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Abstract. We discuss an interplay between five versions of the Change of Vari-
able Theorem and the Fundamental Theorem of Calculus for the Lebesgue integral.
We show that, under certain assumptions, they imply one another.
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1. Introduction

This note is concerned with interconnection between five versions of the Change
of Variable Theorem for integrals (CVT) and the Fundamental Theorem of Calculus
(FTC) for the Lebesgue integral. Here we assert that the FTC and five versions
of the CVT (one is a weak version and the other four are standard), under certain
assumptions, imply one another. For this, we present a proof that is independent
from a certain property from which any of the three standard CVT can be derived.

Recall that a real function f is absolutely continuous on [a, b] if, for ε > 0 there
exists δ > 0 such that if {[ui, vi] : 1 ≤ i ≤ k} is any finite collection of pairwise
non-overlapping subintervals and

∑k
i=1 |vi−ui| < δ, then

∑k
i=1 |f(vi)− f(ui)| < ε.

Throughout our discussion, we shall call the term absolutely continuous and almost
everywhere as AC and a.e. respectively. Also, we assume that all integrability are
in the Lebesgue sense.

Let f be a real-valued function on [a, b], and g be a real-valued function defined
on J := f([a, b]). Consider the following statements.

CVT 1. If f is AC and nonzero, then f ′/f is integrable on [a, b], and

(1)
∫ b

a

f ′(x)
f(x)

dx = ln |f(b)| − ln |f(a)|.

CVT 2. If f is AC, g is integrable, and either f ′ ≥ 0 or f ′ ≤ 0 a.e., then
(g ◦ f)f ′ is integrable, and

(2)
∫ b

a

g(f(x))f ′(x) dx =
∫ f(b)

f(a)

g(y) dy.
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CVT 3. If f is AC, g is bounded and integrable, then (g ◦ f)f ′ is integrable,
and (2) holds.

CVT 4. If f is AC, g and (g ◦ f)f ′ are both integrable, then (2) holds.

CVT 5. Suppose that f is AC, that G is an AC function defined on J with
G′ = g a.e., and that G ◦ f is AC. Then g and (g ◦ f)f ′ are both integrable and (2)
holds.

FTC. If f is AC, then f ′ is integrable, and

(3)
∫ b

a

f ′(x) dx = f(b)− f(a).

Main Theorem. Suppose we assume the fact that f ′ exists a.e. whenever f
is AC, and without presupposing the property that, for E ⊆ [a, b],

(4) f(E) has a measure 0 =⇒ f ′ = 0 a.e. on E

provided f has a derivative on E. Then
(i) CVT 1 is equivalent to the FTC;
(ii) any of CVT 3, CVT 4, and CVT 5 implies the FTC; and any version of CVT
is equivalent to the FTC if we assume the monotone convergence theorem.

The Main Theorem shows that we only need to assume the FTC, or equiva-
lently, ∫ b

a

f ′(x)
f(x)

dx = ln |f(b)| − ln |f(a)|

—while assuming the monotone convergence theorem—for the fully equipped CVT
to be true.

While CVT 1 gives a weak version, CVT 2, 3, 4 and 5 are standard. As
discussed in either [1] or [2], property (4) (i.e. Theorem 1 of [1] or Lemma 6.92
of [2]) has an essential contribution on deducing the four standard CVT. For this
reason, the proof of Main Theorem should be independent from this property.

Prior to the proof we need the following fact to clarify that certain properties
we will use in some part of the proof are derived under the assumption of the
monotone convergence theorem (MCT). The proof of this fact is usually provided,
or left as a typical exercise, on textbooks (part of this can be seen, for example, in
[2]). Let m denote a set measure.

Fact 1. Consider the following statements.
(i) If h is integrable on [a, b], then for ε > 0 there exists δ > 0 such that for every

measurable set E ⊆ [a, b], if m(E) < δ, then
∫

E
|h| < ε.

