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Abstract. In linear algebra, Cramer’s rule is an explicit formula for the solution
of a system of linear equations with as many equations as unknowns, that is, for the
solution of a system with a square matrix. In this paper we want to generalize this
method for an m × n system of linear equations, such that m < n. We offer a simple
and convenient formula for systems with rectangular matrices using only the minors of
the augmented matrix, as well as the usual method of Cramer. We also generalize the
results in order to solve a matrix equation.
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1. Introduction

A solution of systems of linear algebraic equations is one of the main topics
of the linear algebra course. Usually, Gaussian elimination and Cramer’s rule are
studied in the course. Gabriel Cramer (1704–1752) published the rule for an arbi-
trary number of unknowns in 1750. Gaussian elimination was published in 1849 by
Carl Friedrich Gauss (1777–1855).

In general, a preference is given to the method of Gauss. There are two main
advantages of this method – first, the method involves a simple calculation for
systems with a large number of unknowns, and second, we are able to solve systems
with an infinite number of solutions.

However, the method of Gauss gives us an algorithm for the solution, but does
not give the final formulas for finding the unknowns of the system. Moreover, the
method of Gauss is inconvenient and cumbersome if the coefficients of the system
are functions. For example, in the case of solutions of a linear differential non-
homogeneous equation, by the method of variation of variables, we obtain a system
of linear equations whose coefficients are functions.

On the other hand, the advantage of Cramer’s rule is that the method gives us
a final formula for the solutions, when calculating the unknowns by the minors of
the augmented matrix of the system. Cramer’s rule can be used for various proofs
of theorems in linear algebra, for calculating solutions of systems with parameters,
and, in particular, for finding solutions of the above-mentioned differential equation.
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Before 2010 most mathematicians were certain that using Cramer’s rule was
not practical in computational mathematics. However, it was shown in [5] that
Cramer’s rule may be implemented with a complexity comparable to the complexity
of the Gaussian elimination.

In this article we show that Cramer’s rule can be generalized, and, in the case
of systems with an infinite number of solutions, get the final formula for calculating
the unknowns by the minors of the augmented matrix of the system.

There are several interesting papers about the generalization of Cramer’s rule
[1–4, 6], but the authors of these papers use different formulations of the problem,
or receive other final formulas and prove them by other methods.

The paper is divided as follows. In Section 2 we recall the ordinary Cramer’s
rule. In Section 3 we generalize Cramer’s rule for a system with a rectangular
matrix of the coefficients. In Section 4 we generalize the results of Section 3 matrix
equation.

2. The ordinary Cramer’s rule

In this section we set forth the ordinary Cramer’s rule, formulate it by minors
of an augmented matrix, and give a proof that is useful also in the proof of the
generalization of the rule in Section 3.

Let us consider the following system of n linear equations with n unknowns:




a1,1x1 + a1,2x2 + · · ·+ a1,nxn = a1,n+1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = a2,n+1

. . . . . .

an,1x1 + an,2x2 + · · ·+ an,nxn = an,n+1.

Let A be a nonsingular n × n-matrix of the coefficients of this system. Let Ā be
an n × (n + 1)-augmented matrix of the system, i.e., A ∈ Kn×n, Ā ∈ Kn×(n+1),
rankA = n, where K is some field. The augmented matrix Ā has the following
minors of order n for some chosen columns j1, j2, . . . , jn:

Mj1,j2,j3,... ,jn =

∣∣∣∣∣∣∣

a1,j1 a1,j2 . . . a1,jn

a2,j1 a2,j2 . . . a2,jn

. . . . . . . . . . . .
an,j1 an,j2 . . . an,jn

∣∣∣∣∣∣∣
.

We formulate Cramer’s rule by minors of an augmented matrix.

Theorem 1. [Cramer’s rule] Let Ā be an n × (n + 1)-augmented matrix of
the system of linear equations. If its minor M1,2,... ,n 6= 0, then the solution of the
system is

(1) xi =
M1,2,... ,i−1,n+1,i+1,... ,n−1,n

M1,2,... ,n
,

where i = 1, 2, . . . , n.
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To prove this theorem we need the following lemma.

