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A GREATEST COMMON DIVISOR IDENTITY

Yuanhong Zhi

Abstract. In this paper we present an identity involving the greatest common
divisors of almost all possible subproducts of n nonzero integers. Then we prove this
identity, with the help of the fundamental theorem of arithmetic, and an identity
concerning the minimum function min. As a consequence, a new formula for the least
common multiple is derived.
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In this paper, we present an identity expressing the relationship between the
greatest common divisors of almost all possible subproducts of n nonzero integers.
This identity can be viewed as a kind of generalized version of the elementary
identity (see [3] for reference)

gcd(ab, ac, bc) =
gcd(a, b) · gcd(a, c) · gcd(b, c)

gcd(a, b, c)
,

which is easily checked, and proved (we also give a proof at the end of this paper).
Here and below, gcd denotes the greatest common divisor, and lcm the least com-
mon multiple. Sometimes we also write the gcd of a and b as (a, b), if there is no
ambiguity. In the following, we first state and prove the identity, and then give a
direct corollary, which represents lcm by gcd’s.

1. Main result

We are going to prove the following identity.

Theorem 1. For all nonzero integers a1, . . . , an, with n ≥ 3, we have

gcd
(∏

j 6=1

aj ,
∏

j 6=2

aj , . . . ,
∏

j 6=k

aj , . . . ,
∏

j 6=n

aj

)

=

{ G(2)·G(4)···G(n−1)
G(3)·G(5)···G(n) , if n is odd,
G(2)·G(4)···G(n)

G(3)·G(5)···G(n−1) , if n is even,



74 Yuanhong Zhi

where
∏

j 6=k

aj :=
n∏

p=1
p6=k

aj = a1 · · · âk · · · an, where the notation ̂ means the number

under it is skipped, and

G(2) :=
∏

1≤i<j≤n

gcd(ai, aj),

G(3) :=
∏

1≤i<j<k≤n

gcd(ai, aj , ak),

· · ·
G(k) :=

∏

1≤σ1<σ2<···<σk≤n

gcd(aσ1 , aσ2 , . . . , aσk
),

· · ·
G(n) := gcd(a1, . . . , an).

Particularly, for every three nonzero integers a, b, c,

(1) gcd(ab, bc, ca) =
gcd(a, b) · gcd(b, c) · gcd(c, a)

gcd(a, b, c)
;

and for four nonzero integers a, b, c, d,

gcd(abc, abd, acd, bcd) =
(a, b) · (a, c) · (a, d) · (b, c) · (b, d) · (c, d) · (a, b, c, d)

(a, b, c) · (a, b, d) · (a, c, d) · (b, c, d)

=
G2 ·G4

G3
,

where

G2 := gcd(a, b) · gcd(a, c) · gcd(a, d) · gcd(b, c) · gcd(b, d) · gcd(c, d),

G3 := gcd(a, b, c) · gcd(a, b, d) · gcd(a, c, d) · gcd(b, c, d), G4 := gcd(a, b, c, d).

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let n be an integer with n ≥ 3. Suppose a1, . . . , an are real numbers.
Then we have the following identities:
(a) If n is odd, then

min{a1, a2}+ min{a1, a3}+ · · ·+ min{an−1, an}
(2)

+ min{a1, a2, a3, a4}+ · · ·+ min{an−3, an−2, an−1, an}
+ min{a1, a2, . . . , a6}+ · · ·+ min{an−5, an−4, an−3, an−2, an−1, an}
+ · · ·+ min{a1, . . . , an−1}+ · · ·+ min{a2, a3, . . . , an}

= min{aσ1 + aσ2 + · · ·+ aσn−1 | 1 ≤ σ1 < σ2 < · · · < σn−1 ≤ n}
+ min{a1, a2, a3}+ min{a1, a2, a4}+ · · ·+ min{an−2, an−1, an}
+ min{a1, a2, a3, a4, a5}+ · · ·+ min{an−4, an−3, an−2, an−1, an}
+ · · ·+ min{a1, . . . , an};
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(b) if n is even, then

min{a1, a2}+ min{a1, a3}+ · · ·+ min{an−1, an}
+ min{a1, a2, a3, a4}+ · · ·+ min{an−3, an−2, an−1, an}
+ min{a1, a2, . . . , a6}+ · · ·+ min{an−5, an−4, an−3, an−2, an−1, an}
+ · · ·+ min{a1, . . . , an}

= min{aσ1 + aσ2 + · · ·+ aσn−1 | 1 ≤ σ1 < σ2 < · · · < σn−1 ≤ n}
+ min{a1, a2, a3}+ min{a1, a2, a4}+ · · ·+ min{an−2, an−1, an}
+ min{a1, a2, a3, a4, a5}+ · · ·+ min{an−4, an−3, an−2, an−1, an}
+ · · ·+ min{a1, . . . , an−1}+ · · ·+ min{a2, a3, . . . , an}.

