-
cept in the Characters by which they are presented, the first being general
and indefinite, and the other definite and particular: I cannot but wonder
that no body has thought of accommodating the lately-discover’d Doctrine
of Decimal Fractions in like manner to Species, . . . , especially since it
might have open’d a way to more abstruse Discoveries. But since this
Doctrine of Species, has the same relation to Algebra, as the Doctrine of
Decimal Numbers has to common Arithmetick: the Operations of Addi-
tions, Subtractions, Multiplication, Division and the Extraction of Roots,
may easily be learned from thence, if the Learner be but skilled in Decimal
Arithmetick, and the Vulgar Algebra, and observes the correspondence that
obtains between Decimal Fractions and Algebraick Terms infinitely con-
tinued. For as in Numbers, the Places towards the right-hand continually
decrease in a Decimal or Subdecuple Proportion; so it is in Species respec-
tively, when the Terms are disposed in an uniform Progression infinitely
continued, according to the Order of the Dimensions of any Numerator or
Denominator. And as the convenience of Decimals is this, that all vulgar
Franctions and Radicals, being reduced to them, in some measure acquire
the nature of Integers, and may be managed as such, so it is a convenience
attending infinite Series in species, that all kinds of complicate Terms may
be reduced to the Class of simple Quantities . . . ”

One of the major development in the book concerns infinite series. John Colson
(1680–1760) who later became Lucasian professor of Mathematics, as one of the
successors of Barrow and Newton, wrote in his Introduction [21]:

“As to the Method of Infinite Series, in this the Author opens a new kind
of Arithmetick, (new at least at the time of writing this), or rather he
vastly improves the old. For he extends the received Notation, making it
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completely universal and shews, that as our common Arithmetick of Inte-
gers received a great improvement by the introduction of decimal Fractions;
so the common Algebra or Analyticks, as an universal Arithmetick, will
receive a like Improvement by the admission of his Doctrine of Infinite
Series, by which the same analogy will be still carry’d on, and farther ad-
vanced towards perfection. Then he shows how all complicate Algebraical
Expressions may be reduced to such Series, as will continually converge
to the true values of those complex quantities or their Roots, and may be
therefor be used in their stead.”
In Taylor and MacLaurin series, the same rules as above (Equation 6, D(xn) =

nxn−1) are key. They give an operational definition of functions with for example,
the MacLaurin series for ex, cosine and sine. This is shown in Figure 7 for sine.

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·(12)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

A key to understand derivatives is putting the unit element back where it belongs.

Fig. 7. Sine function for increasing number of terms in partial sums

Indeed, performing derivation is substituting x by 1, one at the time in a series.
In Equation 6 in the process of derivation (e.g. of x3) we observe x3 = (xxx) →
3(xx1) or 1 cube of x3 is compared to beams of sides x, x and 1, and we need three
of them.

So, if we want to find the derivative of ex we substitute in every term of the
series one factor x by 1 (and if there is no x as in the first term it becomes 0;
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the “lowering of the exponent operation”) and put the original exponent up front
lowering n! to (n−1)!. The result is the same series, as expected. It is easy to show
that the same occurs if we use the series expansions for sine and cosine, based on
the relationship of Euler, D (sinx) = cosx and D (cos x) = − sin x.

Fig. 8. From Newton’s Principia [20]

In general, derivatives are related to (higher order) geometric means between
two numbers f and e. Higher order geometric means between two pure numbers
f and e involve expressions of the type (m + n)-th root of fm × en. For e = 1,
f3 + f2 + f + 1 can be written as f × f × f + f × f × e + f × e × e + e × e × e
(Figure 8).

6. The geometry of parabolas

The use of the unit element allows for comparing n-volumes (converting m
volumes into n-volumes of the ‘same’ dimension if needed). This, in our view,
also shows that the Greeks were well aware of “units” in relation to conic sections.
In a parabola (y = x2), the variable y scales to the first power while some other
variable x scales to the second, but geometrically a parabola indicates that for each
coordinate x, one can construct (in Greek terminology to each line with length x it
is possible to apply) a square with area equal to x2, such that this area corresponds
exactly to the area of a rectangle with width 1 and height y (x × x = y × 1). In
this sense the parabola is an “equiareal” figure. This was known to Ancient Greek
geometers and is at the basis of the conic sections.