(ii) If h is integrable on [a, b], then the function x 7→ ∫ x

a
h(t) dt, x ∈ [a, b], is AC.
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(iii) Given a measurable set X ⊆ [a.b], then for every ε > 0 there exists δ > 0 such
that for every open set Y ⊇ X, if m(Y \X) < δ, then

∣∣∫
X

h
∣∣ ≤ ε +

∣∣∫
Y

h
∣∣.

(iv) If
∫

I
h = 0 for every interval I ⊆ [a, b], then h = 0 a.e. on [a, b].

(v) If h ≥ 0 a.e. on E ⊆ [a, b] and
∫

E
h = 0, then h = 0 a.e. on E.

Then MCT ⇒ (i) ⇒ [(ii) and (iii)]; and (iii) ⇒ (iv) ⇒ (v).

Now, the scheme of the proof of Main Theorem would be as follows:

CVT 1 ⇒ FTC ⇒ CVT 1

for part (i) of Main Theorem; then followed by

[CVT 3 or CVT 4 or CVT 5] ⇒ FTC;

(5) CVT 2 ⇒ FTC ⇒ CVT 5 ⇒ [CVT 2 and CVT 3];

and

(6) CVT 3 ⇒ CVT 4

for part (ii) of Main Theorem, where in part (5) and (6) we assume the monotone
convergence theorem, in which Fact 1(ii)–(v) will be employed.

2. Proof of main theorem

CVT 1 ⇒ FTC. Set F (x) := ef(x), x ∈ [a, b]. Since x 7→ ex is Lipschitz on
[a, b] and f is AC, it follows that F is AC. By CVT 1, F ′/F = f ′ is integrable, and

(7)
∫ b

a

f ′(x) dx =
∫ b

a

F ′(x)
F (x)

dx = ln |f(b)| − ln |f(a)| = f(b)− f(a).

FTC ⇒ CVT 1. Set F (x) := ln |f(x)|, x ∈ [a, b]. Since x 7→ ln |x| is Lipschitz
and f is AC on [a, b], F is AC, so that by the FTC, F ′ = f ′/f is integrable, and

(8)
∫ b

a

f ′(t)
f(t)

dt =
∫ b

a

F ′(t) dt = F (b)− F (a) = ln |f(b)| − ln |f(a)|.

[CVT 3 or CVT 4 or CVT 5] ⇒ FTC. The FTC follows trivially from ei-
ther CVT 3 or CVT 4 by substituting g(y) := 1, y ∈ J . Also, it follows immediately
from CVT 5 by substituting G(y) := y, y ∈ J .

CVT 2 ⇒ FTC. First note that substituting g(y) := 1 into equation (2) gives

(9)
∫ b

a

f ′(x) dx =
∫ f(b)

f(a)

dy = f(b)− f(a)

provided f is AC, either f ′ ≥ 0 or f ′ ≤ 0 a.e. We have two consequences from (9)
for our purposes: (i) equation (9) applies for a function f that is AC and monotonic;
and (ii) if f is AC and f ′ = 0 a.e., then f is a constant function.
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Suppose now that f is AC (which does not necessarily satisfy that f ′ ≥ 0 nor
f ′ ≤ 0). Since f ′ + |f ′| ≥ 0 and f ′ − |f ′| ≤ 0, it follows that the functions f1(x) :=∫ x

a
1
2 (f ′(t) + |f ′(t)|) dt and f2(x) :=

∫ x

a
1
2 (f ′(t) − |f ′(t)|) dt are both monotonic.

Since, in addition to be monotonic, f1 is AC by Fact 1(ii), it follows from the first
consequence above that

∫ x

a

f ′1(t) dt = f1(x)− f1(a) =
∫ x

a

1
2

(f ′(t) + |f ′(t)|) dt.

