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CHAPTER II. POLYNOMIAL

1. Roots and divisibility of polynomials

In this chapter we shall be concerned with equations of the type f(x) = 0,
where f is a polynomial. We have already met with them at the end of the previous
chapter. The equation f(x) = 0 should be understood as the problem: find all
the roots of the polynomial (or the equation). But it may happen that all the
coefficients of the polynomial f(x) are 0 and the equation f(x) = 0 turn into an
identity. We then write f = 0 and in that case we agree that the degree of the
polynomial f is not defined.

In order to add up two polynomials we simply add the corresponding members.
Polynomial are multiplied using the bracket rules. If f(x) = a0 + a1x + · · ·+ anxn,
g(x) = b0+b1x+· · ·+bmxm, then f(x)g(x) = (a0+a1x+· · ·+anxn)(b0+b1x+· · ·+
bmxm). Eliminating the brackets we obtain members akblx

k+l, where 0 6 k 6 n,
0 6 l 6 m. After that we group together similar members. As a result we obtain
the polynomial c0 + c1x + c2x

2 + · · · with coefficients

(1) c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, . . .

The coefficient cm is equal to the sum of all products akbl, where k + l = m.
Polynomials share many properties with integers. The representation of a

polynomial in the form f(x) = a0 + a1x + · · · + anxn can be considered to be an
analog of the representation of a positive integer in the decimal (or some other)
system. The degree of a polynomial has the role analogous to the absolute value
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of an integer. For example, if we prove a property of integers by induction on the
absolute value, then in the proof of the analogous property of polynomials we use
induction on the degree. Notice the following important property: the degree of
the product of two polynomials is equal to the sum of their degrees. Indeed, let
f(x) = a0 + a1x + · · ·+ anxn and g(x) = b0 + b1x + · · ·+ bmxm be polynomials of
degree n and m, that is to say an 6= 0, bm 6= 0. If we calculate the coefficients of
f(x)g(x) using (1), we obtain members of the form akblx

k+l where k + l 6 n + m.
Clearly, the greatest degree we get is m + n and there is only one such member:
anbmxn+m. It differs from zero, since anbm 6= 0, and it cannot be cancelled with
some other member, since it has the greatest degree. This property is analogous to
the property |xy| = |x||y| of the absolute value |x| of a number x.

The theorem on division with a remainder for polynomials is formulated and
proved almost in the same way as for positive integers (Theorem 4, Chapter I).

THEOREM 1. For any polynomials f(x) and g(x), where g 6= 0, there exist
polynomials h(x) and r(x) such that

(2) f(x) = g(x)h(x) + r(x)

where either r = 0, or the degree of r is less than the degree of g. For given f and
g, the polynomials h and r are uniquely determined.

If f = 0, then the representation (2) is obvious: f = 0 · g + 0. Suppose that
f 6= 0 and apply the method of mathematical induction on the degree of f(x).
Suppose that the degree of f(x) is n and that the degree of g(x) is m:

f(x) = a0 + a1x + · · ·+ anxn, g(x) = b0 + b1x + · · ·+ bmxm.

If m > n, the representation (2) has the form f = 0 · g + f , with h = 0, r = f .
If m 6 n, put f1 = f − an

bm
xn−mg (remember that bm 6= 0, since the degree of

g(x) is m). Clearly, in the polynomial f1 the members having xn cancel out (that
is how we chose the coefficient − an

bm
), which means that its degree is less than n.

Hence, we can take that the theorem is true for that polynomial and that it has
the representation of the form (2): f1 = gh1 + r, where r = 0 or its degree is less

than m. This implies f = f1 +
an

bm
xn−mg =

(
h1 +

an

bm
xn−m

)
g + r, and we have

obtained the representation (2) with h = h1 +
an

bm
xn−m. Let us prove that the

representation (2) is unique. If f = gk + s is another such representation (which
means that s = 0 or its degree is less than m), then subtracting one from the other
we get

g(h− k) + r − s = 0, g(h− k) = s− r.

If the polynomial s− r is 0, then s = r and h = k. If s− r 6= 0, then its degree is
less than m and we arrive at a contradiction, since s− r is equal to the polynomial
g(h−k), obtained by multiplying g by h−k, and hence its degree cannot be smaller
than the degree of g which is m.
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Now please read the proof of Theorem 4 of Chapter I in order to see that
the above proof is perfectly analogous to it. On the other hand, if we do all the
operations which should be done in the application of the mathematical induction
(i.e. transition from f1 to the polynomial f2 with even smaller degree, etc. until
we arrive at the remainder r whose degree is less than m), we obtain the rule for
the so called “corner” division of polynomials used in schools. For example, if
f(x) = x3 + 3x2 − 2x + 5, g(x) = x2 + 2x− 1, then the division is done according
to the scheme:

x3 + 3x2 − 2x + 5 | x2 + 2x− 1
x3 + 2x2 − x x + 1

x2 − x + 5

x2 + 2x− 1
− 3x + 6

This means that we choose the leading term of the polynomial h(x) so that
when it is multiplied by the leading term of g(x) (that is x2) the result is the leading
term of f(x) (that is x3). Therefore the leading term of h(x) is x. In the first row
of the above table we have f(x) and in the second g(x)x (the product of g(x) and
the leading term of h(x)). Their difference is in the third row. We now choose the
next term of the polynomial h(x) so that when multiplied by the leading term of
g(x) (that is x2) it becomes equal to the leading term of the polynomial in the third
row (that is x2). Hence the next term of h(x) is 1. We now repeat the procedure.
In the fifth row we obtain a polynomial of degree 1 (which is less than 2, the degree
of g(x)) and so the procedure stops. We see that

x3 + 3x2 − 2x + 5 = (x2 + 2x− 1)(x + 1)− 3x + 6.

As in the case of numbers, the representation (2) is called division with re-
mainder of the polynomial f(x) by the polynomial g(x). Polynomial h(x) is the
quotient and polynomial r(x) is the remainder in this division.

The division of polynomials is analogous to the division of numbers and it is
even simpler, since when we add two terms of a certain degree we obtain a term of
the same degree, and we do not transform into tens, hundreds, etc., as in the case
of number division.

Repeating the reasoning given in Chapter I for numbers, we can apply The-
orem 1 to find the greatest common divisor of two polynomials. In fact, using
the notation of Theorem 1 we have the following analog of Lemma 5 from Chap-
ter I: g. c.d.(f, g) = g. c. d.(g, r); more precisely, the pairs (f, g) and (g, r) have
the same common divisors. We can now use Euclid’s algorithm as in Chapter I:
divide with reaminder g by r: g = rh1 + r1, then r by r1, and so on, to obtain the
following sequence of polynomials: r, r1, r2, . . . , rn whose degrees decrease. We
stop at the moment when we obtain the polynomial rk+1 = 0, i.e. when rk−1 =
rkhk. From the equalities g. c.d.(f, g) = g. c. d.(r, r1) = · · · = g. c. d.(rk−1, rk) we
see that g. c.d.(f, g) = g. c. d.(rk−1, rk). But since rk is a divisor of rk−1, then
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g. c.d.(rk−1, rk) = rk and so g. c.d.(f, g) = rk — the last nonzero remainder in the
Euclid’s algorithm. It should be remarked that g. c.d.(f, g) is not uniquely defined,
which was not the case when we dealt with positive integers. Namely, if d(x) is a
common divisor of f(x) and g(x), then so is cd(x), where c 6= 0 is a number. Hence,
g. c.d.(f, g) is defined up to a multiplicative constant.

Theorem 1 becomes particularly simple and useful in the case when g(x) is a
first degree polynomial. We can then write g(x) = ax + b, with a 6= 0. Since the
properties of division by g are unaltered if g is multiplied by a number, we multiply
g(x) by a−1, so that the coefficient of x is 1. Write g(x) in the form g(x) = x− α
(it will soon become evident why it is more convenient to write α with a minus).
According to Theorem 1, for any polynomial f(x) we have

(3) f(x) = (x− α)h(x) + r.

But in our case the degree of r is less than 1, i.e. it is 0: r is a number. Can we
find this number without carrying out the division? It is very simple—it is enough
to put x = α into (3). We get r = f(α), and so we can write (3) in the form

(4) f(x) = (x− α)h(x) + f(α).

Polynomial f(x) is divisible by x−α if and only if the remainder in the division
is 0. But in view of (4) it is equal to f(α). We therefore obtain the following
conclusion which is called Bézout’s theorem.

THEOREM 2. Polynomial f(x) is divisible by x−α if and only if α is its root.

For example, the polynomial xn − 1 has a root x = 1. Therefore, xn − 1 is
divisible by x−1. We came across this division earlier: see formula (12) of Chapter I
(where a is replaced by x and r + 1 by n).

