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Abstract. A classical result by Cauchy defines a disk containg all the zeros of
a polynomial. We derive several related results by using similarity transformations of
a polynomial’s companion matrix, together with Gershgorin’s theorem. We thus show
that Cauchy’s original result can be seen as but one member of a family of related
results.
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1. Introduction

Polynomials are ubiquitous in mathematics and applications, and very often it
is their zeros that matter most. Although it can be difficult to accurately compute
them, there are many relatively easy ways to describe their location. One such well-
known result by Cauchy ([4], [7, Th.(27,1)]) states that all the zeros of a polynomial
p(z) = zn + an−1z

n−1 + · · · + a1z + a0 with complex coefficients and a0 6= 0 are
contained in a disk in the complex plane, centered at the origin, whose radius is the
unique positive root of the real polynomial f(x) = xn−|an−1|xn−1−· · ·−|a1|x−|a0|.
An analogous result defines a disk excluding the zeros. This can be proven by
straightforward algebraic manipulation, but it can also be explained with simple
linear algebra tools which has the advantage of providing a very natural way to
obtain this result (see [1]) as well as unifying it with several related ones (see [8]).

Our plan here is to derive several more such results that take the form of disks
that contain some or all zeros and disks that contain no zeros. The radii of those
disks are determined by the positive roots of polynomials similar to f , showing that
Cauchy’s result can be seen as but one member of a family of similar results.

Along the way, we will combine basic linear algebra concepts such as eigenval-
ues, similarity transformations, companion matrices, and Gershgorin disks, as well
as a little analytic geometry, to provide an introduction to topics that, although
accessible to students, are not always covered in undergraduate classes.

Let us begin by introducing the few definitions and preliminary results we
need, along with some notation. We denote the closure of a set G by Ḡ and its
complement by G′. The open disk in the complex plane with center a and radius r
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is denoted by D(a; r), while E(a; r) denotes the open exterior of a disk with center
a and radius r. We therefore have, e.g., that D′(a; r) = E(a; r). We will use H(a, δ)
for the open halfplane, orthogonal to a, of the form Re(a)x + Im(a)y + δ < 0.

The companion matrix of the aforementioned polynomial p is defined by (see,
e.g., [6, p. 146]):

C(p) =




0 −a0

1 0 −a1

1
. . .

...
. . . 0 −an−2

1 −an−1




where blank spaces represent zeros. Its characteristic polynomial is p and its eigen-
values are therefore the zeros of p. Those eigenvalues do not change if we apply a
similarity transformation to C(p), so that the zeros of p are also the eigenvalues of
the matrix Cx(p) = ∆−1

x C(p)∆x, where ∆x is the diagonal matrix with diagonal
[xn, xn−1, . . . , x] and x > 0. It is a straightforward exercise to show that

Cx(p) =




0 −a0/xn−1

x 0 −a1/xn−2

x
. . .

...
. . . 0 −an−2/x

x −an−1




.

We now use the column version of Gershgorin’s theorem ([5], [6, Section 6.1]), which
states that all the eigenvalues of a matrix lie in the union of the disks centered at
the diagonal elements of the matrix with radii equal to the corresponding deleted
column sums. This means that all the eigenvalues of a complex n × n matrix A
with elements aij are contained in the union

n⋃

i=1

D(aii; K ′
i(A)),

where K ′
i(A) =

∑n
j=1,j 6=i |aji|. Moreover, if this union is composed of disjoint sets,

then each set contains as many eigenvalues as the number of disks in that set.
Applying the theorem to AT , which has the same eigenvalues as A, leads to an
analogous result for the rows.

The matrix Cx(p) has only two different deleted column sums, which makes it
easy to compute its Gershgorin column set. Doing so, we find that all the zeros of
p lie in the union of two closed disks, D1 and D2, with

D1 ≡ D(0, x), D2 ≡ D(−an−1; ρ(x)), and

ρ(x) =
|an−2|

x
+
|an−3|

x2
+ · · ·+ |a1|

xn−2
+

|a0|
xn−1

.