This gives ∫ x

a

(
f ′1(t)−

1
2

(f ′(t) + |f ′(t)|)
)

dt = 0,

for every x ∈ [a, b]. Therefore
∫

I
(f ′1 − 1

2 (f ′ + |f ′|)) = 0, for any interval I ⊆ [a, b],
so that by Fact 1(iv), f ′1 − 1

2 (f ′ + |f ′|) = 0, or f ′1 = 1
2 (f ′ + |f ′|) a.e. Similarly, we

obtain f ′2 = 1
2 (f ′ − |f ′|) a.e. This yields

(10) f ′ = f ′1 + f ′2 a.e.

But then, we have (f−(f1 +f2))′ = 0 a.e., where f−(f1 +f2) is AC, so that by the
second consequence above, f−(f1 +f2) is a constant function. If for some constant
L, f(x)−(f1 +f2)(x) = L, for all x ∈ [a, b], then L = f(a), since f1(a) = f2(a) = 0.
Therefore (f1 + f2)(b) = f(b)− f(a). Hence, applying (9) for f1 and f2 on (10) by
the first consequence, gives

∫ b

a

f ′(x) dx =
∫ b

a

f ′1(x) dx +
∫ b

a

f ′2(x) dx

= f1(b)− f1(a) + f2(b)− f2(a)

= (f1 + f2)(b)

= f(b)− f(a)

as is asserted.

FTC ⇒ CVT 5. Since G and G ◦ f are AC, by the FTC, both G′ = g and
(G ◦ f)′ are integrable, and
∫ b

a

(G ◦ f)′(x) dx = (G ◦ f)(b)− (G ◦ f)(a) = G(f(b))−G(f(a)) =
∫ f(b)

f(a)

g(x) dx.

The proof would be finished if we can show that

(11) (G ◦ f)′(x) = g(f(x))f ′(x)

for a.e. x ∈ [a, b]. To facilitate this, we partition [a, b] into the set P and Q, where

P := {x ∈ [a, b] : G′(f(x)) exists, and G′(f(x)) = g(f(x))}
and Q := [a, b] \ P . Let C := {x ∈ [a, b] : (G ◦ f)′(x) and f ′(x) both exist}. Since
f and G ◦ f are AC, m([a, b] \ C) = 0. Thus, to show that (11) holds a.e. on [a, b],
it suffices to show that it holds a.e. on both P ∩ C and Q ∩ C.
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If x ∈ P ∩ C, since f ′(x), G′(f(x)), and (G ◦ f)′(x) all exist, and G′(f(x)) =
g(f(x)), it follows from the chain rule that (G ◦ f)′(x) = G′(f(x))f ′(x) =
g(f(x))f ′(x), so that (11) holds.

We now show that (11) holds a.e. on Q ∩C. This can be done if we can show
that f ′(x) = 0 = (G ◦ f)′(x), so that (11) holds, for a.e. x ∈ D := Q ∩ C. Notice
that 0 ≤ m(f(D)) ≤ m(f(Q)) = 0, since G′ exists and equals g a.e. on J . Hence
m(f(D)) = 0. At this stage we need the following lemma, where it is important
to emphasize that we assume only the FTC and the properties listed in Fact 1 (as
consequences of the monotone convergence theorem), and avoid using (4).

Lemma 2. Suppose that f is AC. Given a measurable set X ⊆ [a, b], then for
any ε > 0 there exists kε > 0 such that

(12)
∣∣∣∣
∫

X

f ′
∣∣∣∣ ≤ ε + kε m (f(X)) .

Proof. Given any ε > 0. Since f is AC, there exists δ1 > 0 such that if
{[ui, vi] : 1 ≤ i ≤ s} is any finite collection of pairwise non-overlapping subintervals
and

∑s
i=1 |vi − ui| < δ1, then

(13)
s∑

i=1

|f(vi)− f(ui)| < ε

3
.

