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Abstract. In this paper, we present and prove an inequality and its several
generalizations by using power series and Muirhead inequality.
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Power series provide a very useful tool for proving several inequalities. Thus,
many difficult problems can be easily solved and often even extended. For example,
C. Mortici in [3] and M. Jeong in [1], proved Nesbith’s inequality using power series
and modified it to obtain several other inequalities.

In this paper, we present and prove an olympiad-type inequality and several
of its modifications by using power series and Muirhead inequality.

Problem (19th Moscow Mathematical Olympiad). If a, b ∈ R and |a| < 1,
|b| < 1, then

1
1− a2

+
1

1− b2
> 2

1− ab
.

Proof. By using power series, since |a| < 1, |b| < 1, we can write

(1)
1

1− a2
=

∞∑

k=0

(a2)k,
1

1− b2
=

∞∑

k=0

(b2)k,
1

1− ab
=

∞∑

k=0

(ab)k.

Thus, it is enough to prove that
∞∑

k=0

a2k +
∞∑

k=0

b2k > 2
∞∑

k=0

(ab)k,

that is,
∞∑

k=0

(a2k + b2k − 2akbk) > 0. Hence, we need just to prove that

∞∑

k=0

(ak − bk)2 > 0,

which is obvious. The proof is complete.
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In order to prove several generalizations of the previous inequality, we first
recall the following well-known notions and assertion (see, e.g., [2]).

Definition 1. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) be two arrays from
Rn. We say that a majorizes b (denoted as a Â b) if: (1) a1 > a2 > · · · > an and
b1 > b2 > · · · > bn; (2) a1 +a2 + · · ·+ak > b1 +b2 + · · ·+bk for all k, 1 6 k 6 n−1;
(3) a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.

Definition 2. Let a = (a1, a2, . . . , an) be an array of nonnegative real num-
bers and x = (x1, x2, . . . , xn) ∈ Rn. Denote

T [a1, a2, . . . , an](x1, x2, . . . , xn) =
∑!

xa1
1 xa2

2 · · ·xan
n ,

where
∑! is the sum of n! summands, taken over all possible permutations of the

sequence x = (xi)n
i=1. We shall write just T [a1, a2, . . . , an] if it is clear which

sequence x is used.

Theorem. [Muirhead inequality] The expression T [a] is comparable with the
expression T [b] for all positive sequences x, if and only if one of the sequences a
and b majorizes the other one in the sense of relation ≺. If a ≺ b then T [a] 6 T [b].
The equality holds if and only if the sequences a and b are identical, or all the xi’s
are equal.

In other words, if x1, x2, . . . , xn are positive reals, and a = (ai)n
i=1 majorizes

b = (bi)n
i=1, then we have the inequality

∑
sym

xa1
1 xa2

2 · · ·xan
n >

∑
sym

xb1
1 xb2

2 · · ·xbn
n .

For example, since (5, 0, 0) Â (3, 1, 1) Â (2, 2, 1), we obtain

a5 + a5 + b5 + b5 + c5 + c5 > a3bc + a3bc + b3ca + b3ca + c3ab + c3ab

> a2b2c + a2b2c + b2c2a + b2c2a + c2a2b + c2a2b.

From this we derive a5 + b5 + c5 > a3bc + b3ca + c3ab > abc(ab + bc + ca).

Notice that Muirhead inequality is symmetric, not cyclic. For example, even
though (3, 0, 0) Â (2, 1, 0), it gives only

2(a3 + b3 + c3) > a2b + a2c + b2c + b2a + c2a + c2b,

and in particular this does not imply a3 + b3 + c3 > a2b + b2c + c2a.

Proposition 1. Let ai ∈ R and |ai| < 1, i = 1, 2, . . . , n, and let an+1 = a1.
Then

n∑

i=1

1
1− a2

i

>
n∑

i=1

1
1− aiai+1

.
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Proof.
1

1− a2
1

+
1

1− a2
2

+ · · ·+ 1
1− a2

n

=
∞∑

k=0

(a2
1)

k +
∞∑

k=0

(a2
2)

k + · · ·+
∞∑

k=0

(a2
n)k

=
1
2

( ∞∑

k=0

(a2k
1 + a2k

2 )
)

+
1
2

( ∞∑

k=0

(a2k
2 + a2k

3 )
)

+ · · ·+ 1
2

( ∞∑

k=0

(a2k
n + a2k

1 )
)

>
∞∑

k=0

ak
1ak

2 +
∞∑

k=0

ak
2ak

3 + · · ·+
∞∑

k=0

ak
nak

1

=
1

1− a1a2
+

1
1− a2a3

+ · · ·+ 1
1− ana1

.

The proof is complete.

Proposition 2. If a, b ∈ (0, 1) and n ∈ N, then
an

1− a2
+

bn

1− b2
> an + bn

1− ab
.

