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STRICT MONOTONICITY OF NONNEGATIVE STRICTLY
CONCAVE FUNCTION VANISHING AT THE ORIGIN

Yuanhong Zhi

Abstract. In this paper we prove that every nonnegative strictly concave func-
tion on the unbounded closed interval [0, +∞) is strictly increasing, provided it vanishes
at the origin. With the help of this result, we then show that the strict monotonicity
condition of the theorem concerning the metric transforms is redundant. We also pro-
vide a companion version of this result for merely concave nonnegative function which
vanishes only at the origin.
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1. Introduction

It is well-known that if (X, d) is a metric space, then the function d′: X×X → R
defined by d′(x, y) = d(x,y)

1+d(x,y) is a new metric on X, for reference, see [1, 3, 6]. Since
the function f : [0, +∞) 3 x 7→ x

1+x is nonnegative and strictly concave on [0, +∞)
and vanishes at x = 0, many authors generalized the metric d′ as follows: If (X, d)
is a metric space and f : [0, +∞) → R is a nonnegative increasing function which is
strictly concave, and vanishes at x = 0, then the composition f ◦ d of d followed
by f is a new metric on X. See references [1–5]. If f is such a mapping, then we
call f a metric transform on X, see [4] for details. In [6], the author demands that
f is continuous, so as to be a metric transform on X.

In this article, we show that the increasing monotonicity condition (or the
continuity condition) of such a generalization is actually redundant. As Theorem
1 below shows, f ◦ d is a metric transform on X, provided f : [0, +∞) → R is
nonnegative strictly concave, with f(0) = 0, because such a condition guarantees,
as we prove, that f is automatically strictly increasing. We also prove a companion
version (that is, Theorem 2) for merely concave function which is nonnegative and
vanishes only at the origin.

This paper is organized as follows. In Section 2 we prove our two theorems, for
strictly concave function and merely concave function, respectively. In Section 3,
we first give the corresponding corollaries concerning the metric transforms. Then
we use the result to consider the usual metric transforms.
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2. Main results

Recall the definition of (strictly) concave function of a real variable.

Definition 1. Let I be a nondegenerate interval in R. We say that a function
f : I → R is concave (downward) on I, if for all x and y in I, and all λ ∈ (0, 1), the
condition

f
(
λx + (1− λ)y

) ≥ λf(x) + (1− λ)f(y)
holds. We say that f is strictly concave (downward) on I, if for all x and y in I,
with x 6= y, and all λ ∈ (0, 1), the condition

f
(
λx + (1− λ)y

)
> λf(x) + (1− λ)f(y)

holds.

Our main theorem is the following.

Theorem 1. Let f : [0,+∞) → R be strictly concave on [0, +∞). If f(x) ≥ 0
for all x ∈ [0, +∞) and f(0) = 0, then the following hold:
(i) f is strictly subadditive on (0, +∞), that is, for all 0 < a < b, we have

f(a + b) < f(a) + f(b).

(ii) For all x > 0, f(x) > 0.
(iii) f is strictly increasing on [0, +∞).

Proof. Let f : [0, +∞) → R satisfy the given conditions.
(i) Let 0 < a < b. Then 0 < a + b. By strict concavity of f , together with

f(0) = 0, we deduce that

f(a) = f

(
a

a + b
· (a + b) +

b

a + b
· 0

)
(1)

>
a

a + b
f(a + b) +

b

a + b
f(0) =

a

a + b
f(a + b),

and

f(b) = f

(
b

a + b
· (a + b) +

a

a + b
· 0

)
(2)

>
b

a + b
f(a + b) +

a

a + b
f(0) =

b

a + b
f(a + b).

By adding up relations (1) and (2), we arrive at

(3) f(a + b) < f(a) + f(b), provided 0 < a < b.

(ii) Suppose that, contrary to what has to be shown, there exists x′ > 0 such
that f(x′) ≤ 0. Since f is assumed to be nonnegative, we have f(x′) = 0. Thus,
from strict subadditivity of f on (0,+∞),

f(2x′) = f(x′ + x′) < f(x′) + f(x′) = 2f(x′) = 0,

contradicting that f is nonnegative.
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(iii) Suppose that f is not strictly increasing on [0, +∞). Then there exist
x1, x2 with 0 ≤ x1 < x2, such that f(x1) ≥ f(x2). Since x2 > 0, by Part (ii) of this
theorem, we have f(x2) > 0, and hence f(x1) > 0, which implies that x1 > 0, for
f(0) = 0.

Then there are two cases to consider: f(x1) = f(x2), or else f(x1) > f(x2). If
f(x1) = f(x2), then, for every real number x3 such that x3 > x2, we have

x2 =
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3.