Lemma 2. Let A, Ã be two m×n-matrices. Let Mi1,i2,... ,im
and M̃i1,i2,... ,im

be
the minors of matrices A and Ã respectively. If A and Ã are row-equivalent, then

Mi1,i2,... ,im = t · M̃i1,i2,... ,im , t 6= 0,

and t is independent of (i1, i2, . . . , im).

Proof. Let A and Ã be two row-equivalent matrices, i.e., there is a nonsin-
gular m × m-matrix S such that Ã = S · A. Let det S = t and t 6= 0 (as S is
nonsingular). Then Ãi1,i2,... ,im

= S ·Ai1,i2,... ,im
, where Ai1,i2,... ,im

and Ãi1,i2,... ,im

are sub-matrices of A and Ã respectively consisting of the columns i1, i2, . . . , im.
Then, M̃i1,i2,... ,im

= det(S ·Ai1,i2,... ,im
) = det S · detAi1,i2,... ,im

= t ·Mi1,i2,... ,im
.

Proof of Cramer’s rule. Let Ā be an n × (n + 1)-augmented matrix of the
system of linear equations




a1,1 a1,2 . . . a1,n a1,n+1

a2,1 a2,2 . . . a2,n a2,n+1

. . . . . . . . . . . . . . .
an,1 an,2 . . . an,n an,n+1




Since M1,2,... ,n 6= 0, by elementary actions on the rows of Ā, we can obtain a matrix
row-equivalent to Ā:




1 0 . . . 0 0 ã1,n+1

0 1 . . . 0 0 ã2,n+1

. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 ãn−1,n+1

0 0 . . . 0 1 ãn,n+1




By Lemma 2, Mi1,i2,... ,in = t · M̃i1,i2,... ,in , where M̃i1,i2,... ,in is the corresponding
minor of the latter matrix. If (i1, i2, . . . , in) = (1, 2, . . . , n), then t = M1,2,... ,n

M̃1,2,... ,n

=
M1,2,... ,n

1 = M1,2,... ,n, and M̃i1,i2,... ,in = Mi1,i2,... ,in

t = Mi1,i2,... ,in

M1,2,... ,n
.

The solution of the system is then

xi = ãi,n+1 = M̃1,2,... ,i−1,n+1,i+1,... ,n−1,n =
M1,2,... ,i−1,n+1,i+1,... ,n−1,n

M1,2,... ,n
,

where i = 1, 2, . . . , n, as in (1).

In the next section we formulate and prove our generalized Cramer’s rule by
the same method, i.e., by minors of an augmented matrix.
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3. Cramer’s rule for a system of linear equations with a nonsingular
rectangular matrix of the coefficients

In this section we generalize Cramer’s rule to a system with a nonsingular
rectangular matrix of the coefficients.

Let us consider the following system of m linear equations with n unknowns
(for m < n): 




a1,1x1 + a1,2x2 + · · ·+ a1,nxn = a1,n+1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = a2,n+1

. . . . . .

am,1x1 + am,2x2 + · · ·+ am,nxn = am,n+1.

Let A be a nonsingular m×n-matrix of the coefficients of this system (m < n). Let
Ā be an m×(n+1)-augmented matrix of the system, i.e., A ∈ Km×n, Ā ∈ Km×(n+1),
rankA = m, where K is some field.

In the following theorem we generalize Cramer’s rule to a system with a nonsin-
gular rectangular matrix A ∈ Km×n of the coefficients in a case that M1,2,... ,m 6= 0.

Theorem 3. [Generalized Cramer’s rule 1] Let Ā be an m×(n+1)-augmented
matrix of a system of linear equations (m < n), and let M1,2,... ,m 6= 0. Then the so-
lution of the system is the set of all n-tuples (x1, x2, . . . , xn) such that xm+1, . . . , xn

are arbitrary elements of the field K and

(2) xi =
M1,2,... ,i−1,n+1,i+1,... ,m−1,m

M1,2,... ,m
−

n∑

j=m+1

M1,2,... ,i−1,j,i+1,... ,m−1,m

M1,2,... ,m
xj ,

where i = 1, 2, . . . , m.