In spite of its simple proof, Bézout’s theorem connects two completely differ-
ent notions: divisibility and roots, and hence it has important applications. For
instance, what can be said about the common roots of polynomials f and g, i.e.
about the solutions of the system of equations f(x) = 0, g(x) = 0? By Bézout’s
theorem the number α is their common root if f and g are divisible by x − α.
But then x − α divides g. c.d.(f, g) which can be found by Euclid’s algorithm. If
d(x) = g. c. d.(f, g), then x− α divides d(x), i.e. d(α) = 0. Therefore, the question
of common roots of f and g reduces to the question of the roots of d, which is,
in general, a polynomial of much smaller degree. As an illustration, we shall de-
termine the greatest common divisor of two second degree polynomials, which we
write in the form f(x) = x2 + ax + b and g(x) = x2 + px + q (we can always reduce
them to this form after multiplication by a number). We divide f by g according
to the general rule:

x2 + ax + b | x2 + px + q

x2 + px + q 1
(a− p)x + (b− q)

The remainder is r(x) = (a − p)x + (b − q) and we know that g. c. d.(f, g) =
g. c.d.(g, r). Consider the case a = p. If we also have b = q, then f(x) = g(x) and
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the system of equations f(x) = 0, g(x) = 0 reduces to one equation f(x) = 0. If
b 6= q, then r(x) is a nonzero number and f and g have no common factor. Finally,

if a 6= p, then r(x) has unique root α =
b− q

p− a
. We know that g. c. d.(f, g) =

g. c.d.(g, r) and it is enough to substitute this value of α into g(x), in order to find
out whether g(x) is divisible by x− α. We obtain the relation

(
b− q

p− a

)2

+ p

(
b− q

p− a

)
+ q = 0,

or, multiplying it by nonzero number (p− a)2, the equivalent relation

(4’) (b− q)2 + p(b− q)(p− a) + q(p− a)2 = 0.

The second and the third member of this equality have common factor p−a. Taking
it out we can rewrite the relation (4’) in the form

(q − b)2 + (p− a)(pb− aq) = 0.

The expression D = (q − b)2 + (p − a)(pb − aq) is called the resultant of the
polynomials f and g. We have seen that the condition D = 0 is necessary and
sufficient for the existence of a common factor of f(x) and g(x), provided that
p 6= a. But for p = a the condition D = 0 becomes q = b, and that is, as we have
seen, equivalent to the existence of a common non-constant factor of f(x) and g(x).
In general, it is possible to find for any two polynomials f(x) and g(x) of arbitrary
degrees an expression made up from their coefficients, which equated to zero gives
necessary and sufficient condition for the existence of their common nonconstant
factor, but of course, the technicalities will be more difficult.

Another important application of Bézout’s theorem is considered with the num-
ber of roots of a polynomial. Suppose that the polynomial f(x) is not identically
zero, i.e. f 6= 0, and that f(x) has, besides α1, another root α2 such that α2 6= α1.
By Bézout’s theorem, f(x) is divisible by x− α1:

(5) f(x) = (x− α1)f1(x).

Put x = α2 into this equality. Since α2 is also a root of f(x), we have f(α2) = 0.
This means that (α2 − α1)f1(α2) = 0, and hence (since α2 6= α1) that f1(α2) = 0,
i.e. that α2 is a root of f1(x). Applying Bézout’s theorem to the polynomial f1(x)
we obtain the equality f1(x) = (x − α2)f2(x) and substituting this into (5) we
obtain

f(x) = (x− α1)(x− α2)f2(x).

Suppose that the polynomial f(x) has k different roots α1, α2, . . . , αk. Repeating
our reasoning k times we see that f(x) is divisible by (x− α1) · · · (x− αk):

(6) f(x) = (x− α1) · · · (x− αk)fk(x).

Let n be the degree of f(x). On the right-hand side of (6) we have a polynomial
whose degree is not less than k, and on the left-hand side a polynomial of degree n.
Hence n > k. We formulate this as follows.
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THEOREM 3. The number of different roots of a polynomial which is not
identically zero is not greater than its degree.

Of course, if a polynomial is identically equal to 0, all the numbers are its
roots. Theorem 3 was proved in the 17th century by philosopher and mathematician
Descartes.

Using Theorem 3 we can answer the question we have avoided up to now:
what is the meaning of the phrase equality of polynomials? One way is to write the
polynomials in the form

f(x) = a0 + a1x + · · ·+ anxn, g(x) = b0 + b1x + · · ·+ bmxm

and to say that they are equal if all their coefficients are equal: a0 = b0, a1 = b1,
etc. This is how we think of the equality f = 0—all the coefficients of f are zero.
Another way to understand the term “equality” is as follows: polynomials f(x) and
g(x) are equal if they take the same values when x is substituted by an arbitrary
number, i.e. if f(c) = g(c) for all c. We shall prove that these two meanings of
the notion “equality” coincide. But, at first we have to make a distinction between
them and in the first case we say that “f(x) and g(x) have equal coefficients” and
in the second that “f(x) and g(x) have equal values for all values of x”.

Evidently, if f(x) and g(x) have equal coefficients, then they have equal values
for all x. The converse will be proved in a stronger form: we do not have to suppose
that f(x) and g(x) coincide for all values x—it is enough to suppose that they have
the same values for any n + 1 values of x, where n is not less than the degrees of
both polynomials.

THEOREM 4. Suppose that the degrees of the polynomials f(x) and g(x) are
not greater than n and that they have same values for some n + 1 different values
of x. Then the coefficients of f(x) and g(x) are equal.

Proof. Suppose that the polynomials f(x) and g(x) have equal values for n+1
values of x: x = α1, α2, . . . , αn+1, i.e. that

f(α1) = g(α1), f(α2) = g(α2), . . . , f(αn+1) = g(αn+1).

Consider the polynomial h(x) = f(x) − g(x) (here “=” denotes the equality of
coefficients). We have seen that this implies that h(α) = f(α) − g(α) for any α,
and, in particular, that h(α1) = 0, h(α2) = 0, . . . , h(αn+1) = 0. But the degrees
of f and g are not greater than n, and so the degree of h is not greater than n.
This is a contradiction with Theorem 3, unless h = 0, i.e. unless all the coefficients
of h are 0. This implies that the coefficients of f and g are equal.

From now on we can apply the term “equality” to polynomials without em-
phasizing in which one of the two senses.

Theorem 4 shows an interesting property of polynomials. Namely, if we know
the values of a polynomial f(x) of degree not greater than n for some n + 1 values
of the variable x, then its coefficients are uniquely determined, and so are its values
for all other values of x. Notice that in the above sentence “coefficients are uniquely
determined” means only that there cannot be two different polynomials with the
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given property. Hence, it is natural to raise the question of the existence of such
a polynomial. Namely, suppose that we have n + 1 different numbers x1, x2, . . . ,
xn+1 and also n + 1 numbers y1, y2, . . . , yn+1; is there a polynomial f(x) of
degree not greater than n such that f(x1) = y1, f(x2) = y2, . . . , f(xn+1) = yn+1?
Theorem 4 states only that if such a polynomial exists, then it is unique. The
problem of constructing such a polynomial is called the problem of interpolation.
It often appears in the processing of experimental data, when a quantity f(x) is
measured only for certain values x = x1, x = x2, . . . , x = xn+1 and it is necessary
to make a plausible aasumption about its values for other values of x. The data
are given by the table

(7)
x | x1 x2 . . . xn+1

f(x) | y1 y2 . . . yn+1

One of the plausible assumptions would be to construct a polynomial of degree
not greater than n such that f(x1) = y1, f(x2) = y2, . . . , f(xn+1) = yn+1 and to
assume that the required quantity is equal to f(x) for all values of x. But does such
a polynomial exist? We shall prove that it does and we shall find its formula. It is
called the interpolation polynomial corresponding to table (7). In order to find the
formula for the interpolation polynomial in the general case, we shall first consider
the simplest interpolation problem, when in table (7) all the values y1, y2, . . . yn+1

are 0, except one of them. Let y1 = y2 = · · · = yk−1 = yk+1 = · · · = yn+1 = 0, so
that the table becomes

x | x1 x2 . . . xk−1 xk xk+1 . . . xn+1

f(x) | 0 0 . . . 0 yk 0 . . . 0

This means that the required interpolation polynomial fk(x) has the following roots:
x1, x2, . . . , xk−1, xk+1, . . . , xn+1 (i.e. all the numbers x1, . . . . xn+1 except xk).
But then it must be divisible by the product of the corresponding factors x − xi.
Since there are n factors, and since the degree of the polynomial cannot be greater
than n, it can differ from this product only by a multiplicative constant. That is
to say, we have to put

(8) fk(x) = ck(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn+1).

Conversely, any polynomial of that form satisfies the required conditions for all x1,
. . . , xn+1, except perhaps for x = xk. If it is to satisfy the condition for xk, we
put x = xk into (8) and from the obtained equality we get the value of ck. Since
fk(xk) has to be equal to yk, we obtain

ck =
yk

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn+1)
fk(x) = ck(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn+1).

Using the auxiliary polynomial F (x) = (x − x1) · · · (x − xn+1) of degree n + 1 we
can write the above formula in a different way. Namely, in that case the product
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(x−x1) · · · (x−xk−1)(x−xk+1) · · · (x−xn+1) is equal to
F (x)

x− xk
. Putting

F (x)
x− xk

=
Fk(x), we get

(9) ck =
yk

Fk(xk)
, fk(x) =

yk

Fk(xk)
Fk(x).

Passing on to the general interpolation problem with the table (7) we only have
to notice that its solution is the sum of all polynomials fk(x) which correspond to
all the simplest interpolation problems:

f(x) = f1(x) + f2(x) + · · ·+ fn+1(x).

Indeed, if we put x = xk then all the members on the right-hand side become 0,
except fk(xk), and since fk(x) is the solution of the k-th simplest interpolation
problem, we have fk(xk) = yk. Finally, the degrees of f1(x), . . . , fn+1(x) are
not greater than n and the same holds for their sum. We can write the obtained
formula in the form

(10) f(x) =
y1

F1(x1)
F1(x) +

y2

F2(x2)
F2(x) + · · ·+ yn+1

Fn+1(xn+1)
Fn+1(x),

where Fk(x) =
F (x)

x− xk
, F (x) = (x− x1)(x− x2) · · · (x− xn+1).