As x increases, D1 expands, while D2 shrinks, until D1 completely envelops D2 at
the precise moment that

x = |an−1|+ ρ(x) = |an−1|+ |an−2|
x

+
|an−3|

x2
+ · · ·+ |a1|

xn−2
+

|a0|
xn−1

.
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All the zeros of p then lie in the single disk D(0; s), where s is the unique positive
solution of

f(x) = xn − |an−1|xn−1 − · · · − |a1|x− |a0| = 0,

which is precisely Cauchy’s result. This was shown in [1] and [8], but in [8] this
idea was taken one step further by also letting x decrease, so that now D2 expands
to eventually encompass D1 when

x + |an−1| = |an−2|
x

+
|an−3|

x2
+ · · ·+ |a1|

xn−2
+

|a0|
xn−1

.

Therefore, all the zeros of p also lie in D(−an−1; |an−1|+ t), where t is the unique
positive solution of

g(x) = xn + |an−1|xn−1 − |an−2|xn−2 − · · · − |a1|x− |a0| = 0.

Consequently, all the zeros of p lie in D(0; s)∩D(−an−1; |an−1|+t). When an−1 = 0,
the two disks are identical. In that case a different type of inclusion region can be
derived.

Before we continue, we note that solving the auxiliary real polynomial equa-
tions that we will encounter is much easier than computing all the (complex) zeros
of a polynomial, typically requiring no more than a few iterations with a simple
numerical method. It is not the focus of this paper and we will not dwell on it.
Although figures will always include the actual zeros of polynomials, this is for
illustrative purposes only.

We are now ready to explore many more related Cauchy-like results (we will
assume throughout that a0 6= 0, otherwise the polynomial can be trivially simpli-
fied.) In Section 2, we consider a few more zero inclusion regions for special values
of the parameter x and then apply the same techniques to the reciprocal polynomial
in Section 3 and Section 4, which generates exclusion regions as well, all of which
are based on disks. We conclude with a summary of the inclusion and exclusion
regions that we have derived. For more information we refer to monographs [9, 10,
12], as well as a recent paper [3].

2. Additional inclusion disks

Throughout this section we will assume that an−1 6= 0 to avoid trivial situa-
tions. Previously, we used Cx(p) for special values of the parameter x that generated
a particularly simple Gershgorin set, namely, a single disk. However, this simplicity
may sometimes come at the price of a large radius. Instead, we can force the two
disks comprising the Gershgorin set to be of the same size. The resulting region is
still simple and, although the disks are now no longer included in each other, they
are each necessarily smaller than either D(0; s) or D(−an−1; t) mentioned in the
introduction. The two disks forming the Gershgorin column set for Cx(p) have the
same radius when

x = ρ(x) =
|an−2|

x
+
|an−3|

x2
+ · · ·+ |a1|

xn−2
+

|a0|
xn−1

.
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All the zeros of p are then contained in D(0; u)∪D(−an−1; u), where u is the unique
positive solution of

h(x) = xn − |an−2|xn−2 − · · · − |a1|x− |a0| = 0.

The following example compares the three inclusion regions we have found so far
in the introduction and the present section.

Example 1. Consider the polynomial q1(z) = z8 + (2 + 2i)z7 − 6z6 + 5z5 −
3z4 + 2iz3 − z2 + 8z + 2, for which an−1 = 2 + 2i, s = 4.46, t + |an−1| = 4.85, and
u = 2.87, where s, t, and u are as defined above. The corresponding zero inclusion
regions are shown on the left in Figure 1: the two circles in thick line in Figure 1
are the boundaries of D(0; s) and D(−an−1, |an−1| + t), whereas the shaded area
is the Gershgorin set when both its constituent disks have the same radius u. The
black dots represent the zeros of q1.

Figure 1. Disjoint zero inclusion disks for q1 (left) and q2 (right)

Another natural special value for the parameter x is one for which the two
disks in the Gershgorin column set of Cx(p) are disjoint. We recall that in such a
case n − 1 zeros of p will be contained in D(0; x), while the remaining zero lies in
D(−an−1; ρ(x)). Alas, this is unfortunately not always possible. If there exists such
a value for x, then it needs to be such that x + ρ(x) < |an−1|, which is equivalent
to

(1) φ(x) = xn − |an−1|xn−1 + |an−2|xn−2 + · · ·+ |a1|x + |a0| < 0.