Proof. Let Ā be an m × (n + 1)-augmented matrix of the system of linear
equations:




a1,1 a1,2 ... a1,m−1 a1,m a1,m+1 a1,m+2 ... a1,n a1,n+1

a2,1 a2,2 ... a2,m−1 a2,m a2,m+1 a2,m+2 ... a2,n a2,n+1

... ... ... ... ... ... ... ... ... ...

am−1,1 am−1,2 ... am−1,m−1 am−1,m am−1,m+1 am−1,m+2 ... am−1,n am−1,n+1

am,1 am,2 ... am,m−1 am,m am,m+1 am,m+2 ... am,n am,n+1


 .

Since M1,2,... ,m 6= 0, by elementary actions on the rows of Ā, we can obtain a
matrix row-equivalent to Ā:



1 0 . . . 0 0 ã1,m+1 ã1,m+2 . . . ã1,n ã1,n+1

0 1 . . . 0 0 ã2,m+1 ã2,m+2 . . . ã2,n ã2,n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 ãm−1,m+1 ãm−1,m+2 . . . ãm−1,n ãm−1,n+1

0 0 . . . 0 1 ãm,m+1 ãm,m+2 . . . ãm,n ãm,n+1


 .

By Lemma 2, Mi1,i2,... ,im = t · M̃i1,i2,... ,im , where M̃i1,i2,... ,im is the corresponding
minor of the latter matrix. If (i1, i2, . . . , im) = (1, 2, . . . ,m), then t = M1,2,... ,m

M̃1,2,... ,m

=
M1,2,... ,m

1 = M1,2,... ,m. This means that M̃i1,i2,... ,im = Mi1,i2,... ,im

t = Mi1,i2,... ,im

M1,2,... ,m
.
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We can see that

ãi,j = M̃1,2,... ,i−1,j,i+1,... ,m−1,m =
M1,2,... ,i−1,j,i+1,... ,m−1,m

M1,2,... ,m
,

where i = 1, 2, . . . ,m, j = m + 1,m + 2, . . . , n, n + 1.
Then xi = ãi,n+1 −

∑n
j=m+1 ãi,jxj , i.e.,

xi =
M1,2,... ,i−1,n+1,i+1,... ,m−1,m

M1,2,... ,m
−

n∑

j=m+1

M1,2,... ,i−1,j,i+1,... ,m−1,m

M1,2,... ,m
xj ,

where xj ∈ K, i = 1, 2, . . . , m, j = m + 1,m + 2, . . . , n, as in (2).
Remark 4. If we substitute m = n in Equation (2), we get the Cramer’s rule,

as in Equation (1).
In Theorem 3 we assume that M1,2,... ,m 6= 0. But it is enough to assume that

at least one minor of order m of A is not 0. Therefore, we get the following theorem.

Theorem 5. [Generalized Cramer’s rule 2] Let Ā be an m×(n+1)-augmented
matrix of a system of linear equations (m < n). Let σ =

(
1 2 ... n

σ(1) σ(2) ... σ(n)

)
be a

permutation, such that Mσ(1),σ(2),... ,σ(m) 6= 0. Then the solution of the system
is the set of all n-tuples (xσ(1), xσ(2), . . . , xσ(n)) such that xσ(m+1), . . . , xσ(n) are
arbitrary elements of the field K and

xσ(i) =
Mσ(1),σ(2),... ,σ(i−1),n+1,σ(i+1),... ,σ(m−1),σ(m)

Mσ(1),σ(2),... ,σ(m)
−

−
n∑

j=m+1

Mσ(1),σ(2),... ,σ(i−1),σ(j),σ(i+1),... ,σ(m−1),σ(m)

Mσ(1),σ(2),... ,σ(m)
xσ(j),

where i = 1, 2, . . . , m.

We follow Theorem 5 and solve in the following example a system of linear
equations.

Example 6. Let us consider the following system of two linear equations with
three unknowns: {

x1 + x2 + x3 = 3
2x1 + 2x2 + 3x3 = 7.

Each equation of the system describes the equation of a plane in a 3-dimensional
space. The solution of the system determines a line in a 3-dimensional space, which
is the intersection line of the two given planes.