By Fact 1(iii), there exists δ2 such that for any open set Y ⊇ X, if m(Y \X) < δ2,
then

∣∣∫
X

f ′
∣∣ ≤ ε

3 +
∣∣∫

Y
f ′

∣∣. Set δ := min{δ1, δ2}. Choose an open set X0 ⊇ X such
that m(X0 \X)) < δ/2. Since m(X0 \X)) < δ2, it follows that

(14)
∣∣∣∣
∫

X

f ′
∣∣∣∣ ≤

ε

3
+

∣∣∣∣
∫

X0

f ′
∣∣∣∣ .

Now choose a closed set X1 ⊆ X such that m(X \X1) < δ/2. Write X0 =
⋃∞

n=1 In,
where {In}∞n=1 is a countable collection of pairwise disjoint open subintervals. Then
X0 \X1 =

⋃∞
n=1(In \X1), so that

(15) m

( ∞⋃
n=1

(In \X1)
)

= m(X0 \X1) = m(X0 \X) + m(X \X1) < δ ≤ δ1.

As In \ X1 is open, write In \ X1 =
⋃∞

i=1 J
(n)
i , where {J (n)

i }∞i=1 is a countable
collection of pairwise disjoint open subintervals. Let u

(n)
i < v

(n)
i be two points in

the closure J
(n)
i of J

(n)
i where f attains the maximum and the minimum value on

J
(n)
i . If n1 6= n2, then In1 ∩In2 = ∅, and hence J

(n1)
i and J

(n2)
i are not overlapping.

Thus, for arbitrary k and l, the collection
{

J
(n)
i : 1 ≤ i ≤ l, 1 ≤ n ≤ k

}
, hence the

collection {
[u(n)

i , v
(n)
i ] : 1 ≤ i ≤ l, 1 ≤ n ≤ k

}
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is a finite collection of pairwise non-overlapping subintervals. Since, by (15),

m

( k⋃
n=1

l⋃

i=1

[u(n)
i , v

(n)
i ]

)
≤ m

( k⋃
n=1

l⋃

i=1

J
(n)
i

)
≤ m

( ∞⋃
n=1

(In \X1)
)

< δ1,

it follows from (13) that

k∑
n=1

l∑

i=1

m(f(J (n)
i )) =

k∑
n=1

l∑

i=1

|f(v(n)
i )− f(u(n)

i )| < ε

3
.

Letting l →∞, we have for arbitrary k,

(16)
k∑

n=1

∞∑

i=1

m(f(J (n)
i )) ≤ ε

3
.

Let In := [un, vn]. By the FTC, we have
∣∣∣∣
∫

In

f ′
∣∣∣∣ = |f(vn)− f(un)| ≤ m(f(In))(17)

≤ m(f((In \X1) ∪X1))

≤ m(f(In \X1)) + m(f(X1))

≤ m(f(In \X1)) + m(f(X1)).(18)

Note that (17) and the absolute continuity of f imply

∞∑
n=1

∣∣∣∣
∫

In

f ′
∣∣∣∣ ≤

∞∑
n=1

m(f(In)) < ∞,

and so we can choose some kε ∈ N such that

(19)
∞∑

n=1

∣∣∣∣
∫

In

f ′
∣∣∣∣ <

ε

3
+

kε∑
n=1

∣∣∣∣
∫

In

f ′
∣∣∣∣.

By (16), we have

kε∑
n=1

m(f(In \X1)) =
kε∑

n=1

m

(
f

( ∞⋃

i=1

J
(n)
i

))
(20)

=
kε∑

n=1

m

( ∞⋃

i=1

f

(
J

(n)
i

))

≤
kε∑

n=1

∞∑

i=1

m(f(J (n)
i )) ≤ ε

3
.
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Then (14), (18), (19), and (20), along with the fact that X1 ⊆ X, give
∣∣∣∣
∫

X

f ′
∣∣∣∣ ≤

ε

3
+

∣∣∣∣
∫

X0

f ′
∣∣∣∣ =

ε

3
+

∣∣∣∣
∫
⋃∞

n=1
In

f ′
∣∣∣∣

≤ ε

3
+

∞∑
n=1

∣∣∣∣
∫

In

f ′
∣∣∣∣

≤ ε

3
+

ε

3
+

kε∑
n=1

m(f(In \X1)) + kεm(f(X1))

≤ ε

3
+

ε

3
+

ε

3
+ kεm(f(X))

≤ ε + kεm(f(X))

as is asserted.