By Descartes’ rule of signs, the equation φ(x) = 0 has either two positive roots or
none. In the latter case, we cannot separate the disks, but if the equation has two
roots x1 and x2 with 0 < x1 < x2, then the disks D(0; x) and D(−an−1; ρ(x)) are
disjoint for any x such that x1 < x < x2, which implies that n − 1 zeros of p lie
in D(0; x1) (since it is the union of n − 1 disks) while the remaining zero lies in
D(−an−1; ρ(x2)), where ρ(x2) = |an−1| − x2. The resulting bounds on the moduli
of the zeros are, in fact, a special case of Pellet’s theorem ([11], [7, Th. (28,1)]).
The following is an example of a polynomial for which a Gershgorin column set
with disjoint disks can be obtained.
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Example 2. For q2(z) = z9 +(4− 4i)z8− 5iz7− 2z6 + z5 +2iz3 +(4+ i)z +2,
we have that an−1 = 4 − 4i, s = 6.48, t + |an−1| = 6.95, x1 = 1.76, x2 = 4.41,
|an−1| − x2 = 1.25, and u = 2.46, where s, t, and u have the same meaning as
before. The disjoint disks with radii x1 and |an−1| − x2 can be seen on the right in
Figure 1, shaded in dark grey. Since x1 < u < x2, the two disks of equal radius are
also disjoint. Their boundaries are the dashed circles in the figure. The two circles
in thick line are, as before, the boundaries of D(0; s) and D(−an−1, |an−1| + t).
The black dots are the zeros of q2.

3. Exclusion disks

As we are about to show, applying the same ideas as before to the reciprocal
polynomial leads to similarly simple exclusion regions for the zeros. We define the
reciprocal polynomial pr of p as

pr(z) = a−1
0 znp(z−1) = zn +

a1

a0
zn−1 +

a2

a0
zn−2 + · · ·+ an−1

a0
z +

1
a0

.

Its zeros are the reciprocals of those of p. In this section and the next we assume
that a1 6= 0 to avoid trivial cases.

By the same arguments as before, all zeros of pr lie in a disk centered at the
origin, whose radius sr is the unique positive root of

(2) fr(x) = xn −
∣∣∣∣
a1

a0

∣∣∣∣ xn−1 −
∣∣∣∣
a2

a0

∣∣∣∣ xn−2 − · · · −
∣∣∣∣
an−1

a0

∣∣∣∣ x−
∣∣∣∣

1
a0

∣∣∣∣ .

For any zero ζ of p, this implies that 1/ζ ∈ D(0; sr), or ζ ∈ E(0; 1/sr), i.e.,
|ζ| ≥ 1/sr. The open disk D(0; 1/sr) is therefore an exclusion disk for the zeros
of p.

This can also be obtained by observing that fr(1/x) = 0 is equivalent to

xn + |an−1|xn−1 + |an−2|xn−2 + · · ·+ |a1|x− |a0| = 0,

and therefore no zero of p has a modulus less than the unique positive root 1/sr of
this equation. This result, also ascribed to Cauchy, is often mentioned alongside the
first (classical) one. It is the “analogous result” referred to in the first paragraph
of the introduction.

A less well-known exclusion disk is obtained from the counterpart for pr of
the inclusion disk D(−an−1; |an−1| + t) for p. Applying the exact same reasoning
as before implies that all the zeros of pr are contained in D(−a1/a0; |a1/a0|+ tr),
where tr is the unique positive root of

(3) gr(x) = xn +
∣∣∣∣
a1

a0

∣∣∣∣ xn−1 −
∣∣∣∣
a2

a0

∣∣∣∣ xn−2 − · · · −
∣∣∣∣
an−1

a0

∣∣∣∣ x−
∣∣∣∣

1
a0

∣∣∣∣ .