From strict concavity of f , it follows that

f(x1) = f(x2) = f

(
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3

)

>
x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3),

which leads to
x2 − x1

x3 − x1
f(x1) >

x2 − x1

x3 − x1
f(x3),

and so
f(x3) < f(x2) = f(x1), for all x3 with x1 < x2 < x3.

If f(x1) > f(x2), then, for every real number x3 with x3 > x2, we have

x2 =
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3.

By strict concavity of f , we have

f(x2) = f

(
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3

)
>

x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3)

>
x3 − x2

x3 − x1
f(x2) +

x2 − x1

x3 − x1
f(x3),

which leads to
x2 − x1

x3 − x1
f(x2) >

x2 − x1

x3 − x1
f(x3),

and so
f(x3) < f(x2), for all x3 with x1 < x2 < x3.

Thus, we have shown that if there are two real numbers x1 and x2 such that
0 < x1 < x2 with f(x1) ≥ f(x2), then, for each real number x3 with x3 > x2,
f(x3) < f(x2).

Now fix some x3 such that x1 < x2 < x3. Then we have

(4) f(x3) < f(x2).

Set δ =
f(x2)− f(x3)

2
> 0. Then, by (4),

(5) f(x3) + δ = f(x3) +
f(x2)− f(x3)

2
=

f(x2) + f(x3)
2

< f(x2).
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Take

(6) z =
f(x2)(x3 − x2)

δ
+ x2 + x3.

Since x2 > 0, from Part (ii) it follows that f(x2) > 0, and so

(7) z > x3 > x2.

Since x3 =
z − x3

z − x2
x2 +

x3 − x2

z − x2
z, we deduce that

f(x3) = f

(
z − x3

z − x2
x2 +

x3 − x2

z − x2
z

)
(8)

>
z − x3

z − x2
f(x2) +

x3 − x2

z − x2
f(z).

Combining (5) and (8), together with (7), we arrive at

f(x2) > f(x3) + δ >
z − x3

z − x2
f(x2) +

x3 − x2

z − x2
f(z) + δ,

implying that
x3 − x2

z − x2
f(x2) >

x3 − x2

z − x2
f(z) + δ, and thus

(9) f(x2)− z − x2

x3 − x2
δ > f(z).

Now inserting (6) into the left-hand side of (9), we have

f(x2)− z − x2

x3 − x2
δ = f(x2)−

f(x2)(x3−x2)
δ + x2 + x3 − x2

x3 − x2
δ

= f(x2)− f(x2)− x3

x3 − x2
δ = − x3

x3 − x2
δ < 0.

Consequently, it follows from (9) that

0 > f(x2)− z − x2

x3 − x2
δ > f(z),

which contradicts that f is nonnegative on [0,+∞).
Therefore we have proved that f is strictly increasing on [0, +∞).
By a similar argument, we provide a companion version of Theorem 1, where

f is merely concave on [0,+∞), as follows.

Theorem 2. Let f : [0,+∞) → R be concave on [0, +∞). If f(0) = 0 and
f(x) ≥ 0 for all x ∈ (0, +∞), then the following hold:
(α) f is subadditive on [0,+∞), that is, for all 0 ≤ a < b, we have

f(a + b) ≤ f(a) + f(b).

(β) f is increasing on [0, +∞).
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Proof. Let f : [0, +∞) → R satisfy the given conditions.
(α) Let 0 ≤ a < b. Then 0 < a + b. By concavity of f , together with f(0) = 0,

we deduce that

f(a) = f

(
a

a + b
· (a + b) +

b

a + b
· 0

)
(10)

≥ a

a + b
f(a + b) +

b

a + b
f(0) =

a

a + b
f(a + b),

and

f(b) = f

(
b

a + b
· (a + b) +

a

a + b
· 0

)
(11)

≥ b

a + b
f(a + b) +

a

a + b
f(0) =

b

a + b
f(a + b).

By adding up (10) and (11), we arrive at

f(a + b) ≤ f(a) + f(b), provided 0 ≤ a < b.

(β) Suppose that f is not increasing on [0,+∞). Then there exist x1, x2 with
0 ≤ x1 < x2, such that f(x1) > f(x2). Since x2 > 0, by hypothesis, we have
f(x2) ≥ 0 and hence f(x1) > 0, which implies that x1 > 0, for f(0) = 0.

Now since f(x1) > f(x2), for every real number x3 with x3 > x2, we have

x2 =
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3.