Proof. We shall prove just the case when n is odd, for the proof of the case
when n is even is similar. Let n be a positive odd integer with n ≥ 3. Since
the desired identity is transpositionally, and cyclically symmetrical, it suffices to
consider the case of a1 ≤ a2 ≤ · · · ≤ an. Then the left-hand side of (2) equals

n−1
2∑

k=1

n−2k+1∑

j=1

aj

(
n− j

2k − 1

)
,

while its right-hand side is

n−1∑

j=1

aj +

n−1
2∑

l=1

n−2l∑

j=1

aj

(
n− j

2l

)
.

Hence, it suffices to show

(3)

n−1
2∑

k=1

n−2k+1∑

j=1

aj

(
n− j

2k − 1

)
=

n−1∑

j=1

aj +

n−1
2∑

l=1

n−2l∑

j=1

aj

(
n− j

2l

)
.

Indeed, since for every positive integer m, by the binomial theorem,

0m =
(
1 + (−1)

)m =
m∑

j=0

(
m

j

)
(−1)j

=
(

m

0

)
−

(
m

1

)
+

(
m

2

)
−

(
m

3

)
+ · · ·+ (−1)m

(
m

m

)
,

it follows that
(

m

0

)
+

(
m

2

)
+

(
m

4

)
+ · · ·+

(
m

m

)
(4)

=
(

m

1

)
+

(
m

3

)
+

(
m

5

)
+ · · ·+

(
m

m− 1

)
,
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if m is even, and (
m

0

)
+

(
m

2

)
+

(
m

4

)
+ · · ·+

(
m

m− 1

)
(5)

=
(

m

1

)
+

(
m

3

)
+

(
m

5

)
+ · · ·+

(
m

m

)
,

if m is odd. Also, we have

n−1
2∑

k=1

n−2k+1∑

j=1

aj

(
n− j

2k − 1

)
=

((
n− 1

1

)
+

(
n− 1

3

)
+ · · ·+

(
n− 1
n− 2

))
a1

(6)

+
((

n− 2
1

)
+

(
n− 2

3

)
+ · · ·+

(
n− 2
n− 2

))
a2

+ · · ·+
(

n− (n− 2)
1

)
an−2 +

(
n− (n− 1)

1

)
an−1,

while

n−1∑

j=1

aj +

n−1
2∑

l=1

n−2l∑

j=1

aj

(
n− j

2l

)
=

(
1 +

(
n− 1

2

)
+

(
n− 1

4

)
+ · · ·+

(
n− 1
n− 1

))
a1

(7)

+
(

1 +
(

n− 2
2

)
+

(
n− 2

4

)
+ · · ·+

(
n− 2
n− 3

))
a2

+ · · ·+ an−2 + an−1 +
(

n− (n− 2)
2

)
an−2.

From the equations (4)–(7), we obtain (3), as desired. Therefore the identity (2)
follows.

Now we proceed to prove Theorem 1.
Proof of Theorem 1. Let P denote the set of all primes. Suppose that for each

aj , the canonical prime expansion is

aj =
∏

p∈P
pαj(p),

where αj(p) is a nonnegative integer for each p ∈ P. Then

∏

j 6=1

aj =
∏

p∈P
p

∑
j 6=1

αj(p)

,

and so, by a property of gcd (for reference, see [1], [2]),

gcd
(∏

j 6=1

aj ,
∏

j 6=2

aj , . . . ,
∏

j 6=k

aj , . . . ,
∏

j 6=n

aj

)

=
∏

p∈P
p
min

{∑
j 6=1

αj(p),
∑
j 6=2

αj(p),...,
∑
j 6=n

αj(p)

}

,
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where
∑
j 6=k

αj(p) :=
n∑

j=1
j 6=k

αj(p), k ∈ {1, 2, . . . , n}.

Similarly,

G2 =
∏

p∈P
p

∑
1≤i<j≤n

{αi(p),αj(p)}
,

and hence

G2G4 · · ·Gn−1 =
∏

p∈P
p

∑
even,

where
∑
even

denotes

∑

1≤i<j≤n

min{αi(p), αj(p)}+
∑

1≤σ1<σ2<σ3<σ4≤n

min{ασ1(p), ασ2(p), ασ3(p), ασ4(p)}

+ · · ·+
∑

1≤σ1<σ2<···<σn−1≤n

min{ασ1(p), . . . , ασn−1(p)}.