For any zero ζ of p this means that |1/ζ + a1/a0| ≤ |a1/a0|+ tr. Since a1 6= 0, this
is the same as saying that ζ belongs to the set

S = { z ∈ C : |z + b| ≤ γ|b||z| },
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with b = a0/a1 and γ = |a1/a0| + tr. Since the boundary of the set S is the pre-
image of a circle under the Möbius transformation z 7→ 1/z, it will be either a circle
or a line, but to find out exactly what S looks like requires a little more work. It
is facilitated by the following technical lemma, which will also be used later on.

Lemma 1. Let S = { z ∈ C : |z + b| ≤ γ|b||z| }, with γ > 0 and b 6= 0.

(1) If γ|b| > 1, then S = E

(
b

γ2|b|2 − 1
;

γ|b|2
γ2|b|2 − 1

)
.

(2) If γ|b| < 1, then S = D

(
b

γ2|b|2 − 1
;

γ|b|2
1− γ2|b|2

)
.

(3) If γ|b| = 1, then S = H

(
b ;

|b|2
2

)
.

Proof. Setting z = x + iy and b = b1 + ib2 and squaring both sides of the
inequality defining S yields

(x + b1)2 + (y + b2)2 ≤ γ2|b|2(x2 + y2),

which is equivalent to

(4) (γ2|b|2 − 1)x2 + (γ2|b|2 − 1)y2 − 2b1x− 2b2y − |b|2 ≥ 0.

If γ|b| > 1, we divide by γ2|b|2 − 1 and complete the square to obtain
(

x− b1

γ2|b|2 − 1

)2

+
(

y − b2

γ2|b|2 − 1

)2

> γ2|b|4
(γ2|b|2 − 1)2

,

which represents the closed exterior of a disk with center (b1/(γ2|b|2 − 1),
b2/(γ2|b|2 − 1)) and radius γ|b|2/(γ2|b|2 − 1). If γ|b| < 1 we obtain analogously
the closed interior of a disk with center (b1/(γ2|b|2−1) , b2/(γ2|b|2−1)) and radius
γ|b|2/(1− γ2|b|2).

Finally, if γ|b| = 1 we obtain from (4) the closed halfplane

Re(b)x + Im(b)y +
|b|2
2
≤ 0.

Remarks. (1) The radius of the sets in case (1) and case (2) is bounded from
below by 1/γ and γ|b|2, respectively. For case (1), this can be seen from

(5)
γ|b|2

γ2|b|2 − 1
=

(
γ2|b|2

γ2|b|2 − 1

)
1
γ

>
1
γ

.

The bound for case (2) is immediate.
(2) The boundary of the halfplane in case (3) is orthogonal to b.
(3) It follows from the definition of S that it always contains −b and never the

origin.
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(4) Although not difficult to do, the set S in Lemma 1 is often not derived in
a typical undergraduate text, in favor of a simpler but much cruder set.

We recall that we found that all the zeros of p lie in the set S, defined in
Lemma 1, with b = a0/a1 and γ = |a1/a0|+ tr. For these values we obtain

γ|b| =
(∣∣∣∣

a1

a0

∣∣∣∣ + tr

) ∣∣∣∣
a0

a1

∣∣∣∣ = 1 +
∣∣∣∣
a0

a1

∣∣∣∣ tr > 1,

which means that we are in case (1) of Lemma 1. The radius there is given by

(6)
γ|b|2

γ2|b|2 − 1
=

(|a1/a0|+ tr)|a0/a1|2
(|a1/a0|+ tr|)2|a0/a1|2 − 1

=
|a1/a0|+ tr

2|a1/a0|tr + t2r
.

Since bb̄ = |b|2 implies b = |b|2/b̄, we have that b = |a0/a1|2a1/a0, and

b

γ2|b|2 − 1
=

|a0/a1|2 a1/a0

(|a1/a0|+ tr|)2|a0/a1|2 − 1
=

a1/a0

2|a1/a0|tr + t2r
.