Allometric equations and power laws, expressing the constancy of relative
growth and generally depicted as straight lines in log-log plots, can be understood
in the same geometric way [14], namely that these equations express some conser-
vation law for n-volumes of n-cubes and n-beams, with the parabola and hyperbola
for n = 2. The power law y = x3/4 or equivalently y4 = x3 thus states that the
4-cube with side y is exactly the same as the 4−beam with four sides x, x, x and
1 (with volume x × x × x × 1). In our days y = x3/4 is related often to “fractal
dimension”, but these are parabola’s of the type yn = xn−1 (Eq. 6). In a general
way the parabolas of the family yn = nxn−1 are nothing but derivatives. Reading
the graphs the other way, yn/n = xn−1 stands for integration. Simple and pure.

An example from physics is Kepler’s Law of Periods, which states that the
square of the orbital period of a planet is directly proportional to the cube of the
semi-major axis of the elliptical orbit. So the volume of a beam formed by the
orbital period T1 and the unit element is T1 × T1 × 1 (i.e. the volume of a beam
with height and length T1 and width 1), equals the volume of a cube a1 × a1 × a1
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(with sides equal to the semi-major axis a1) up to a constant. On a weighing
balance this constant can be interpreted as the length of the arms. This is also an
equi-areal law.

(13) T1
2 =

4π2

G(M1 + M2)
a1

3.

This in our opinion at least, settles the question whether the Greeks understood
derivatives and dynamics in an affirmative way.

The examples of parabola and ellipse show that they understood the unit ele-
ment in a general way, not necessarily as a number. It was only in the Renaissance
that it really became a number. Simon Stevin, was one of the first to state that the
unit was a number “Que l’Unité est Nombre”. It becomes the neutral element for
multiplication, but it certainly does not need to be “one”, as long as the element
selected is “neutral”. If we look back at Figure 1 right and move the point zero as
far as possible to the left, and define a neutral element close to zero, this element
becomes as far as possible removed from a and b, having the least possible influ-
ence for computing AM or GM . One can call such an infinitely small number for
example “dx”. Obviously, one does not need to move zero; easier is to move the
neutral element as close as possible to zero.

The ‘rectangles’ x dx in Riemann sums for integrals are a generalization of
parabolas, but viewed from a Greek’s geometrical perspective, it does not add
anything really new. The question whether dx = 0 or 1 becomes then pretty
irrelevant. It needs to be neutral in multiplication (in which case dx = 1), and if it
needs to be neutral for addition (x + dx) it has the tendency to be rather close to
zero or any number close enough.

Going back to Figure 1 and considering GM and AM (for n = 2) one under-
stands that the geometric mean (GM) is strictly smaller than the arithmetic mean
(AM). In order to have AM approach GM , the point 0 where the lines cross has
to be moved as far to the left as possible. Equality is obtained only when lines run
parallel. This is an arithmetical interpretation of Euclid’s fifth postulate and an
illustration of Shiing-Shin Chern’s remark that “Euclid’s Elements are a geometri-
cal treatment of the number system” [5]: the fifth postulate ensures that AM and
GM can be constructed and that, for any two numbers a and b on a line, GM is
strictly smaller than AM , which is the cornerstone of our number system [14].

7. 1, 2, . . . , 11, . . . , 37: monomiality principle for polynomials

The explicit forms of the series expansions for the exponential, sine and cosine
functions are:

(14) ex =
∞∑

n=0

1n

n!
xn, sin x =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1, cosx =

∞∑
n=0

(−1)n

(2n)!
x2n.

Sine and cosine are examples of simple polynomials, but in mathematics there are
a large number of special polynomials in the theory of special functions, such as
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Legendre, Hermite, Laguerre, Bell, Appell . . . polynomials (Figure 9). Special
functions play an important role in various field of mathematics, physics and en-
gineering and during the last decades new families of special functions have been
suggested in various branches of physics [7].

Fig. 9. Example of Hermite polynomials

Comparing many such special functions and their explicit form in contempo-
rary pure and applied mathematics to functions of a more elementary nature (ex,
sine, cosine, . . . ) from the 17th and 18th century seems somewhat like jumping
from older, simpler definitions of the derivative (list of Thurston 1 through 7) to
definition 37. Indeed, at first sight contemporary special polynomials are a far cry
from the simpler functions and power series, from parabolas and cubes and beams.
But is that so?

Most families of special polynomials can be transformed by the same simple
procedure of raising and lowering exponents, the same game of means and beams.
By virtue of the so-called monomiality principle, all families of polynomials, and in
particular special polynomials, can be obtained by transforming a basic monomial
set by means of suitable operators P and M , called the derivative and multiplication
operator of the considered family, respectively.

The definition of the poweroid introduced by J. F. Steffensen has been framed
in the monomiality principle by G. Dattoli [6], providing a very powerful analyt-
ical tool for deriving properties of special polynomials, such as Hermite, Bessel,
Laguerre, Bell and Legendre polynomials [2, 8, 9, 25].