By concavity of f , we have

f(x2) = f

(
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3

)
≥ x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3)

>
x3 − x2

x3 − x1
f(x2) +

x2 − x1

x3 − x1
f(x3),

which leads to
x2 − x1

x3 − x1
f(x2) >

x2 − x1

x3 − x1
f(x3),

and so
f(x3) < f(x2), for all x3 with x1 < x2 < x3.

Now fix some x3 such that x1 < x2 < x3. Then we have

(12) f(x3) < f(x2).

Set δ =
f(x2)− f(x3)

2
> 0. Then, by (12),

(13) f(x3) + δ = f(x3) +
f(x2)− f(x3)

2
=

f(x2) + f(x3)
2

< f(x2).
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Take

(14) z =
f(x2)(x3 − x2)

δ
+ x2 + x3.

Since x3 > x2 > 0, from hypothesis it follows that f(x2) ≥ 0, and we get that

(15) z > x3 > x2.

Since x3 =
z − x3

z − x2
x2 +

x3 − x2

z − x2
z, we deduce that

f(x3) = f

(
z − x3

z − x2
x2 +

x3 − x2

z − x2
z

)
(16)

≥ z − x3

z − x2
f(x2) +

x3 − x2

z − x2
f(z).

Combining (13) and (16) together with (15) we arrive at

f(x2) > f(x3) + δ ≥ z − x3

z − x2
f(x2) +

x3 − x2

z − x2
f(z) + δ,

implying that
x3 − x2

z − x2
f(x2) >

x3 − x2

z − x2
f(z) + δ,

and thus

(17) f(x2)− z − x2

x3 − x2
δ > f(z).

Now inserting (14) into the left-hand side of inequality (17), we have

f(x2)− z − x2

x3 − x2
δ = f(x2)−

f(x2)(x3−x2)
δ + x2 + x3 − x2

x3 − x2
δ

= f(x2)− f(x2)− x3

x3 − x2
δ = − x3

x3 − x2
δ < 0.

Consequently, it follows from (17) that

0 > f(x2)− z − x2

x3 − x2
δ > f(z),

which contradicts the fact that f is nonnegative on [0, +∞).
Therefore we have proved that f is increasing on [0, +∞).

3. Applications

The above theorems show that the monotonicity property is implied from con-
cavity. Thus, for a function to be metric transform, there is no need to check its
monotonicity, as the following corollaries show.
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Corollary 1. Suppose that f : [0,+∞) → [0, +∞) is strictly concave and
satisfies f(0) = 0. Let (X, d) be a metric space. Define function df on X ×X by

df (x1, x2) = f
(
d(x1, x2)

)

for all x1, x2 ∈ X. Then df is also a metric on X.

Proof. If x1 = x2, then, since d is a metric on X, we have d(x1, x2) = 0, and
so df (x1, x2) = f

(
d(x1, x2)

)
= f(0) = 0. Conversely, suppose that df (x1, x2) = 0,

that is, f
(
d(x1, x2)

)
= 0. Then we must have d(x1, x2) = 0, for otherwise we would

have d(x1, x2) > 0, and thus, by Part (ii) of Theorem 1, it leads to df (x1, x2) =
f
(
d(x1, x2)

)
> 0, a contradiction. Hence we have shown that df (x1, x2) = 0 if and

only if x1 = x2.
Since as a metric, d is symmetric, and so is df .
We continue to show that df satisfies the triangle inequality on X. Let

x1, x2, x3 ∈ X. Then

d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

By Theorem 1, f is strictly increasing on [0,+∞), and as a result, from the strict
subadditivity (3) of f , we have

df (x1, x3) = f
(
d(x1, x3)

) ≤ f
(
d(x1, x2) + d(x2, x3)

)

≤ f
(
d(x1, x2)

)
+ f

(
d(x2, x3)

)

= df (x1, x2) + df (x2, x3).

Therefore we have proved that df is a new metric on X, provided d is a metric on
X.

By a similar argument we can prove, by Theorem 2, the following corollary.

Corollary 2. Suppose that f : [0,+∞) → R is concave and satisfies f(0) = 0,
and f(x) > 0 for all x ∈ (0, +∞). Let (X, d) be a metric space. Define function df

on X ×X by
df (x1, x2) = f

(
d(x1, x2)

)

for all x1, x2 ∈ X. Then df is also a metric on X.

Now consider the following functions

f : [0,+∞) 3 x 7→ √
x,(18)

f : [0,+∞) 3 x 7→ x

1 + x
,(19)

f : [0,+∞) 3 x 7→ min{x, 1}.(20)

By Corollary 1, the functions in (18) and (19) are metric transforms. Since it is
easy to show that the function (20) is concave on [0,+∞), (see [3] for reference),
by Corollary 2, the function (20) is also a metric transform.
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