We have obtained that all the zeros of p are contained in the set

(7) E

(
a1/a0

2|a1/a0|tr + t2r
;

|a1/a0|+ tr
2|a1/a0|tr + t2r

)
,

the closed exterior of a disk. In other words, they are excluded from an open disk.
To compare the size of this exclusion disk with its better known sibling D(0 : 1/sr),
we first observe from their definitions in (2) and (3) that fr(x) ≤ gr(x) for x > 0,
implying that tr ≤ sr, so that 1/tr ≥ 1/sr. Furthermore, from (6) we see that

γ|b|2
γ2|b|2 − 1

=
|a1/a0|+ tr

2|a1/a0|tr + t2r
=

(
1 + |a0/a1|tr
2 + |a0/a1|tr

)
1
tr

,

demonstrating that the radius in the set defined by (7) lies between 1/(2tr) and
1/tr, from which we conclude that it is at least of the same order of magnitude as
1/sr and potentially larger. The latter can be expected to happen when |a1/a0|
becomes large since that will make tr smaller and sr larger. From (5), a simple
lower bound on the radius is given by (|a1/a0|+ tr)−1.

Finally, we note that the zeros of p are necessarily excluded from the union
of these two exclusion disks. When the inclusion region for a given value of x is
D1 ∪ D2, then the corresponding exclusion region is (D1 ∪ D2)′ = D′

1 ∩ D′
2. The

following example illustrates the exclusion disks we just derived.

Example 3. For the polynomial q3(z) = z8+(1+i)z7−(2−i)z5−3z4+2iz3−
z2 + 8iz + 2 one obtains sr = 4.20 and tr = 1.02. The corresponding exclusion
disks are given by D(0; 0.24) and D(−0.44i; 0.55), respectively. We see that the
second disk is markedly larger than the first (classical) exclusion disk because |a1|
is relatively large compared to |a0|. In Figure 2 these disks are shaded in dark and
light gray, respectively. The large circle and the arc are the boundary and part of
the boundary, respectively, of the inclusion disks from the introduction, which are
drawn here to provide a sense of scale. The black dots are the zeros of q3.
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Figure 2. Zero exclusion disks for q3

4. Additional exclusion regions

We can create more exclusion regions, just as we created more inclusion regions,
by considering additional special values for the parameter x in Cx(pr). Proceeding
analogously as in Section 2, we obtain that the Gershgorin column set of Cx(pr)
consists of two disks of the same radius ur if

hr(ur) = un
r −

∣∣∣∣
a2

a0

∣∣∣∣ un−2
r −

∣∣∣∣
a3

a0

∣∣∣∣ un−3
r − · · · −

∣∣∣∣
an−1

a0

∣∣∣∣ ur −
∣∣∣∣

1
a0

∣∣∣∣ = 0.

The corresponding exclusion region for the zeros of p depends, as was shown in
Lemma 1, on the value of ur|a0/a1| and will be a disk, exterior of a disk, or a
half-plane, when that value is greater than, less than, or equal to one, respectively.
Following are two examples: Example 4 where the aforementioned exclusion region
is a disk and Example 5 where it is the exterior of a disk.

Example 4. Consider q4(z) = z8+z7+(2−i)z5−4z4+2iz3−z2+(4+2i)z+5,
for which sr = 1.53, tr = 1.04, and ur = 1.21. On the left in Figure 3 are the
corresponding exclusion disks, which are given by D(0; 1/sr) ≡ D(0; 0.65), shaded
in dark gray, and

D

(
a1/a0

2|a1/a0|tr + t2r
;

|a1/a0|+ tr
2|a1/a0|tr + t2r

)
≡ D(0.27− 0.14i; 0.66),

shaded in light gray, respectively. Both disks’ boundaries are also outlined. On the
right in Figure 3 we have, shaded in dark gray, the intersection of the exclusion
disks D(0; 1/ur) ≡ D(0; 0.83) and

D

(
a1/a0

u2
r − |a1/a0|2 ;

ur

u2
r − |a1/a0|2

)
≡ D(1.20− 0.60i; 1.82).

Because of its size, only the relevant part of this disk is shown in the figure. We
note that ur|a0/a1| = 1.35 > 1, corresponding to case (1) of Lemma 1, so that the
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Figure 3. Zero exclusion regions for q4

corresponding excluded region is a disk. Only six zeros of q4, which are the black
dots, can be seen.