There is an unexpected identity which follows from the formula for the in-
terpolation polynomial. Consider the interpolation problem corresponding to the
table

x | x1 x2 . . . xn+1

f(x) | xk
1 xk

2 . . . xk
n+1

where k is a positive integer not greater than n or k = 0. On one hand it is evident
that the polynomial f(x) = xk is the solution of this interpolation problem. On
the other hand, we can write it down using formula (10) and we obtain that

xk =
xk

1

F1(x1)
F1(x) +

xk
2

F2(x2)
F2(x) + · · ·+ xk

n+1

Fn+1(xn+1)
Fn+1(x),

where F (x) = (x−x1)(x−x2) · · · (x−xn+1) and Fi(x) =
F (x)
x− xi

. The polynomials

Fi(x) have degree n and the coefficient of xn is 1. If k < n, then the polynomial
on the right must also have degree less than n which means that all members with
degree n must cancel out. In other words we have

xk
1

F1(x1)
+

xk
2

F2(x2)
+ · · ·+ xk

n+1

Fn+1(xn+1)
= 0.

for k < n. If k = n, the coefficient of xn must be equal to 1 and we have
xn

1

F1(x1)
+

xn
2

F2(x2)
+ · · ·+ xn

n+1

Fn+1(xn+1)
= 1.

Notice that here F (x) = (x − x1) · · · (x − xn+1), Fk(x) =
F (x)

x− xk
, so that we have

identities for arbitrary numbers x1, . . . , xn+1.
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Problems

1. Write down the last identities for n = 1 and 2, i.e. for F (x) = (x−x1)(x−x2)
and F (x) = (x− x1)(x− x2)(x− x3), and then verify them by direct calculation.

2. Divide xn+1 − 1 by x − 1 in order to obtain another derivation of the
formula (12), Chapter I.

3. Divide with remainder xn−a by xm− b. (Hint: the answer depends on the
division of n by m.)

4. In deducing the formula (6) why was not possible to reason as follows:
since f(x) is divisible by all x−αi, it is divisible by their product? Verify that the
assertion: if n is divisible by a and b then n is divisible by ab does not hold for
numbers. Verify that it also does not hold for polynomials.

5. Prove that any polynomial can be written as the product of binomials x−αi

and a polynomial which has no roots. Prove that such a representation for a given
polynomial is unique.

6. Let F (x) = (x − x1) · · · (x − xn) where x1, . . . , xn are different from one
another and let f(x) be a polynomial of degree less than n. Prove that the fraction
f(x)
F (x)

is equal to the sum of fractions of the form
ak

x− xk
, k = 1, . . . , n. Find the

formula for ak.
7. If g(x) is a polynomial of degree less than n and if x1, . . . , xn+1 and the

polynomial F (x) have the same meaning as at the end of Section 1, prove that

g(x1)
F1(x1)

+ · · ·+ g(xn+1)
Fn+1(xn+1)

= 0.

8. Let everything be the same as in Problem 7, except that the degree of g(x)
is n and the coefficient of xn is a. Prove that

g(x1)
F1(x1)

+ · · ·+ g(xn+1)
Fn+1(xn+1)

= a.

2. Multiple roots and derivative

The equation x2 − a = 0 for a > 0 has two roots, given by x =
√

a and
x = −√a, where

√
a is the arithmetic value of the square root of a. For a = 0 this

gives two equal values. Similarly, the formula for the solution of an arbitrary qua-
dratic equation sometimes gives two equal roots. Can similar situation happen for
equations of arbitrary degree? At first the question itself seems to be meaningless.
What does it mean that the equation f(x) = 0 has two equal roots? We can write
any root of an equation on the paper as many times as we please, and all these
numbers will be equal! But when we spoke of equal roots of the quadratic equation
we used the formula for its solution. In the general case we shall also use some
additional considerations in order to give a reasonable definition of what does it
mean that the equation f(x) = 0 has two equal roots x = α and x = α.
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Such considerations are based on Bezout’s theorem (Theorem 2). Let x = α
be a rooot of f(x). By Bezout’s theorem f(x) is divisible by x − α and we have
f(x) = (x−α)g(x), where g(x) is a polynomial whose degree is less than the degree
of f(x) by 1. If the polynomial g(x) again has a root x = α, we shall say that f(x)
has two roots equal to α. By Bezout’s theorem, g(x) can be written in the form
g(x) = (x− α)h(x) and hence

(11) f(x) = (x− α)2h(x).

We can say that in the representation (6) there are two factors x − α. This is in
accordance with the intuitive notion of what are two equal roots.

If in (11) h(x) again has a root α, we shall say that f(x) has three roots equal
to α. In general, if f(x) can be written in the form f(x) = (x − α)ru(x), where
u(x) is a polynomial whose root is not α, we shall say that f(x) has r equal roots α.
If r > 2, then α is said to be a multiple root. Hence, α is a multiple root if f(x)
is divisible by (x− α)2. If the polynomial f(x) has exactly k roots equal to α, we
say that k is the multiplicity of the root α. Then f(x) can be written in the form
f(x) = (x− α)kg(x), where α is not a root of g(x), i.e. g(α) 6= 0.

For example, suppose that x = α is a root of the quadratic equation x2 + px+
q = 0. Dividing x2 + px + q by x− α we get

x2 + px + q | x− α

x2 − αx x + p + α

(p + α)x + q

(p + α)x− α(p + α)
q + pα + α2

i.e. x2 +px+q = (x−α)(x+p+α)+(α2 +pα+q). Since α is a root of the equation
x2 + px + q = 0, we have α2 + pα + q = 0, and so x2 + px + q = (x−α)(x + p + α).
By our definition, this equation has two roots equal to α if α is a root of x + p + α,
i.e. if 2α + p = 0. Hence, α = −p/2. Since α2 + pα + q = 0, then putting α = −p/2
we obtain that −p2/4 + q = 0. This is the known condition which ensures that the
equation x2 + px + q = 0 has equal roots.

For the third order equation x3 + ax2 + bx + c = 0 the calculation is only a
little more involved. Divide x3 + ax2 + bx + c by x− α:

x3 + ax2 + bx + c | x− α

x3 − αx2 x2 + (a + α)x + b + aα + α2

(a + α)x2 + bx + c

(a + α)x2 − α(a + α)x
(b + aα + α2)x + c

(b + aα + α2)x− α(b + aα + α2)
c + bα + aα2 + α3
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Since by supposition α3 + aα2 + bα + c = 0, then x3 + ax2 + bx + c =
(x − α)(x2 + (a + α)x + b + aα + α2). According to our definition the equation
x3 + ax2 + bx + c = 0 has two roots equal to α if α is a root of the equation and
also if α is a root of the polynomial x2 + (a + α)x + b + aα + α2. In other words,
α2 + (a + α)α + b + aα + α2 = 0, i.e. 3α2 + 2aα + b = 0. We see that a multiple
root of the equation x3 + ax2 + bx + c = 0 is the common root of the polynomials
x3 + ax2 + bx + c and 3x2 + 2ax + b. As we saw in Section 1, they are the roots of
the polynomial g. c. d.(x3 + ax2 + bx + c, 3x2 + 2ax + b) and the greatest common
divisor can be found by Euclid’s algorithm.

We now apply the same reasoning to the polynomial f(x) = a0+a1x+· · ·+anxn

of arbitrary degree. When we divide f(x) by x − α we obtain as the quotient a
polynomial g(x) of degree n − 1 whose coefficients depend on α and so we shall
denote it by g(x, α). We know (formula (3)) that the remainder is f(α):

(12) f(x) = (x− α)g(x, α) + f(α).

Putting x = α into the polynomial g(x, α) we obtain the polynomial in α which is
called the derivative of f(x) and is denoted by f ′(α). Hence, by definition,

(13) f ′(α) =
f(x)− f(α)

x− α
(α).

The above formula may cause some doubt, since after the substitution x = α both

the numerator and the denominator in the expression
f(x)− f(α)

x− α
become 0 and we

get
0
0
. This formula therefore needs to be explained: we first (before substituting

x = α) divide the numerator by the denominator and we substitute x = α into
their quotient which is a polynomial. For example, the meaning of the expression
x2 − 1
x− 1

(1) is: we first get
x2 − 1
x− 1

= x + 1, and then (x + 1)(1) = 2.

Those of you who will continue to study mathematics will meet the derivative
for other functions, such as f(x) = sin x or f(x) = 2x. In essence they are defined
by the same formula (13), but in general case it is more difficult to give the exact
sense to the expression on right-hand side. In the case of polynomials everything
is cleared by applying Bézout’s theorem to the polynomial f(x)− f(α).

If α is a root of the polynomial f(x) in (12), i.e. if f(α) = 0, then we get
f(x) = (x − α)g(x, α) and by our definition α is a multiple root of f(x) if α is a
root of g(x, α), i.e. if g(α, α) = 0. But this means that f ′(α) = 0. We have proved
the assertion:

THEOREM 5. A root of a polynomial f(x) is multiple if and only if it is also
a root of the derivative f ′(x).