Proof. By using power series, we can write the relations (1). Thus, we need to
prove

an
∞∑

k=0

a2k + bn
∞∑

k=0

b2k > (an + bn)
∞∑

k=0

(ab)k,

i.e.,
∞∑

k=0

(an+2k + bn+2k−an+kbk−akbn+k) > 0. This follows from (ak− bk)(an+k−
bn+k) > 0 for each k, which is obvious. The proof is complete.

Generalization. If ai ∈ (0, 1), i = 1, 2, . . . , n, then

n∑

i=1

an
i

1− an
i

>

n∑
i=1

an
i

1−
n∏

i=1

ai

.

Proof. Similarly as in Proposition 2, we have just to prove that

an+nk
1 + an+nk

2 + · · ·+ an+nk
n > ak

1ak
2 · · · ak

n(an
1 + an

2 + · · ·+ an
n)

= an+k
1 ak

2 · · · ak
n + ak

1an+k
2 · · · ak

n + · · ·+ ak
1ak

2 · · · an+k
n .

Since (n + nk, 0, . . . , 0︸ ︷︷ ︸
k−1

) Â (n + k, k, . . . , k︸ ︷︷ ︸
k−1

), using Muirhead inequality we have that

(n− 1)!
(
an+nk
1 + an+nk

2 + · · ·+ an+nk
n

)
>

(n− 1)!
(
an+k
1 ak

2 · · · ak
n + ak

1an+k
2 · · · ak

n + · · ·+ ak
1ak

2 · · · an+k
n

)
,

which completes the proof.
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Proposition 3. If a, b ∈ (0, 1), m,n ∈ N, n > m, then

an

1− a2m
+

bn

1− b2m
> an + bn

1− (ab)m
.

Proof is similar as for Proposition 2.

Generalization. If ai ∈ (0, 1), i = 1, 2, . . . , n, m ∈ N, n > m, then

n∑

i=1

an
i

1− amn
i

>

n∑
i=1

an
i

1− ( n∏
i=1

ai

)m
.

Proof is similar as for Generalization of Proposition 2.

Proposition 4. If a, b ∈ (0, 1), n ∈ N, then

an

√
1− a2

+
bn

√
1− a2

> an + bn

√
1− ab

.

Proof. By squaring both sides, we obtain the equivalent inequality

(2)
a2n

1− a2
+

b2n

1− b2
+

2anbn

√
1− a2

√
1− b2

> a2n + b2n + 2anbn

1− ab
.

By Proposition 2 we know that
a2n

1− a2
+

b2n

1− b2
> a2n + b2n

1− ab
. Furthermore, we

have
1√

1− a2
√

1− b2
=

1√
1 + a2b2 − (a2 + b2)

> 1√
1 + a2b2 − 2ab

=
1

1− ab
.

The previous two inequalities imply that (2) holds. The proof is complete.

Proposition 5. If a, b ∈ (0, 1), then
a

1− b2
+

b

1− a2
> a + b

1− ab
.

Proof. By using power series, we can write

a

1− b2
+

b

1− a2
= a

∞∑

k=0

b2k + b

∞∑

k=0

a2k =
∞∑

k=0

(ab2k + a2kb).

and
a + b

1− ab
= (a + b)

∞∑

k=0

akbk =
∞∑

k=0

(ak+1bk + akbk+1).

Thus, we just need to prove that ab2k + a2kb > ak+1bk + akbk+1. But this follows
from ab2k +a2kb−ak+1bk−akbk+1 = ab(ak− bk)(ak−1− bk−1) > 0. This completes
the proof.
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Generalization. If ai ∈ (0, 1), i = 1, 2, . . . , n, an+1 = a1, then

n∑

i=1

ai

1− an
i+1

>

n∑
i=1

ai

1−
n∏

i=1

ai

.

Proof is similar to that for Generalization of Proposition 2.

Proposition 6. If a, b ∈ (0, 1) and n ∈ N, then
a2n

1− b2
+

b2n

1− a2
> a2n + b2n

1− ab
.

Proof is similar to that of Proposition 5.

Proposition 7. If a, b ∈ (0, 1), then
a√

1− b
+

b√
1− a

> a + b√
1−

√
ab

.

Proof. By squaring both sides, we obtain the equivalent inequality

(4)
a2

1− b
+

b2

1− a
+

2ab√
1− a

√
1− b

> a2 + b2 + 2ab

1−
√

ab
.

Firstly, we will prove that

(5)
a2

1− b
+

b2

1− a
> a2 + b2

1−
√

ab
.

By using power series, we can write

a2

1− b
+

b2

1− a
= a2

∞∑

k=0

bk + b2
∞∑

k=0

ak =
∞∑

k=0

(a2bk + b2ak).