Moreover,

G3G5 · · ·Gn =
∏

p∈P
p

∑
odd,

where
∑
odd

denotes

∑

1≤σ1<σ2<σ3≤n

min{ασ1(p), ασ2(p), ασ3(p)}

+
∑

1≤σ1<σ2<σ3<σ4<σ5≤n

min{ασ1(p), ασ2(p), ασ3(p), ασ4(p), ασ5(p)}

+ · · ·+ min{α1(p), . . . , αn(p)}.
Since we have assumed that n is odd, the identity we are proving is equivalent to

gcd
(∏

j 6=1

aj ,
∏

j 6=2

aj , . . . ,
∏

j 6=k

aj , . . . ,
∏

j 6=n

aj

)
·G(3) ·G(5) · · ·G(n)(8)

= G(2) ·G(4) · · ·G(n− 1).

Clearly, we obtain

gcd
(∏

j 6=1

aj ,
∏

j 6=2

aj , . . . ,
∏

j 6=k

aj , . . . ,
∏

j 6=n

aj

)
·G(3) ·G(5) · · ·G(n)

=
∏

p∈P
p
min

{∑
j 6=1

αj(p),
∑
j 6=2

αj(p),...,
∑
j 6=n

αj(p)

}

·
∏

p∈P
p

∑
odd
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=
∏

p∈P
p
min

{∑
j 6=1

αj(p),
∑
j 6=2

αj(p),...,
∑
j 6=n

αj(p)

}
+

∑
odd,

where

min
{∑

j 6=1

αj(p),
∑

j 6=2

αj(p), . . . ,
∑

j 6=n

αj(p)
}

+
∑

odd

= min
{∑

j 6=1

αj(p),
∑

j 6=2

αj(p), . . . ,
∑

j 6=n

αj(p)
}

+
∑

1≤σ1<σ2<σ3≤n

min{ασ1(p), ασ2(p), ασ3(p)}

+
∑

1≤σ1<σ2<σ3<σ4<σ5≤n

min{ασ1(p), ασ2(p), ασ3(p), ασ4(p), ασ5(p)}

+ · · ·+ min{α1(p), . . . , αn(p)}.
Now, from Lemma 1 it follows that

min
{∑

j 6=1

αj(p),
∑

j 6=2

αj(p), . . . ,
∑

j 6=n

αj(p)
}

+
∑

odd

=
∑
even

,

which implies that (8) holds. Hence the proof of Theorem 1 is completed.

2. An application of our result

Since we can easily show that (for the case of two integers, see Theorem 1.13
in [2], and for the case of three integers, see [3])

|a1 · a2 · · · an|
lcm(a1, a2, . . . , an)

= gcd
(∏

j 6=1

aj ,
∏

j 6=2

aj , . . . ,
∏

j 6=k

aj , . . . ,
∏

j 6=n

aj

)
,

where lcm denotes the least common multiple, by Theorem 1, the following corollary
is apparent.

Corollary 1. For all nonzero integers a1, . . . , an, with n ≥ 3, we have

lcm(a1, a2, . . . , an) =

{ G(3)·G(5)···G(n)
G(2)·G(4)···G(n−1) · |a1 · a2 · · · an|, if n is odd,
G(3)·G(5)···G(n−1)

G(2)·G(4)···G(n) · |a1 · a2 · · · an|, if n is even.

Remark. Actually, for the case of three nonzero integers, we can prove The-
orem 1, that is, identity (1), as follows.

(a, b)(b, c)(c, a)

=
(
(a, b)b, (a, b)c

)
(c, a) (Th1.6)
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=
(
(ab, b2), (ac, bc)

)
(c, a) = (ab, b2, ac, bc)(c, a) (associativity)

=
(
(ab, b2, ac, bc)c, (ab, b2, ac, bc)a

)
(Th1.6)

=
(
(abc, b2c, ac2, bc2), (a2b, ab2, a2c, abc)

)
(Th1.6)

= (abc, b2c, ac2, bc2, a2b, ab2, a2c, abc) (associativity)

= (abc, b2c, bc2, ac2, a2c, a2b, ab2, abc) (commutativity)

= (abc, b2c, bc2, abc, ac2, a2c, a2b, ab2, abc) (idempotency)

=
(
(abc, b2c, bc2), (abc, ac2, a2c), (a2b, ab2, abc)

)
(associativity)

=
(
bc(a, b, c), ac(b, c, a), ab(a, b, c)

)

=
(
bc(a, b, c), ac(a, b, c), ab(a, b, c)

)

= (a, b, c)(bc, ac, ab) = (a, b, c)(ab, bc, ca),

where Th1.6 refers to the Theorem 1.6 of [2]. But for the general case, this method
is inapplicable.
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