We see that a multiple root α is the common root of the polynomials f(x)
and f ′(x). In other words, α is a root of g. c. d.(f(x), f ′(x)); the greatest common
divisor can be found by Euclid’s algorithm and it is, as a rule, a polynomial of
much smaller degree.
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We shall now carry out the division of f(x) by x − α, we shall find the poly-
nomial g(x, α) in (12) and we shall find the explicite formula for the derivative of
a polynomial.

We could make the usual division of f(x) by x−α and find the quotient g(x, α)
and the remainder f(α). But it is better to do it another way. Recall that f(x) is
the sum of the terms akxk and hence f(x)−f(α) is the sum of the terms ak(xk−αk).
The polynomial (xk −αk) has a root x = α and by Bézout’s theorem it is divisible
by x − α. We have noticed (after the formulation of Bézout’s theorem) that we
have already done this division earlier. True, only for α = 1, but the general case is
easily reduced to it. We shall use formula (12) of Chapter I (where r+1 is replaced
by k):

(xk − 1) = (x− 1)(xk−1 + xk−2 + · · ·+ x + 1).

Replace x by x/α:
(

xk

αk
− 1

)
=

(x

α
− 1

) (
xk−1

αk−1
+

xk−2

αk−2
+ · · ·+ x

α
+ 1

)
.

Multiplying both sides of this equality by αk we get

(14) xk − αk = (x− α)(xk−1 + αxk−2 + · · ·+ αk−2x + αk−1).

This formula was obtained for α 6= 0 (since we had x/α) but it is clearly true for
α = 0 also.

Consider the polynomial f(x) = a0 + a1x + · · · + anxn and the difference
f(x)− f(α). It is equal, as we saw, to the sum of the following terms ak(xk − αk).
Divide each such term by x− α, using formula (14). We get

ak(xk − αk)
x− α

= ak(xk−1 + αxk−2 + · · ·+ αk−2x + αk−1).

If we put x = α (into the right-hand side!) we obtain the term kakαk−1. Hence
for the polynomial g(x, α) in (12) for x = α we get that g(x, α)(α) = g(α, α)
is the sum of terms kakαk−1, i.e. a1 + 2a2α + 3a3α

2 + · · · + nanαn−1. In other
words, we have deduced the formula for the derivative f ′(x) of the polynomial
f(x) = a0 + a1x + · · ·+ anxn:

(15) f ′(x) = a1 + 2a2x + · · ·+ nanxn−1.

Compare this with what we obtained for polynomials of degree 2 and 3 and convince
yourself that those were special cases of (15) for n = 2 and n = 3.

The derivative of a polynomial is important not only in connection with mul-
tiple roots; it has many other applications. We shall therefore prove the basic
properties of the derivative. All the proofs follow from the definition, i.e. from (12).

a) The derivative of a constant polynomial. If f(x) = a0 then, by definition,
f(x) = f(α) and g(x, α) = 0. Hence f ′(α) = 0, i.e. f ′(x) = 0.
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b) The derivative of a sum. Let f1 and f2 be two polynomials and let f =
f1 + f2. We have

(16)
f1(x) = f1(α) + (x− α)g1(x, α),

f2(x) = f2(α) + (x− α)g2(x, α)

and therefore f ′1(α) = g1(α, α), f ′2(α) = g2(α, α). Adding the formulas (16) we
get f(x) = f(α) + (x − α)g(x, α), where g(x, α) = g1(x, α) + g2(x, α). Therefore,
f ′(α) = g(α, α) = g1(α, α) + g2(α, α) = f ′1(α) + f ′2(α), i.e.

(f1 + f2)′ = f ′1 + f ′2.

Using induction on the number of summands we easily obtain

(f1 + f2 + · · ·+ fr)′ = f ′1 + f ′2 + · · ·+ f ′r.

c) Multiplication by a number. Let f1(x) = af(x). Then from the equalities
f(x) = f(α) + (x− α)g(x, α) and g(α, α) = f ′(α), multiplying by a we get

f1(x) = af(x) = af(α) + (x− α)ag(x, α),

i.e. f1(x) = f1(α) + (x− α)ag(x, α) and f ′1(α) = af ′(α):

(af)′ = af ′.

d) The derivative of a product. Let f = f1f2. Multiplying the equalities (16)
we get

f1(x)f2(x) = f1(α)f2(α) + (x− α)g(x, α),

where g(x, α) = g1(x, α)f2(α) + g2(x, α)f1(α) + (x− α)g1(x, α)g2(x, α). Therefore
f(x) = f(α)+(x−α)g(x, α) where g(x, α) is given above. Hence, f ′(α) = g(α, α) =
g1(α, α)f2(α) + g2(α, α)f1(α) = f ′1(α)f2(α) + f ′2(α)f1(α), i.e.

(17) (f1f2)′ = f ′1f2 + f ′2f1.

If f1 is a constant (polynomial of degree 0) then in view of a) from (17) we again
get c).

By induction on the number of factors we obtain

(18) (f1f2 · · · fr)′ = f ′1f2 · · · fr + f1f
′
2 · · · fr + f1f2 · · · f ′r

(on the right-hand side in the product f1 · · · fr each factor is succesfully replaced
by its derivative).

Indeed, according to (17):

(f1f2 · · · fr)′ = ((f1 · · · fr−1)fr)′ = (f1 · · · fr−1)′fr + f1 · · · fr−1f
′
r.

Applying to (f1 · · · fr−1)′ the expression (18) which can be taken to be already
proved, we obtain the required formula.

An important special case occurs when all the factors in (18) are equal:

(19) (fr)′ = rfr−1f ′.
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From the dfinition of the derivative it is easily verified that x′ = 1. Hence, (xr)′ =
rxr−1. Combining the above rules, we can give a different proof of the explicite
formula (15) for the derivative.

Return now to the question of multiple roots of polynomials. Suppose that α is
a root of multiplicity k of f(x). This means that f(x) = (x−α)kg(x) where α in not
a root of g(x). According to (17) we have f ′(x) = ((x− α)k)′g(x) + (x− α)kg′(x),
and according to (19) we have ((x − α)k)′ = k(x − α)k−1 (since (x − α)′ = 1, by
(15)). Therefore, f ′(x) = k(x−α)k−1g(x)+(x−α)kg′(x) = (x−α)k−1p(−x), where
p(x) = kg(x)+(x−α)g′(x). But α is not a root of p(x): p(α) = kg(α) 6= 0. Consider

the polynomials d(x) = g. c. d.(f(x), f ′(x)) and ϕ(x) =
f(x)
d(x)

(since d(x) is a divisor

of f(x), ϕ(x) is a polynomial). The polynomial d(x) is divisible by (x−α)k−1 since
f(x) and f ′(x) are divisible by (x − α)k−1. But d(x) is not divisible by (x − α)k,
since p(α) 6= 0 which means that p(x) is not divisible by x− α. We conclude that
ϕ(x) is divisible only by x−α (and no higher power, e.g. (x−α)2, etc). Since ϕ(x)

is defined independently from the root (namely ϕ(x) =
f(x)

g. c. d.(f(x), f ′(x))
) the

above conclusion is true for all the roots of f(x), and we see that ϕ(x) has the same
roots as f(x), but none of them is multiple. In view of this, we can always reduce a
question regarding the roots of a polynomial to the case when the polynomial has
no multiple roots.

Notice that we have implicitly met with the derivative in connection with the
formula for the interpolation polynomial. Indeed, let F (x) = (x−x1) . . . (x−xn+1).
From (14) we see that (x− xi)′ = 1. Therefore, formula (18) gives:

F ′(x) = (x− x2) · · · (x− xn+1) + (x− x1)(x− x3) · · · (x− xn+1)+

+ · · ·+ (x− x1)(x− x2) · · · (x− xn).

If we use the notation Fk(x) =
F (x)

x− xk
from Section I, then F ′(x) = F1(x) + · · ·+

Fn+1(x). Substituting now for x one of the values x = xk, since all Fi(x) for i 6= k
contain the factor x− xk, we see that Fi(xk) = 0. Therefore F ′(xk) = Fk(xk) and
the formula (10) can be written in the form

f(x) =
y1

F ′(x1)
F1(x) +

y2

F ′(x2)
F2(x) +

yn+1

F ′(xn+1)
Fn+1(x).

Problems

1. Polynomial x2n−2xn +1 clearly has a root x = 1, and by Bézout’s theorem
it is divisible by x− 1. Find the quotient.

2. For which values of a, b does the polynomial xn +axn−1 + b have a multiple
root? Find this root.

3. For which values of a, b does the polynomial x3 + ax + b have a multiple
root?
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4. Prove that the polynomial xn + axm + b cannot have nonzero root of
multiplicity 3 or more.

5. The derivative of the polynomial f ′(x) is called the second derivative of the
polynomial f(x) and is denoted by f ′′(x). Find the formula for (f1f2)′′, analogous
to (17), but which will be, of course, somewhat more complicated.

6. Prove that the derivative of a polynomial is identically equal to 0 if and
only if the polynomial is constant (i.e. when its degree is 0).

7. Prove that for a polynomial f(x) there exists a polynomial g(x) such that
g′(x) = f(x) and that all such polynomials g(x) (for a given f(x)) can differ from
each other only in the constant term.

8. Prove that the number of roots of a polynomial cannot be greater than its
degree, each root being counted k times if k is its multiplicity.