Example 5. Let us look at the polynomial q5(z) = z8 + iz7 + (2 − i)z5 −
z4 + 2iz3 − z2 + (1 + 3i)z + 1, for which sr = 3.62, tr = 1.21, and ur = 1.74.
The corresponding exclusion disks, shown on the left in Figure 4, are given by
D(0; 1/sr) ≡ D(0; 0.28), shaded in dark gray, and

D

(
a1/a0

2|a1/a0|tr + t2r
;

|a1/a0|+ tr
2|a1/a0|tr + t2r

)
≡ D(0.11− 0.33i; 0.48),

shaded in light gray, respectively, with their boundaries outlined. We also have
ur = 1.74, so that ur|a0/a1| = 0.55 < 1, in which case Lemma 1 implies that the
corresponding excluded region is the exterior of a closed disk. Accordingly, the right
side of Figure 4 shows, shaded in dark gray, the intersection of the exclusion sets
D(0; 1/ur) ≡ D(0; 0.58) and

E

(
a1/a0

u2
r − |a1/a0|2 ;

ur

|a1/a0|2 − u2
r

)
≡ E(−0.14 + 0.43i; 0.25).

Only five zeros of q5 (the black dots) can be seen.

Figure 4. Zero exclusion regions for q5
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As in Section 2, we can try to find values for the parameter x causing the two
disks of the Gershgorin column set of Cx(pr) to be disjoint. The disk centered at
the origin then necessarily contains n − 1 zeros of pr, while the disk centered at
−a1/a0 contains the remaining one. Again proceeding as before, we find that this
is possible for any x such that y1 < x < y2, where y1 and y2 are the unique positive
solutions of φr(x) = 0, with

(8) φr(x) = xn −
∣∣∣∣
a1

a0

∣∣∣∣ xn−1 +
∣∣∣∣
a2

a0

∣∣∣∣ xn−2 + · · ·+
∣∣∣∣
an−1

a0

∣∣∣∣ x +
∣∣∣∣

1
a0

∣∣∣∣ .

The zeros of pr are then contained in the disjoint union of D(0; y1) and
D(−a1/a0; |a1/a0| − y2). For the zeros of p, this means that D(0; 1/y1) is an
exclusion disk for n− 1 of its zeros, while, by Lemma 1,

D

(
a1/a0

(|a1/a0| − y2)2 − (a1/a0)2
;

|a1/a0| − y2

(a1/a0)2 − (|a1/a0| − y2)2

)

= D

(
− a1/a0

(2|a1/a0| − y2)y2
;

|a1/a0| − y2

(2|a1/a0| − y2)y2

)

is an inclusion disk containing the remaining zero. The latter follows from case
(2) in Lemma 1 because (|a1/a0| − y2)|a0/a1| < 1. The images of two disjoint
sets under a continuous transformation remain disjoint, so that this disk must be
disjoint from E(0; 1/y1), meaning that it lies entirely in D(0; 1/y1). This can be
verified directly by computing the sum of its radius and midpoint modulus:

|a1/a0|
(2|a1/a0| − y2)y2

+
|a1/a0| − y2

(2|a1/a0| − y2)y2
=

1
y2

<
1
y1

.

We illustrate the above with the following example.

Example 6. Figure 5 shows inclusion and exclusion sets for the zeros of
q6(z) = z8 + 3z7 + (4− i)z5 − 4z4 + 2iz3 − z2 + (2 + 3i)z + 1, for which sr = 4.05,
tr = 1.38, y1 = 2.33, and y2 = 2.58. For comparison, the two exclusion disks
from Section 3 are shown on the left, namely, D(0; 0.25) and D(0.17− 0.25i; 0.42),
shaded in dark and light gray, respectively. On the right we have the exclusion disk
D(0, 1/y1) ≡ D(0; 0.43) for five zeros of q6, shaded in dark gray, with inside it the
inclusion disk

D

(
− a1/a0

(2|a1/a0| − y2)y2
;

|a1/a0| − y2

(2|a1/a0| − y2)y2

)
≡ D(−0.17 + 0.25i; 0.09),

containing the remaining sixth zero. As expected, (|a1/a0|−y2)|a0/a1| = 0.28 < 1.
Like in all the other examples, the origin lies in an exclusion region, as it should.
The black dots are the zeros of q6, only five of which are shown.