Let us consider the Heisenberg-Weyl algebra with generators P and M sat-
isfying the commutation relation [P, M ] = PM − MP = 1, and the family of
polynomials π = pn(x) (n = 0, 1, 2, . . . ). Then, π is quasi-monomial if the identi-
ties P (pn (x)) = npn−1 (x) and M (pn (x)) = pn+1 (x) hold true. In this case, the
analytical properties of π can be obtained straightforwardly starting from those of
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the operators P and M . As an example, combining the mentioned identities yields
immediately the governing equation of the general polynomial pn(x) belonging to
π, namely (MP − n) (pn (x)) = 0. Furthermore, it is worth noting that, under the
assumption that p0 (x) = 1, pn (x) can be represented explicitly as pn (x) = Mn (1).

The simplest application of the monomiality principle regards the family of
monomials {xn} in one variable with derivative and multiplication operators P =
D = d/dx and M = x respectively, such that [P, M ] = 1 and M (xn) = xn+1,
P (xn) = nxn−1. These operations simply consist in raising and lowering the
exponents of the general monomial belonging to the family. Additional relations
are given by x0 = 1 and Dx0 = 0 (One can easily see that it is also possible to
start from the antiderivative).

Using the monomiality principle, the analytical properties of special polyno-
mials can be easily studied. Following this approach, the governing differential
equation, recurrence relations and identities can be easily determined. As an ex-
ample, let us consider the family of Hermite polynomials in two variables [1]:

(15) H(m)
n (x, y) :=

[ n
m ]∑

k=0

n!
k!(n− km)!

ykxn−km,

with H
(m)
n (x, 0) := xn and m = 1, 2, . . . , n. As shown in [25] for the case m = 2,

these polynomials are particular solutions of the generalized two-dimensional heat
equation ∂yH

(m)
n (x, y) = ∂m

x H
(m)
n (x, y).

Therefore, the general polynomial can be represented in a very compact way as
H

(m)
n (x, y) = (x + my∂x)n (1), whereas the relevant governing differential equation

is obtained as

my∂2
xH(m)

n (x, y) + x∂xH(m)
n (x, y) = MP

(
H(m)

n (x, y)
)

= nH(m)
n (x, y) .

Other recurrence formulae and identities involving H
(m)
n (x, y) for m = 2 are derived

in a similar way in [20], which provides an excellent overview on the application of
operational techniques to special polynomials. Similar unifying approaches can be
developed starting from the Pascal matrix [1].

8. −1, −2, −3, . . . : understand the legacy

For Thurston, the closest definition of mathematics is “the theory of formal pat-
terns” and “mathematicians are those humans who advance human understanding
of mathematics” [31]. In this article we showed that the formal pattern underlying
various means, the normal rules of arithmetic, expansions and special functions is
in principle a game of cubes and beams, going back to Greek foundations (−1, −2,
−3 is counting down to some time, say −2500 years, when Pythagoreans mastered
means, numbers and much more). With simple principles and elementary functions
we can achieve already a very good understanding of mathematics and the rela-
tions among various fields. We hope that this article, with its didactic emphasis,
can contribute to a better human understanding of these topics.
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Newton’s intuition (“if the Learner be but skilled in Decimal Arithmetick, and
the Vulgar Algebra . . . ”), is still accurate today, but incomplete. Basic geometry
is also required for a better and more flexible understanding. To understand higher
dimensional cubes and beams as simple geometric numbers, cubes, beams and
balances in equilibrium, lift the ban imposed by Viète [22] in the 17th century and
by Grassman/Peano [24] in the 19th century. To this very day this ban continues
to exist. Even Stephen Hawking [19] notes on La Géometrie of Descartes: “At the
time this was written a2 was commonly considered to mean the surface of a square
whose side is a, and b3 to mean the volume of a cube whose side is b3 while b4, b5

. . . were unintelligible as geometric forms”.
René Descartes (1596–1650) certainly knew about the works of Simon Stevin

(1548–1620), not only because they were available in French, but also because of
his collaboration with Isaac Beeckman, himself a student of Stevin. Anyway, two
centuries later Monge, Gauss, Lamé and Riemann among others brought geometry
back onto center stage [4].