3. The binomial formula

In this section we shall be concerned with an important formula which express-
es the polynomial (1 + x)n in the usual form a0 + a1x + · · · + anxn. In order to
find the formula we have to multiply out all the factors (1 + x)(1 + x) · · · (1 + x).
Working out these brackets we shall obtain terms of the form xk, but such terms
will appear several times, and by grouping them together we shall arrive at the
required formula. For instance, if n = 2, it is well known that

(1 + x)2 = (1 + x)(1 + x) = 1(1 + x) + x(1 + x) = 1 + x + x + x2 = 1 + 2x + x2.

For n = 3 the formula is also probably known. If not, it is easily obtained when
the formula for (1 + x)2 is multiplied by 1 + x:

(1 + x)3 = (1 + x)2(1 + x) = (1 + 2x + x2)(1 + x)

= (1 + 2x + x2) + (1 + 2x + x2)x = 1 + 3x + 3x2 + x3.

The coefficient ak of xk in the polynomial (1+x)n depends on the index k, but
also on the degree n. In order to indicate this dependence on n and k, we denote
this coefficien by Ck

n. Therefore, Ck
n are by definition the coefficients in the formula

(20) (1 + x)n = C0
n + C1

nx + C2
nx2 + · · ·+ Cn

nxn.

For example, C0
2 = 1, C1

2 = 2, C2
2 = 1; C0

3 = 1, C1
3 = 3, C2

3 = 3, C3
3 = 1. The

coefficients Ck
n are called binomial coefficients. Our aim is to write them in an

explicit form. Notice that some of them are easy to find. It is clear that when we
multiply all the x’s by one another in the product (1+x)n, we get xn, which means
that the leading term of the polynomial (1 + x)n is xn, i.e.

(21) Cn
n = 1.

Similarly, multiplying the constant terms (values for x = 0) in the product (1+x)n

we see that the constant term of the polunomial (1 + x)n is 1, i.e.

(22) C0
n = 1.
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In the general case consider the derivatives of both sides of (20). On the left,
according to (19), we get n(1 + x)n−1, since (1 + x)′ = 1, by (15). We evaluate the
derivative on the right using (15). We obtain

n(1 + x)n−1 = C1
n + 2C2

nx + · · ·+ kCk
nxk−1 + · · ·+ nCn

nxn−1.

But we can apply (20) for n − 1 to the left-hand side of the above equality. The
coefficient of xk−1 will be nCk−1

n−1 on the left and kCk
n on the right. Therefore,

kCk
n = nCk−1

n−1, or

Ck
n =

n

k
Ck−1

n−1,

i.e. the coefficient Ck
n can be expressed in terms of the coefficient Ck−1

n−1 with smaller

indices. Applying this formula to Ck−1
n−1 we get Ck

n =
n(n− 1)
k(k − 1)

Ck−2
n−2, and repeating

the process r times we obtain the formula

Ck
n =

n(n− 1) · · · (n− r + 1)
k(k − 1) · · · (k − r + 1)

Ck−r
n−r

(we take away from n in the numerator and from k in the denominator r consecutive
values: 0, 1, . . . , r − 1). Finally, let r = k. Since we know that C0

m = 1 for any m,
we obtain the formula for Ck

n:

(23) Ck
n =

n(n− 1) · · · (n− k + 1)
k(k − 1) · · · 1 .

This is the formula we looked for.
Formula (20) with the explicit expression (23) for the binomial coefficients Ck

n

is called the binomial formula (or “Newton’s binomial”).
The binomial formula has a large number of applications and it is useful to

have the coefficients (23) written in various forms. In the denominator we have the
product of all positive integers from 1 to k. The product of the form 1 · 2 · . . . ·m
is called m factorial and denoted by m!. In the numerator we have the product of
all positive integers from n to n − k + 1. If we multiply it by the product of the
numbers from n− k to 1 (i.e. by (n− k)!) we obtain n!. Therefore, multiplying the
numerator and the denominator in (23) by (n− k)!, we get

(24) Ck
n =

n!
k! (n− k)!

,

and this implies that

(25) Ck
n = Cn−k

n .

Notice that in formulas (23) and (24) it is not immediately clear that the denomi-
nator divides the numerator, although we know that this is so having in mind the
meaning of the coefficients Ck

n in the formula (20). We can express the fact that
the expression on the right-hand side of (23) is an integer, by simply saying that
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the product of any k consecutive integers is divisible by k!. We shall see later that
the fact that right-hand sides of (23) and (24) are integers implies some interesting
properties of prime numbers.

We now establish some important properties of the coefficients Ck
n. The first

one follows from the obvious equality (1 + x)n = (1 + x)n−1(1 + x) after expanding
(1 + x)n and (1 + x)n−1 on the basis of (20). We obtain

C0
n + C1

nx + C2
nx2 + · · ·+ Cn

nxn = (C0
n−1 + C1

n−1x + · · ·+ Cn−1
n−1xn−1)(1 + x).

The coefficient of xk on the left is Ck
n and on the right is obtained from the sum of

the terms Ck
n−1x

k · 1 and Ck−1
n−1x

k−1 · x, i.e. it is Ck
n−1 + Ck−1

n−1. Therefore

(26) Ck
n = Ck

n−1 + Ck−1
n−1.

This is a very useful formula for evaluating coefficients Ck
n by means of the coeffi-

cients of index n − 1. In order to get a better visual representation, we write the
coefficients Ck

n in the form of a triangle, where Ck
n are in the n-th row. Using the

formulas (21) and (22), which say that at the beginning and at the end of each row
is 1, the triangle has the form

1
1 1

1 2 1
. . . . . . . . . . . .

1 C2
n−1 . . . Cn−2

n−1 1

1 C1
n C2

n . . . Cn−1
n 1

. . . . . . . . . . . . . . . . . . . . .

Formula (26) shows that each binomial coefficient Ck
n is equal to the sum of the

coefficients which are situated above on the left and right of it. Taking the first
two rows as given, we easily obtain for the subsequent coefficients:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

. . . . . . . . . . . . . . . . . . . . .

This triangle is called “Pascal’s triangle”.
The second property is obtained by putting x = 1 into the formula (20) which

defines the binomial coefficients. On the left we get 2n and on the right the sum of
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all binomial coefficients Ck
n for k = 0, 1, . . . , n. Therefore, the sum of all numbers

from the n-th row of Pascal’s triangle is equal to 2n.
Finally, consider two neighbouring members from one row: Ck−1

n and Ck
n.

According to (24) we have Ck
n =

n!
k! (n− k)!

, Ck−1
n =

n!
(k − 1)! (n− k + 1)!

. Since

k! = (k − 1)! k, (n− k + 1)! = (n− k)! (n− k + 1), we get

Ck
n =

n− k + 1
k

Ck−1
n .

It is evident that
n− k + 1

k
> 1 when n − k + 1 > k, i.e. k <

n + 1
2

and in that

case Ck
n > Ck−1

n . Conversely, if k >
n + 1

2
, we obtain Ck

n < Ck−1
n . Therefore,

the numbers in one row of Pascal’s triangle increase up to the middle of the row,
and after that they decrease. If n is even, then in the middle of the row we have
the greatest number C

n/2
n , and if n is odd, then there are two neighbouring equal

greatest numbers: C
(n−1)/2
n and C

(n+1)/2
n . In that case, for k =

n + 1
2

we have

Ck
n = Ck−1

n .
The formula (20), where the binomial coefficients are defined by (23) can be

written in a somewhat more general form. In order to do that, put x = b/a and
multiply both sides of (20) by an. We obtain the formula

(27) (a + b)n = C0
nan + C1

nan−1b + C2
nan−2b2 + · · ·+ Cn

nbn.

This formula was proved for a 6= 0 (since we divided by a), but it is obviously true
also for a = 0. It is also called the binomial formula.

We shall now consider some consequences of the binomial formula and their
applications. As a rule, the simpler a result is, the more applications it has. So, in
the binomial formula we often use the values of the first coefficients. We already
know that the first coefficient C0

n is 1. The next one C1
n, according to (23) is n.

Notice that in view of (25) it follows that Cn
n = 1 (which we already know) and

that Cn−1
n = n. Hence,

(a + b)n = an + nan−1b + · · ·+ nabn−1 + bn.

This can be applied to equations. We write an equation of order n in the form
a0 + a1x + · · · + an−1x

n−1 + anxn = 0. The fact that its degree is n means that
an 6= 0 and we can divide the equation by an to obtain an equivalent equation in
which an = 1. In further text we shall suppose that this has been done and we
write the equation in the form f(x) = a0 +a1x+ · · ·+an−1x

n−1 +xn = 0. We shall
now make another transformation of this equation into an equivalent equation. In
order to do so, put x = y + c, where y is the new variable and c is a number.
Substituting into our equation this value of x, from each term amxm we obtain the
term am(y + c)m which can be, by the binomial formula, written as a polynomial
in y, and then we collect together corresponding terms. As a result we obtain a
new polynomial in y which we denote by g(y) = f(y + c). Since y is expressed in
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terms of x: y = x− c, the equations f(x) = 0 and g(y) = 0 are equivalent: to the
root x = α of f(x) = 0 corresponds the root y = α− c of g(y) = 0, and to the root
y = β of this equation corresponds the root x = β + c of the equation f(x) = 0.
Let us examine how the coefficients change in this transformation. First of all, the
degree of the equation g(y) = 0 is n and the coefficient of its leading term is 1. This
follows from the fact that when am(y+c)m is expanded by the binomial formula, it
gives rise to terms in y with degrees 6 m. Therefore, the term of degree n can only
be obtained from (y + c)n and (again by the binomial formula) it is equal to yn.
Let us look at the term of degree n− 1. It can be obtained from the term (y + c)n

and the term an−1(y + c)n−1. From the last one we get an−1y
n−1, and in (y + c)n

we have to take the second term in the binomial expansion. As we know it is equal
to nyn−1c. Hence, the term of degree n− 1 in the polynomial g(y) = f(y + c) has
the form (an−1 + nc)yn−1.