M1,2 =
∣∣∣ 1 1

2 2

∣∣∣ = 0, M1,3 =
∣∣∣ 1 1

2 3

∣∣∣ = 1 6= 0, then σ =
(

1 2 3

1 3 2

)
, and by Theorem

5, we can find the parametric equation of the above-named line:



x1 = xσ(1) =
M4,σ(2)

Mσ(1),σ(2)
− Mσ(3),σ(2)

Mσ(1),σ(2)
xσ(3) =

M4,3

M1,3
− M2,3

M1,3
x2

x3 = xσ(2) =
Mσ(1),4

Mσ(1),σ(2)
− Mσ(1),σ(3)

Mσ(1),σ(2)
xσ(3) =

M1,4

M1,3
− M1,2

M1,3
x2.
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M2,3 =
∣∣∣ 1 1

2 3

∣∣∣ = 1 M1,4 =
∣∣∣ 1 3

2 7

∣∣∣ = 1, M4,3 =
∣∣∣ 3 1

7 3

∣∣∣ = 2, then





x1 = 2− t

x2 = t, t ∈ R.

x3 = 1

4. Cramer’s rule for matrix equations

In Sections 2 and 3 we solved the system AX = B where X ∈ Kn, B ∈ Km,
and K is some field. Here we solve a more general question as follows: Let us
consider the following matrix equation:

(3) AX = B,

where A ∈ Km×n, X ∈ Kn×k , B ∈ Km×k, rank A = m, m ≤ n.

The matrix equation AX = B is equivalent to k systems AXl = Bl, where
Xl ∈ Kn is the column number l of matrix X, Bl ∈ Km is the column number l of
matrix B, l = 1, 2, . . . , k.

If m = n, the following theorem is a consequence of Theorem 1.

Theorem 7. Let Ā be an n × (n + k)-augmented matrix of the matrix equa-
tion (3) [m = n]. If its minor M1,2,... ,n 6= 0, then the solution of the matrix equation
is

xi,j =
M1,2,... ,i−1,n+j,i+1,... ,n−1,n

M1,2,... ,n
,

where i = 1, 2, . . . , n, and j = 1, 2, . . . , k.

If m < n, the following theorem is a consequence of Theorem 5.

Theorem 8. Let Ā be an m× (n + k)-augmented matrix of the matrix equa-
tion (3), and m < n. Let σ =

(
1 2 ... n

σ(1) σ(2) ... σ(n)

)
be a permutation, such that

Mσ(1),σ(2),... ,σ(m) 6= 0. Then the solution of the matrix equation is the set of all
n×k-matrices with columns (xσ(1),j , xσ(2),j , . . . , xσ(n),j)T such that xσ(m+1),j, . . . ,
xσ(n),j are arbitrary elements of the field K and

xσ(i),j =
Mσ(1),σ(2),... ,σ(i−1),n+j,σ(i+1),... ,σ(m−1),σ(m)

Mσ(1),σ(2),... ,σ(m)

−
n∑

s=m+1

Mσ(1),σ(2),... ,σ(i−1),σ(s),σ(i+1),... ,σ(m−1),σ(m)

Mσ(1),σ(2),... ,σ(m)
xσ(s),j ,

where i = 1, 2, . . . , m, and j = 1, 2, . . . , k.

We follow Theorem 8 and solve in the following example a matrix equation.
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Example 9. Let AX = B be a matrix equation where A ∈ K2×3, X ∈ K3×2

, B ∈ K2×2, and M1,2 6= 0:

(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)
·



x1,1 x1,2

x2,1 x2,2

x3,1 x3,2


 =

(
a1,4 a1,5

a2,4 a2,5

)
.

By Theorem 8, we obtain the following solution of the equation:



x1,1 x1,2

x2,1 x2,2

x3,1 x3,2


 =




M4,2
M1,2

− M3,2
M1,2

t1
M5,2
M1,2

− M3,2
M1,2

t2
M1,4
M1,2

− M1,3
M1,2

t1
M1,5
M1,2

− M1,3
M1,2

t2
t1 t2


 , t1, t2 ∈ K,

where Mi,j are the minors of matrix

Ā =
(

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

)
.
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