With regard to the intimate relation of algebra and geometry and the various
idle discussions on which of these two is more important, consider this end-of-20th-
century attempt to define special functions [7]:

“It is also difficult to frame in an univocal way the concept of Special Func-
tion itself. Just to make an attempt, we can associate Special Functions
with the solutions of particular families of ordinary differential equations
with non-constant coefficients. During the end of the last century, Sophus
Lie pondering on the deep reasons underlying the solution by quadrature
of differential equations was led to the notion of group symmetry. This
concept inspired the work of Cartan, who was the first to point out that
Special Functions can be framed within the context of the Lie theory. This
point of view culminated in the work of Wigner who regarded the Special
Functions as matrix elements of irreducible representations of Lie groups.”
This is not the most general definition, since it leaves out some polynomials,

but this quote is intended to illustrate the deep connections among fields. These
very fundamental relations where summarized by Chern in the following: “While
algebra and analysis provide the foundations of mathematics, geometry is at the
core” [5]. This trinity is reflected in this article, with one underlying principle,
understood very well in ancient Greece.

Greek and Hellenistic mathematics and science were advanced in every sense of
the word [26]. The rebirth of Eudoxus mathematical findings into Dedekind’s cut is
one example. We referred earlier to Chern’s statement that Euclid’s Elements are
a geometrical treatment of the number system. The influence of Stevin’s Decimal
fractions on the development of fluxions has been pointed out, but this was really
based on this very same idea of commensurability. As D. J. Struik (editor of the
mathematical parts of the Principal Works of Simon Stevin) writes:

“In his arithmetical and geometrical studies, Stevin pointed out that the
analogy between numbers and line-segments was closer than was generally
recognized. He showed that the principle arithmetical operations, as well
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as the theory of proportions and the rule of three, had their counterparts
in geometry. Incommensurability existed between line-segments as well as
numbers . . . ; incommensurability was a relative property, and there was
no sense in calling numbers “irrational”, “irregular”, or any other name,
which connoted inferiority. He went so far as to say, in his Traicté des
incommensurable grandeurs, that the geometrical theory of incommensu-
rables, in Euclid’s Tenth Book had originally been discovered in terms
of numbers, and translated the content of this book into the language of
numbers. He compared the still incompletely understood arithmetical con-
tinuum to the geometrical continuum already explained by the Greeks, and
thus prepared the way for that correspondence of numbers and points on
the line that made its entry with Descartes’ coordinate geometry [29].”

In some sense, all we are doing is adding some commas and punctuations here
and there to what the Greek have done. Also on the historical side much is to be
learned from Bacon’s writings [16]:

“So that as Plato had an imagination that all knowledge was but remem-
brance; so Solomon giveth his sentence, that all novelty is but oblivion.”

One example of such oblivion and “novelty” are the series expansions for cosine
and sine, as well as their definitions, traditionally associated with names of 16th

and 17th century Western mathematicians. In fact, trigonometric functions sine and
cosine as well as their expansion were known already in the early 15th century to
the Indian mathematician Madhava of Sangamagramma (c. 1340–1425). Pascal’s
Triangle was not invented by Pascal, but was known long before in China and
Persia. Many special polynomials were invented a century ago and then forgotten,
until rediscovered by physics [7]. The history of mathematics is very old and its
legacy extremely rich, transcending boundaries in space and time.

9. On landscapes and maps

Another goal of this article, other than pointing out that all these things are
intrinsically linked spanning a period of at least 2,5 millennia, is to show how
important it is to understand concepts in different ways. Thurston’s list is “a
list of different ways of thinking about or conceiving of the derivative, rather than
a list of different logical definitions” [31]. It is important to be able to look at
concepts, for which mathematicians spent thousands of years to come to an ever-
better understanding, from very different perspectives, not only tailored to specific
talents of individuals, but to safeguard the true spirit of mathematics. Thurston
again: “Unless great efforts are made to maintain the tone and flavor of the original
human insights, the differences start to evaporate as soon as the mental concepts
are translated into precise, formal and explicit definitions” [31]. One example is the
development of algebra and its deviation from geometric numbers.

One of the defining characteristics of Greek mathematics was not only the
development of mathematics, but also to understand that this has an intimate
relationship to the workings of the world [26]. According to Feynman [11] “To
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those who do not know mathematics it is difficult to get across a real feeling as
to the beauty, the deepest beauty, of nature . . . If you want to learn about nature,
to appreciate nature, it is necessary to understand the language that she speaks
in. She offers her information only in one form”. Fortunately, simple rules are
a basic feature of this language, by whatever name they are known, addition and
multiplication, means, cubes or the monomiality principle [9].

Despite the simple basic rules from which a wide range of methods can be
deduced, contemporary mathematics has evolved into very diverse landscapes, in
pure and applied mathematics or in theoretical physics. Each uses one or more very
specific high-level (increasingly abstract) languages, with various local dialects. A
mathematical concept like curvature goes under a variety of different names in
mathematics and physics, dependent on the field. There is the imminent danger
of high-level languages for different landscapes (the languages as the maps or Des
Cartes), taking precedence over these landscapes and territories themselves.