This can be used to simplify the equation by chosing c so that the term of
degree n − 1 vanishes: we put an−1 + nc = 0, i.e. c = −an−1/n. We proved the
following

THEOREM 6. The substitution x = y−an−1/n transforms the equation f(x) =
a0 + a1x + · · · + an−1x

n−1 + xn = 0 into equivalent equation g(y) = 0 of degree n
whose coefficient of the leading term is 1 and which has no term of degree n− 1.

Notice that Theorem 6 gives the formula for the solutions of second degree
equations. Indeed, the polynomial g(y) has the form y2 + b2 and its roots are
therefore y = ±√−b2. Make the substitution indicated in Theorem 6, evaluate b2

and the roots of f(x) and verify that in this way we obtain the standard formula
for the solutions of a quadratic equation. In the case of polynomials of arbitrary
degree we only get a certain simplification, which is sometimes useful. For example,
we see that any third degree equation is equivalent to an equation of the form
x3 + ax + b = 0.

At the end we shall apply the binomial formula to the evaluation of the sums
of powers of integers. We shall be concerned with the sums

(28) Sm(n) = 0m + 1m + 2m + · · ·+ nm

of m-th powers of all nonnegative integers not greater than n. You probably know

the formula S1(n) =
n(n + 1)

2
(see Problem 5 in Section 1 of Chapter I). We start

with a few remarks on the evaluation of sums in general. Let a0, a1, a2, . . . , an, . . .
be an arbitrary infinite sequence of numbers, and consider the following sequence
of their sums: a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + a2 + · · ·+ an, . . . Denote
the first sequence by the letter a; its (n + 1)-st term is an (it is more convenient
to write the (n + 1)-st term and not the n-th, and to start the sequence with a0).
The above sequence of sums will be denoted by Sa, and its (n + 1)-st term is

(Sa)n = a0 + a1 + a2 + · · ·+ an, n = 0, 1, 2, . . .

For example, if an = nm, n = 0, 1, 2, . . . , then Sa is the sequence of sums Sm(n).
Clearly, if we know the sequence Sa we can find the sequence a. Namely, by
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substracting the n-th from the (n + 1)-st term of Sa, we obtain an. Indeed, let

bn = (Sa)n = a0 + a1 + · · ·+ an,(29)

bn−1 = (Sa)n−1 = a0 + a1 + · · ·+ an−1,(30)

and subtracting (30) from (29) we get bn − bn−1 = an. We introduce another
important construction. Together with an arbitrary sequence b0, b1, b2, . . . , bn,
. . . consider the sequence b0, b1 − b0, b2 − b1, . . . , bn+1 − bn, . . . If the first
sequence is denoted by b, then the second is denoted by ∆b. Its (n + 1)-st term is

(∆b)0 = b0, (∆b)n = bn − bn−1, n = 1, 2, . . .

The established connection between the sequences a and Sa can be expressed by
the formula ∆Sa = a. It turns out that there is a formula completely symmetrical
to this one, namely both equalities

(31) ∆Sa = a, S∆b = b

are true. It can be said that the operations S and ∆ applied to sequences are
inverse to each other. We have already established the first formula. In order to
prove the second, write the equalities which define the numbers ak = (∆b)k for
k = 0, 1, . . . , n− 1:

a0 = b0

a1 = b1 − b0

a2 = b2 − b1

. . .

an = bn − bn−1

and add them up. On the left we obtain a0+ · · ·+an, i.e. (Sa)n, and on the right all
the numbers cancel out, except bn in the last formula, so that we get (Sa)n = bn,
that is to say the second formula (31).

The above relations are useful, since it is often simpler not to evaluate a sum
directly, i.e. not to find the sequence Sa directly, but instead to find a sequnce b
such that ∆b = a, and from the second relation (31) to obtain Sa = b.

This idea will now be applied to the sums (28). We have seen that Sm(n) =
(Sa)n, where an = nm. How can we write the sequence a, an = nm in the form
a = ∆b? This follows from the following assertion.

THEOREM 7. For any polynomial f(x) of degree m there exists a unique
polynomial g(x) of degree m + 1 such that

(32) g(x)− g(x− 1) = f(x)

and the constant term of g(x) is 0.

The uniqueness of the polynomial g(x) with the given property is easily shown.
Let g1(x) be another polynomial such that g1(x) − g1(x − 1) = f(x) and whose
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constant term is 0. Subtract (32) from the last equality. Putting g1(x) − g(x) =
g2(x), we see that g2(x) − g2(x − 1) = 0 and the constant term of g2(x) is 0, i.e.
g2(0) = 0. For x = 1, the above equality gives g2(1) = 0. Putting x = 2 we get
g2(2) = g2(1) = 0, . . . and by induction that g2(n) = 0 for all positive integers n.
In other words, all positive integers are roots of g2(x). According to Theorem 3
this is possible only if g2 = 0, which means that g = g1.

The existence of the polynomial g will be proved by induction on m, the degree
of f(x). For m = 0, the polynomial f is a constant a and we see that g(x) = ax
satisfies (32). Suppose that the assertion is true for polynomials f of degree less
than m. Let amxm be the leading term of f . Choose the number a so that the
leading term of the polynomial axm+1 − a(x− 1)m+1 is equal to the leading term
amxm of f . In order to do this, apply the binomial formula

(x− 1)m+1 = xm+1 − (m + 1)xm + · · · ,

where the dots stand for terms of degree less than m. This implies

xm+1 − (x− 1)m+1 = (m + 1)xm + · · · .

Clearly we have

(33) a =
am

m + 1
.

Then, in the difference f(x)− am

m + 1
(xm+1−(x−1)m+1) the terms of degree m can-

cel out and this difference will have degree less than m. Denoting this polynomial
by h(x), by the induction hypothesis we can take that there is a polynomial g1 of de-
gree less than m+1 and with zero constant term such that h(x) = g1(x)−g1(x−1),
i.e.

f(x)− am

m + 1
(xm+1 − (x− 1)m+1) = g1(x)− g1(x− 1).

The above equality can be written in the form f(x) = g(x)− g(x− 1), where

g(x) =
am

m + 1
xm+1 + g1(x),

and the theorem is proved. Of course, in practical construction we do not apply
induction, but we repeat the same procedure of subtraction to the polynomial h(x),
and so on until we arrive at a polynomial of degree 0.

Return now to the evaluation of the sum Sm(n). We have seen that this sum
is equal to bn, where b is such that ∆b = a, an = nm. Apply Theorem 7 to the
polynomial xm. We obtain the polynomial g(x) of degree m + 1 such that

g(x)− g(x− 1) = xm

and the constant term of g(x) is 0. Putting x = n into the above equality, we see
that the sequence bn = g(n) for n > 1 and b0 = g(0) = 0 satisfies the condition
∆b = a, i.e. Sa = b. Therefore we have proved the following
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THEOREM 8. The sums Sm(n) can be expressed in the form gm(n) where gm

is the polynomial of degree m+1 such that gm(x)−gm(x−1) = xm and its constant
term is 0.

Notice that the proof of Theorem 7 provides us with a method of construct-
ing the polynomial gm(x) for any m. For instance, let m = 2. By analogy
with sequences, we denote the polynomial g(x) − g(x − 1) by ∆g, i.e. we put
(∆g)(x) = g(x) − g(x − 1). We first have to find the monomial ax3 so that the

leading term of ∆(ax3) is equal to x2. In view of (33), a =
1
3

(in this case m = 2,

a2 = 1). By the binomial formula, ∆
(

1
3
x2

)
=

1
3
x3 − 1

3
(x− 1)3 = x2 − x +

1
3

and

x2−∆
(

1
3
x3

)
= x− 1

3
. Now we have to find the monomial bx2 so that the leading

coefficient of ∆(bx2) is equal to x. In view of (33), b =
1
2

(in this case m = 1,

a1 = 1) and by the binomial formula ∆
(

1
2
x2

)
=

1
2
x2 − 1

2
(x − 1)2 = x − 1

2
, and

x2−∆
(

1
3
x3

)
−∆

(
1
2
x2

)
= −1

3
+

1
2

=
1
6
. Finally,

1
6

= ∆
(

1
6
x

)
=

1
6
x− 1

6
(x−1).

At the end we get that x2 = ∆
(

1
3
x3 +

1
2
x2 +

1
6
x

)
and so g(x) =

1
3
x3+

1
2
x2+

1
6
x =

(2x2 + 3x + 1)x
6

=
(2x + 1)(x + 1)x

6
. Therefore S2(n) =

(2n + 1)(n + 1)n
6

.

We conclude with two more remarks.
Remark 1. The obtained formula for the sum Sm(n) can be summarized

as follows. For each m there exists the unique polynomial gm(x) with constant
term 0 such that gm(x) − gm(x − 1) = xm. The method of its construction is
contained in the proof of Theorem 7. Its degree is m+1. The formula for Sm(n) is:
Sm(n) = gm(n). Hence the question reduces to the investigation of the important
polynomials gm(x). They are called Bernoulli’s polynomials. In the Appendix we
shall give a much more explixit expression for these polynomials, using an important
sequence of rational numbers, called Bernoulli’s numbers.