Now, substituting D+ := {x ∈ D : f ′(x) > 0} and D− := {x ∈ D : f ′(x) < 0}
respectively for X in (12), while noting m(f(D)) = 0 and ε is arbitrary, yields∫

D+ f ′ = 0 =
∫

D− f ′, so that by Fact 1(v), f ′ = 0 a.e. on both D+ and D−, hence
on D.

Next, since m(f(D)) = 0, the absolute continuity of G implies that
m(G(f(D))) = m((G ◦ f)(D)) = 0. Thus, applying similar argument as above,
since G◦f is AC, it follows that (G◦f)′ = 0 a.e. on D. This completes the proof.

CVT 5 ⇒ CVT 2. It is enough to show the case that f ′ ≥ 0 a.e., as the
other case is similar. Set G(z) :=

∫ z

f(a)
g(y) dy, z ∈ J . Note that here we have

the FTC, as we have shown earlier that CVT 5 ⇒ FTC. Since G is AC, by the
FTC, G′ is integrable, and

∫ z

f(a)
G′(y) dy = G(z)−G(f(a)) = G(z) =

∫ z

f(a)
g(y) dy.

Thus
∫ z

f(a)
(G′(y) − g(y)) dy = 0, for every z ∈ J . It follows from Fact 1(iv) that

G′ − g = 0, thus G′ = g, a.e. on J . Now, since f ′ ≥ 0, it follows from the FTC
that

∫ x2

x1
f ′(x) dx = f(x2)− f(x1) ≥ 0 if x2 > x1, showing that f is non decreasing.

Then, since G and f are AC, so is G ◦ f , and therefore the assertion follows from
CVT 5.

CVT 5 ⇒ CVT 3. As in the previous part, set G(z) :=
∫ z

f(a)
g(y) dy, z ∈ J .

We have shown there that the FTC and Fact 1(iv) imply that G′ = g a.e. on J .
Since g is bounded, G is Lipschitz. Now, since f is AC, so is G ◦ f , and hence the
assertion follows from CVT 5.

CVT 3 ⇒ CVT 4. It suffices to reduce the case that g ≥ 0. Set for each n a
function gn, with gn(x) := g(x) if g(x) ∈ [0, n], and gn(x) := 0 otherwise. Then by
CVT 3,

(21)
∫ b

a

gn(f(x))f ′(x) dx =
∫ f(b)

f(a)

gn(y) dy.
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Since (gn) is monotonic and gn → g pointwise, it follows from the monotone con-
vergence theorem that

(22)
∫ f(b)

f(a)

gn(y) dy →
∫ f(b)

f(a)

g(y) dy.

By letting E+ := {x ∈ [a, b] : f ′(x) ≥ 0} and E− := {x ∈ [a, b] : f ′(x) ≤ 0}, the
monotone convergence theorem, again, gives

∫ b

a

gn(f(x))(f ′χE+)(x) dx →
∫ b

a

g(f(x))(f ′χE+)(x) dx

and ∫ b

a

gn(f(x))(f ′χE−)(x) dx →
∫ b

a

g(f(x))(f ′χE−)(x) dx,

where χE+ and χE− denote the characteristic function on E+ and E− respectively,
so that

(23)
∫ b

a

gn(f(x))f ′(x) dx →
∫ b

a

g(f(x))f ′(x) dx.

The assertion then follows from (21), (22) and (23).
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