“The transfer of understanding from one person to another is not auto-
matic. It is hard and tricky. Therefore, to analyze human understand-
ing of mathematics, it is important to consider who understands what,
and when. Much of the difficulty has to do with the language and cul-
ture of mathematics, which is divided into subfields. Basic concepts used
every day within one subfield are often foreign to another subfield. Math-
ematicians give up on trying to understand the basic concepts even from
neighboring subfields, unless they were clued in as graduate students. In
contrast, communication works very well within the subfields of mathemat-
ics. Within a subfield, people develop a body of common knowledge and
known techniques [31].”
When it can be shown that simple rules underlie different mathematical land-

scapes, the general language (the art of mapmaking) need not be too abstract for
a basic understanding or the development of a certain feeling for the matter.

The “maps” we spoke of are based on the Pythagorean theorem or trian-
gles in general (including triangulation of surfaces), and geometric means between
numbers. There are other ways to make maps to better understand nature. A
generalization of the Pythagorean Theorem based on n-cubes (instead of squares)
leads to the simplest cases of Minkowski-Finsler geometry and the curves associated
with this generalization are Lamé curves, named after Gabriel Lamé (1795–1870).
A subclass of Lamé curves are superellipses [12, 27], defined by:

(16)
∣∣∣ x

A

∣∣∣
n

+
∣∣∣ y

B

∣∣∣
n

= 1.

This in fact considers cubes (and n-cubes) only, not using beams or geometric means
between numbers and hence the relation of Lamé curves to the Last Theorem of
Fermat. The coefficients of the expansion of (2x + 1)n have a nice geometrical
meaning [27, Chapter 4] for n = 4, (2x + 1)4 = 16x4 + 32x3 + 24x2 + 8x + 1, a
tesseract (a four dimensional cube) is composed of 16 points, 32 lines, 24 squares,
8 cubes and of course 1 tesseract. Again, this is a nice example of lowering of
exponent with a clear geometrical meaning.
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A recent generalization of Lamé curves provides a new way of studying geom-
etry and natural shapes [13, 15, 17] (Figure 10 for some natural shapes), whereby
Geometry becomes intimately connected with Growth and Form in nature [18]. A
geometric study of natural shapes and phenomena can be proposed using only pure
numbers an or variables xn without geometric means.

Slika 1. Super oblici i prirodne analogije u presjeku stabljika i morske zvijezde

Žuti lokvanj                  strupnik                      preslica                      malina               morska zvijezda

Fig. 10. Some natural shapes as transformations of a circle [12, 13]

As René Thom stated: “Geometry is successful magic!” [30]2. Simon Stevin’s
motto was “Wonder is no Wonder” [10], meaning that geometrical understanding
is the way to get rid of miracles and wonders3. This remains true to this very day
and in the future. André Weil [35] wrote:

“Obviously everything in differential geometry can be translated into the
language of analysis, just as everything in algebraic geometry can be ex-
pressed in the language of algebra. Whether one considers analytic geom-
etry in the hands of Lagrange, tensor calculus at this of Ricci, or more
modern examples, it is always clear that a purely formal treatment of geo-
metric topics would invariably have killed the subject if it had not been
rescued by true geometers, Monge in one instance, Levi-Civita, and above
all Elie Cartan in another . . . The psychological nature of true geometrical
intuition will perhaps never be cleared up . . . Whatever the truth of the
matter, mathematics in our century would not have made such impressive
progress without the geometric sense of Elie Cartan, Heinz Hopf, Chern
and a very few more. It seems safe to predict that such men will always
be needed if mathematics is to go on as before.”
Geometry improves not only the understanding of mathematics, but also con-

nects with the foundations. Radu Miron wrote:
“If Mathematics could be torn from its foundations, it would become a
series of formulae, recipees and tautologies that could not be applied any
longer to the objective reality, but only to some rigid, mortified scheme of
this reality.” [23]

2“La Géometrie est magie qui réussit”. Geometry is magic that works, successfully.
3The English translation of the biography of Simon Stevin by Van den Berghe and Devreese

is “Miracle is no miracle” [10]. Personally I prefer wonder over miracle. Wonder in Dutch occurs in
the words wonderlijk (strange, odd, surprising), verwondering (wonder, astonishment, surprise).
Wonder has a much broader meaning and is therefore less miraculous than miracle (miracles would
be a main thesis of Spinoza almost one century later, based on a Newtonian laws and, indirectly,
Stevin’s Motto.
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