Remark 2. (Historical) The introduced operations S and ∆ which transform
the sequences a and b into Sa and ∆b are very similar to the fundamental operations
of Analysis which define for a function f(x) (but not for every function!) the
indefinite integral

∫
f dx, and for a function g its derivative g′. Our operations S

and ∆ are elementary analogs of the operations
∫

f dx and g′. Sums and differences
are also present in the definitions of the integral and the derivative, but in a more
complicated way (in our definition of the derivative of a polynomial differences
were also present—see formula (13)). As in the case of S and ∆, the operations of
forming the derivative and the integral are inverse to each other. As in our case,
the evaluation of the derivative is simpler than the evaluation of the integral, and
the integral of a function f(x) is mainly evaluated by finding a function whose
derivative is equal to f(x).

However, the operations for sequences and functions are not only analogous;
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Fig. 1

their connection is deeper. Evaluating the integral of a function f(x) is equivalent
to evaluating the area of the surface bounded by the graph of that function, the
x-axis and by two vertical lines starting at x = a and x = b (Fig. 1).

Of course, we shall not prove this, as we have not defined the integral, but
we shall show, on a simple example, how such an area can be evaluated, and its
connection with the problems we considered earlier.

We shall try to determine the area bounded by the parabola which is the graph
of the function y = x2, by the x-axis and by the line x = 1 (Fig. 2).

Fig. 2

In order to do that, divide the segment between 0 and 1 into a large number n of

equal parts with coordinates 0,
1
n

,
2
n

, . . . ,
n− 1

n
, 1 and evaluate the corresponding

values 0,
(

1
n

)2

,
(

2
n

)2

, . . . ,
(

n− 1
n

)2

, 1 of the function y = x2. Construct the

rectangles whose bases are segments from
i

n
to

i + 1
n

and whose heights are
(

i

n

)2

.

The polygon made up from these rectangles is contained in that part “under the
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parabola” whose area we wish to determine and by “looking at the picture” we see
that if n is very great, then the area sn of this polygon differs very little from the
area of the part under the parabola (we cannot be more precise, since we have not
precisely defined what area is). The area of the polygon is the sum of the areas
of the rectangles which make it up. The area of the i-th rectangle is equal to the

product of its basis
1
n

and its height
(

i

n

)2

, i.e. it is
i2

n3
. Therefore, the area sn of

the polygon is

sn =
02

n3
+

12

n3
+

22

n3
+ · · ·+ (n− 1)2

n3
=

S2(n− 1)
n3

.

We have already found that S2(n) =
1
3
n3 +

1
2
n2 +

1
6
n, and so (replacing n by n−1

in the formula for S2(n)) we get

sn =
1
3
− 1

2
· 1
n

+
1
6
· 1
n2

.

It is clear that as n becomes greater and greater, then the terms −1
2
· 1
n

and
1
6
· 1
n2

become smaller and smaller, and the area of the polygon approaches
1
3
. Hence,

this is the area of the figure bounded by the parabola.
We have presented here the lines of thought followed, in principle, by Archi-

medes (3rd century B.C.) who was the first to solve this problem. (Archimedes
devised a rather artificial method which allowed him to use the sum of a geometrical
progression, instead of the sum S2(n). But he knew the formula for S2(n) and used
it for the evaluation of other areas and volumes).

Mathematicians of the new period were obsessed by the dream to “surpass
the ancients” (that is to say, the Ancient Greek mathematicians) and Archimedes
was considered to be the most important of them. They were therefore very much
interested in solving the problem considered above for the function y = xn, where
n is greater than 2. It seems that the first to obtain the solution was French mathe-
matician Fermat (17th century) who used practically the same method we outlined
above (it was later somewhat simplified). At that time the mentioned connection
between the integral and the derivative was not known and the integral (i.e. the
area) was calculated directly from the definition. It was later discovered that (to use
contemporary terminology) the operations of forming derivatives and integrals are
inverse to each other. This was established by Newton’s teacher Barrow. (Newton
worked together with Barrow when he studied at the university, and later on took
over Barrow’s chair when the latter decided to take orders). Systematic evaluation
of the integral of a function f by finding a function g such that the derivative of g
is f was initiated by Newton. After that the calculation of integrals and areas by
the method we exposed became unnecessary. Nowadays students of higher classes
can easily find the integral of xm for any m without caluclating the sum Sm(n).

In this way, if in Chapter I we moved in the circle of ideas of Ancient Greek
mathematicians (Pythagoras, Theaetetus, Euclid), in this chapter we have encoun-
tered the ideas of the mathematicians from the new period (17th century).
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Problems

1. Notice that the area sn of the polygon which we calculated at the end of the
section is less than the area of the given figure, bounded by the parabola y = x2,
since the polygon is situated inside that figure. Construct the polygon made up

from rectangles whose bases are segments from
i

n
to

i + 1
n

and whose heights are(
i + 1

n

)2

which contains the given figure. Its area s′n will therefore be greater than

the area of the figure. Calculate the area s′n and prove that as n increases, it
approaches 1/3. This gives a more convincing (i.e. more “strict”) proof of the fact
that the required area is 1/3.

2. Try to solve the analogous problem for the “m-th degree parabola”, given
by the equation y = xm. Verify that in order to obtain the result it is not necessary
to know the Bernoulli’s polynomials gm(x) completely, but that is enough to know

the coefficient of the leading term am+1x
m+1. Prove that am+1 =

1
m + 1

and hence

find the area of the figure bounded by the parabola whose equation is y = xm, by
the x-axis and by the line x = 1.

3. Prove that the area of the figure bounded by the parabola y = xm,

x-axis and the line x = a is equal to
1

m + 1
am+1. Notice that the derivative of

the polynomial
1

m + 1
xm+1 is xm. This is indeed an instance of Barrow’s theorem

that integration and finding derivatives are operations inverse to each other.
4. Prove that the sum of the binomial coefficients with even upper indices

C0
n + C2

n + · · · and with odd indices C1
n + C3

n + · · · are equal and find their mutual
value.

5. Find the relation between binomial coefficients which expresses that
(1 + x)n(1 + x)m = (1 + x)n+m. For n = m deduce the formula for the sum
of the squares of binomial coefficients.

6. If p is a prime number, prove that all binomial coefficients Ck
p for k 6= 0, p,

are divisible by p. Deduce from this that 2p − 2 is divisible by p. Prove that for
any integer n, the number np − n is divisible by p. This theorem was first proved
by Fermat.

7. What can be said about the sequence a if all the terms of the sequence ∆a
are equal? What does formula (31) give in this case?

8. Find the sum S3(n) and verify that S3(n) = (S1(n))2.
9. Let a be any sequence a0, a1, a2, . . . Apply the operation ∆ once more to

the sequence ∆a. The obtained sequence ∆(∆a) will be denoted by ∆2a. Define
∆ka by induction as ∆(∆k−1a). When can we solve the so-called “infinite inter-
polation problem”, that is to say when is there a polynomial f(x) of degree not
greater than m such that f(n) = an for n = 0, 1, 2, . . . ? Prove that a necessary and
sufficient condition is given by (∆m+1a)n = 0 for n > m. This condition shows that
if we write the sequence a, and under it the sequence whose terms are differences



26 I. R. Shafarevich

of the two terms above, and so on:

a0 a1 a2 . . . an an+1

a1 − a0 a2 − a1 . . . . . . an+1 − an . . .
. . . . . . . . . . . . . . .

then in the (m + 1)-st row we only have zeros.
Is there a polynomial f(x) such that f(n) = 2n for all positive integers n?
10. Prove that if an = qn, then (∆a)n = an−1(q−1). Use this to give another

proof of the formula (12) from Chapter I.
11. Let m1 < m2 < · · · < mn+1 be positive integers and let f(x) be a

polynomial of degree n, where the coefficient of xn is 1. Prove that at least one of
the numbers f(mk) is not less than n!/2n.

Hint. Use the result of Problem 8 of Section 1. Notice (with the notation of
Section 1) that Fk(mk) > k! (n − k)! and use some known relations for binomial
coefficients.

12. Apply the formula (12) from Chapter I to the sum 1+(1+x)+ (1+x)2 +
· · ·+(1+x)n. Equating the coefficients of terms with equal degrees on the left and
right, find the formula for the sum

Ck
k + Ck

k+1 + · · ·+ Ck
n.

APPENDIX1

Bernoulli’s polynomials and numbers

In Section 3 we showed that the values of the sums of powers of consecutive
positive integers, i.e. the sums Sm(n) coincide with the values gm(n) of Bernoulli’s
polynomials gm(x), which have the properties

(1)
1) gm(x)− gm(x− 1) = xm,

2) the constant term of gm(x) is 0.

For any m there is only one polynomial of degree m + 1 with these properties.
We have given a method for constructing the polynomials gm(x). However,

we would like to have a more explicit formula for these polynomials. In order
to achieve this, we shall follow the same path we took in deducing the binomial
formula. Namely, we shall first find the derivative of both sides of (1). But we first
have to see how to find the derivative f(x− 1)′ of the polynomial f(x− 1).

LEMMA 1. f(x− 1)′ = f ′(x− 1).