Without loss of generality, assume that a > b > 0. Then we have bk/2 − ak/2 6 0,
a2bk/2 6 b2ak/2 and hence (a2bk/2 − b2ak/2)(bk/2 − ak/2) > 0, wherefrom a2bk +

b2ak > a
2+

k
2 b

k
2 + b

2+
k
2 a

k
2 . It follows that

a2

1− b
+

b2

1− a
>

∞∑

k=0

(
a
2+

k
2 b

k
2 + b

2+
k
2 a

k
2 )

= (a2 + b2)
∞∑

k=0

(
√

ab)k =
a2 + b2

1−
√

ab
.

Furthermore, we have

(6)
2ab√

1− a
√

1− b
=

2ab√
1 + ab− (a + b)

> 2ab√
1 + ab− 2

√
ab

=
2ab√
1− ab

.

Adding up relations (5) and (6), we obtain inequality (4). The proof is complete.
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Proposition 8. If a, b ∈ (0, 1), then
a√

1− b2
+

b√
1− a2

> a + b√
1− ab

.

Proof. By squaring both sides, we obtain the equivalent inequality

(7)
a2

1− b2
+

b2

1− a2
+

2ab√
1− a2

√
1− b2

> a2 + b2 + 2ab

1− ab
.

Firstly, we will prove that

(8)
a2

1− b2
+

b2

1− a2
> a2 + b2

1− ab
.

By using power series, we can write

a2

1− b2
+

b2

1− a2
= a2

∞∑

k=0

b2k + b2
∞∑

k=0

a2k =
∞∑

k=0

(a2b2k + b2a2k).

Without loss of generality, assume that a > b > 0. Then we have bk − ak 6 0,
a2bk 6 b2ak and hence (a2bk − b2ak)(bk − ak) > 0, wherefrom a2b2k + b2a2k >
a2+kbk + b2+kak. It follows that

a2

1− b2
+

b2

1− a2
>

∞∑

k=0

(
a2+kbk + b2+kak

)
= (a2 + b2)

∞∑

k=0

(ab)k =
a2 + b2

1− ab
.

Furthermore, we have

(9)
2ab√

1− a2
√

1− b2
=

2ab√
1 + a2b2 − (a2 + b2)

> 2ab√
1 + a2b2 − 2ab

=
2ab

1− ab
.

Adding up relations (8) and (9), we obtain inequality (7). The proof is complete.

Proposition 9. If a, b, c ∈ (0, 1) then

a

1− a3
+

b

1− b3
+

c

1− c3
> a + b + c

1− abc
.

Proof. By using power series, we can write

a

1− a3
+

b

1− b3
+

c

1− c3
= a

∞∑

k=0

a3k + b

∞∑

k=0

b3k + c

∞∑

k=0

c3k

=
∞∑

k=0

(a3k+1 + b3k+1 + c3k+1).

and

a + b + c

1− abc
= (a + b + c)

∞∑

k=0

(abc)k =
∞∑

k=0

(ak+1bkck + akbk+1ck + akbkck+1).
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Thus, we just need to prove

(10) a3k+1 + b3k+1 + c3k+1 > ak+1bkck + akbk+1ck + akbkck+1

for k ∈ N ∪ {0}. Since (3k + 1, 0, 0) Â (k + 1, k, k), by using Muirhead inequality,
we have that

a3k+1 + a3k+1 + b3k+1 + b3k+1 + c3k+1 + c3k+1

> ak+1bkck + ak+1bkck + akbk+1ck + akbk+1ck + akbkck+1 + akbkck+1,

wherefrom the inequality (10) follows. This completes the proof.

Generalization. If ai ∈ (0, 1), i = 1, 2, . . . , n, then

n∑

i=1

ai

1− an
i

>

n∑
i=1

ai

1−
n∏

i=1

ai

.

Proof is similar as for Generalization of Proposition 2.

Proposition 10. If a, b ∈ (0, 1) then
a3

(1− a2)2
+

b3

(1− b2)2
> (a + b)ab

(1− ab)2
.

Proof. By using
∞∑

k=1

kxk =
x

(1− x)2
, x ∈ (0, 1), we can write

a3

(1− a2)2
+

b3

(1− b2)2
= a · a2

(1− a2)2
+ b · b2

(1− b2)2

= a

∞∑

k=1

ka2k + b

∞∑

k=1

kb2k =
∞∑

k=1

k(a2k+1 + b2k+1)

>
∞∑

k=1

k(ak+1bk + akbk+1) = (a + b)
∞∑

k=1

k(ab)k

=
(a + b)ab

(1− ab)2

(we have used Muirhead inequality with (2k + 1, 0) Â (k + 1, k)). The proof is
completed.

Generalization. If ai ∈ (0, 1), i = 1, 2, . . . , n, then

n∑

i=1

a3
i

(1− an
i )2

>

( n∑
i=1

ai

)( n∏
i=1

ai

)

(
1−

n∏
i=1

ai

)2 .

Proof is similar as for generalization of Proposition 2.
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