We conclude this section by mentioning that additional interesting values for
x can be obtained by manipulating the properties of the inclusion and exclusion
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Figure 5. Zero exclusion regions for q6

regions for the zeros of p, resulting from those for the zeros of pr. Although we
will not pursue this here, one idea could be, e.g., to replace the requirement that
the disks containing the zeros of pr have equal radius by the requirement that the
resulting exclusion regions for the zeros of p have equal radius. When doing so, one
needs to bear in mind that unions for inclusion regions correspond to intersections
for exclusion regions.

In what follows, we have summarized the inclusion and exclusion regions that
we derived for all zeros of the polynomial p, not including the regions that can only
be obtained when the functions φ and φr, defined by (1) and (8), respectively, have
positive roots.

Summary of inclusion and exclusion regions for all zeros of
p(z) = zn + an−1z

n−1 + · · ·+ a1z + a0

f(x) = xn − |an−1|xn−1 − |an−2|xn−2 − · · · − |a1|x− |a0|
g(x) = xn + |an−1|xn−1 − |an−2|xn−2 − · · · − |a1|x− |a0|
h(x) = xn − |an−2|xn−2 − |an−3|xn−3 − · · · − |a1|x− |a0|

fr(x) = xn −
∣∣∣∣
a1

a0

∣∣∣∣ xn−1 −
∣∣∣∣
a2

a0

∣∣∣∣ xn−2 − · · · −
∣∣∣∣
an−1

a0

∣∣∣∣ x−
∣∣∣∣

1
a0

∣∣∣∣

gr(x) = xn +
∣∣∣∣
a1

a0

∣∣∣∣ xn−1 −
∣∣∣∣
a2

a0

∣∣∣∣ xn−2 − · · · −
∣∣∣∣
an−1

a0

∣∣∣∣ x−
∣∣∣∣

1
a0

∣∣∣∣

hr(x) = xn −
∣∣∣∣
a2

a0

∣∣∣∣ xn−2 −
∣∣∣∣
a3

a0

∣∣∣∣ xn−3 − · · · −
∣∣∣∣
an−1

a0

∣∣∣∣ x−
∣∣∣∣

1
a0

∣∣∣∣

Equation Root Zero inclusion region

f(x) = 0 s D(0 ; s)
g(x) = 0 t D(−an−1 ; |an−1|+ t)
h(x) = 0 u D(0 ; u) ∪D(−an−1 ; u)
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Equation Root Zero exclusion region

fr(x) = 0 sr D

(
0 ;

1
sr

)

gr(x) = 0 tr D

(
a1/a0

2|a1/a0|tr + t2r
;

|a1/a0|+ tr
2|a1/a0|tr + t2r

)

hr(x) = 0 ur >

∣∣∣∣
a1

a0

∣∣∣∣ D

(
0 ;

1
ur

)
∩D

(
a1/a0

u2
r − |a1/a0|2 ;

ur

u2
r − |a1/a0|2

)

ur <

∣∣∣∣
a1

a0

∣∣∣∣ D

(
0 ;

1
ur

)
∩ E

(
a1/a0

u2
r − |a1/a0|2 ;

ur

|a1/a0|2 − u2
r

)

ur =
∣∣∣∣
a1

a0

∣∣∣∣ D

(
0 ;

1
ur

)
∩H

(
− a1/a0 ; −1

2

)

Afterthoughts. There exist many other eigenvalue inclusion sets (see, e.g.,
[13], which also provides interesting historical background material). The simplest
of these is the Brauer set ([2], [6, Theorem 6.4.7], [13, Theorem 2.2]), composed of
a union of ovals of Cassini. Applying these other sets to the companion matrix of
a polynomial and its reciprocal will then lead to more zero inclusion and exclusion
regions, although they quickly become complicated, perhaps too complicated.
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