1Starting with Chapter II, each chapter will have an Appendix. In these appendices we shall
only use those facts which have been exposed earlier, but the text will be somewhat harder than
the basic text. This means that we shall apply the same arguments as before, but in proving
a theorem we shall have to keep in mind a larger number of them. The level of these texts
approaches the level of a simple professional mathematical book.
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At first sight this equality may seem obvious, but it is not really so. The
equality means that when in the polynomial f(x) we first substitute x − 1 for x,
then write it as the sum of powers of x, and then find its derivative, the obtained
result is the same as when in the derivative f ′(x) we substitute x− 1 for x.

The proof follows directly from the definition of the derivative of a polynomial,
i.e. from (11). Let

f(x)− f(α) = (x− α)g(x, α).

Substituting x− 1 for x and α− 1 for α in this equality, we get

f(x− 1)− f(α− 1) = (x− α)g(x− 1, α− 1).

By definition we have f(α − 1)′ = g(α − 1, α − 1) and f ′(α) = g(α, α). Hence,
f(α− 1)′ = f ′(α− 1), which was to be proved.

Lemma 1 could be proved by the use of formulas (16)–(19) and reduction to
monomials (verify this).

We can now find the derivatives of both sides of (1). Having in mind Lemma
1 and the rule (13) for derivatives, we obtain

g′m(x)− g′m(x− 1) = mxm−1.

On the other hand, replacing m by m− 1 in (1) we get

gm−1(x)− gm−1(x− 1) = xm−1.

Multiply the second equality by m and subtract it from the first. Putting hm =
mgm−1 − g′m we find that

hm(x) = hm(x− 1).

But this implies that the polynomial hm is constant (of degree 0). Indeed, putting
in this equality x = 1, 2, etc. we obtain hm(0) = hm(1) = hm(2) = · · · . In
other words the polynomial hm(x) and the constant hm(0) have equal values for all
positive integers x, and in view of Theorem 4 they must be equal: hm(x) = hm(0).
(We have already met with this kind of reasoning at the beginning of the proof of
Theorem 7.) Hence, the polynomial hm(x) is equal to a constant which we shall
denote by −αm. Having in mind the definition of hm(x) we obtain the relation

(2) g′m = mgm−1 + αm.

As in the derivation of the binomial formula, we now write the polynomial gm(x)
as the sum of powers of x. As before, the lower index indicates the polynomial
in question, and upper index corresponds to the degree of x. The coefficients are
denoted by Ak

m and gm(x) has the form

gm(x) = A1
mx + A2

mx2 + · · ·+ Ak
mxk + · · ·+ Am+1

m xm+1.

(Remember that the constant term of gm is 0.) Write down the derivative of gm(x),
using the formula (13):

gm(x)′ = A1
m + 2A2

mx + · · ·+ kAk
mxk−1 + · · ·+ (m + 1)Am+1

m xm.
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On the other hand, write down the analogous formula for gm−1(x) (replacing m by
m− 1):

gm−1(x) + A1
m−1x + A2

m−1x
2 + · · ·+ Ak

m−1x
k + · · ·+ Am

m−1x
m,

and substitute these two formulas into (2). Equating the coefficients of xk−1, we
find:

kAk
m = mAk−1

m−1 for k > 2,(3)

A1
m = αm for k = 1.(4)

(Notice that in the above formulas there is no α0; we only have αk where k > 1.)
We have obtained the formula similar to the formula for the binomial coefficients
Ck

m, the difference being that formula (3) holds only for k > 2, and for k = 1 it is
replaced by (4).

Again, we continue to follow the case of binomial coefficients. We have:

Ak
m =

m

k
Ak−1

m−1. Applying this formula to Ak−1
m−1 we get: Ak

m =
m(m− 1)
k(k − 1)

Ak−2
m−2.

Continuing this procedure, after k − 1 steps we find

Ak
m =

m(m− 1) · · · (m− k + 2)
k(k − 1) · · · 2 A1

m−k+1 =
m(m− 1) · · · (m− k + 2)

k(k − 1) · · · 2 αm−k+1

(for A1
m−k+1 we use formula (4)).

The coefficient of αm−k+1 very much resembles the binomial coefficient. It
differs from Ck

m (see formula (21)) in so much that the numerator does not have
the last factor m− k + 1 (and the denominator does not have the last factor 1, but
this has no effect on the product). However, in the formula for Ck

m+1 the product
in the numerator ends with m−k+1, but it begins with m+1, which is not present

here. Hence, we can write the coefficient of αm−k+1 in the form
1

m + 1
Ck

m+1, and
the formula for Ak

m becomes:

Ak
m =

1
m + 1

Ck
m+1αm+1−k.

(We write αm−k+1 as αm+1−k so that the factors look more similar.)
In this way we have obtained the following formula for the polynomials gm(x):

(5) gm(x) =
1

m + 1
(C1

m+1αmx + C2
m+1αm−1x

2 + · · ·+
+ Ck

m+1αm+1−kxk + · · ·+ Cm+1
m+1α0x

m+1).

The obtained formula resembles the binomial formula. Suppose that we have a
new variable a and expand the binomial (x + a)m+1. We then obtain the same
terms as in the brackets in the above formula (5), except that ak is replaced by αk

and it has no term corresponding to C0
m+1αm+1. We can compensate for this by

considering the difference (x + a)m+1 − am+1 in which case the terms with am+1
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cancel. In order to emphasize this analogy, introduce the following notation. Let a
be the sequence α1, α2, . . . and let f(t) be the polynomial a0 + a1t + · · · + aktk.
Then f(a) denotes the number a0 + a1α1 + · · · + akαk, i.e. tk is replaced by αk.
In particular, am = αm, since replacing tm by αm we obtain αm. Analogously,
(x+a)m = xm +C1

mxm−1α1 + · · ·+Cm
mαm: we expand (x+a)m in powers of t and

replace tk by αk. The relation (5) with this notation can be written in the form

(6) gm(x) =
1

m + 1
(
(a + x)m+1 − am+1

)
.

Remark that am+1 = αm+1. Notice that we cannot establish that the polynomial
given by (6) satisfies the relation (1). In fact, we have found the general form
of the polynomials which satisfy the relations (2), but those relations are only
consequences of the relation (1). Indeed, the result depends upon the sequence αm,
which can in (6) be arbitrary, whereas Theorem 7 states that the polynomial gm(x)
is unique for each m. Therefore, we have not yet solved the problem.

Among the polynomials gm(x) given by (6) we have to choose those which
satisfy the relation (1). Since we already know that such polynomials exist and
they are unique (for each m) we only have to find the unique sequence a which
defines them. This is quite simple: it is enough to put x = 1 into (1). Since
gm(0) = 0 (the constant term of gm is 0), we get gm(1) = 1. The notation of the
formula (6) yields (a + 1)m+1 − αm+1 = m + 1 for m = 0, 1, 2, . . . or

(a + 1)m − αm = m, m = 1, 2, 3, . . .

Definition. The numbers B1, B2, B3, . . . are called Bernoulli’s numbers if
the sequence B formed by them satisfies the relations

(B + 1)m −Bm = m for m = 1, 2, 3, . . .

The above relations uniquely define the sequence of Bernoulli’s numbers. In-
deed, expanding the above formula, by definition we get

(10) 1 + mB1 + C2
mB2 + · · ·+ mBm−1 = m, m = 1, 2, . . .

(Bm cancels). From this relation for m = 1 we get that B1 = 1/2, and every
relation that follows allows us to find Bm−1 provided that we know all Br’s with
indices r < m− 1.

Polynomials

Bm(x) =
1

m + 1
((B + x)m+1 −Bm+1)

where B is the sequence of Bernoulli’s numbers are called Bernoulli’s polynomials.
We have proved that if the polynomial gm(x) satisfying (1) is written in the form
(6), then the sequence a which corresponds to it has to coincide with the sequence
B of Bernoulli’s numbers. But we know, according to Theorem 7, that such a
polynomial exists. Hence it must coincide with Bernoulli’s polynomial Bm(x), i.e.

Bm(x)−Bm(x− 1) = xm,

and so Sm(n) = Bm(n). Our problem is solved.
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Bernoulli’s polynomials and numbers were discovered by Jacob Bernoulli (there
was a large family of mathematicians of that name). His main results belong to the
second half of the 17th century, but this particular discovery appeared in a book
published after his death at the beginning of the 18th century. The numbers Bn

were named Bernoulli’s numbers by Euler (18th century) who found many other
applications of those numbers.

Putting k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 into (10) we obtain the following
values for the numbers Bn (verify this yourself!)

B1 =
1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1
42

,

B7 = 0, B8 = − 1
30

, B9 = 0, B10 =
5
66

, B11 = 0, B12 = − 691
2730

etc. Then we easily establish:

S1(n) =
n(n + 1)

2
, S2(n) =

n(n + 1)(2n + 1)
6

, S3(n) =
n2(n + 1)2

4
,

S4(n) =
n(n + 1)(2n + 1)(3n2 + 3n− 1)

30
, S5(n) =

n2(n + 1)2(2n2 + 2n− 1)
12

,

etc.

Problems

1. Find Bm(−1).
2. Prove the formula Bm = (B − 1)m for m > 2.
3. Derive a relation, analogous to (10), which holds for Bernoulli’s numbers

Bm with odd indices m > 3. Prove that all Bernoulli’s numbers Bm with odd
indices, except B1, are equal to 0.

4. Find S6(n).
5. Prove the formula for the derivative of a polynomial of a polynomial: if

f(x) and g(x) are polynomials, then

f(g(x))′ = f ′(g(x))g′(x).

6. Find (a + x)n if the sequence a has the form an = qn for some number n.
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