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A GREATEST COMMON DIVISOR IDENTITY
Yuanhong Zhi

Abstract. In this paper we present an identity involving the greatest common
divisors of almost all possible subproducts of n nonzero integers. Then we prove this
identity, with the help of the fundamental theorem of arithmetic, and an identity
concerning the minimum function min. As a consequence, a new formula for the least
common multiple is derived.
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In this paper, we present an identity expressing the relationship between the
greatest common divisors of almost all possible subproducts of n nonzero integers.
This identity can be viewed as a kind of generalized version of the elementary
identity (see [3] for reference)

ged(a, b) - ged(a, ¢) - ged(b, ¢)
ged(a, b, c) ’

ged(ab, ac, be) =

which is easily checked, and proved (we also give a proof at the end of this paper).
Here and below, gcd denotes the greatest common divisor, and lem the least com-
mon multiple. Sometimes we also write the ged of a and b as (a,b), if there is no
ambiguity. In the following, we first state and prove the identity, and then give a
direct corollary, which represents lem by ged’s.

1. Main result

We are going to prove the following identity.

THEOREM 1. For all nonzero integers ai,...,an, with n > 3, we have
gcd(Haj,Haj7...,Haj,..., Haj>
JAL j#2 ik j#n

G(2)-GA)G(n—1) .o .
GB)CG) - Cm) if n is odd,
_G(2)G(4)-G(n)
GB3)-GB)-Cn-1)

if n is even,
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n
where [ a; := 1] aj = a1---ay - a,, where the notation = means the number
j#k p=1
! pF#k
under it is skipped, and
G(2) := H ged(ag, aj),
1<i<j<n
G(3) := H ged(ag, aj, ak),
1<i<j<k<n
G(k) := H ged(aoy, Aoyy -y G0y ),

1<01<02<-<op<n

G(n) :=ged(ay, ..., ap).
Particularly, for every three nonzero integers a, b, c,
_ged(a,b) - ged(b, ¢) - ged(c, a)

1 d(ab, be, ca) =
() ged(ab,be, ca) ged(a, b, ¢) '

and for four nonzero integers a,b,c,d,
(a,b) - (a,¢) - (a,d) - (b,c) - (b,d) - (¢,d) - (a,b,c,d)
(CL, ba C) : (Cl, ba d) ' (CL, C, d) : (bv c, d)

ged(abe, abd, acd, bed) =
GGy
Gs '’
where
Go = ged(a, b) - ged(a, ¢) - ged(a, d) - ged(b, ¢) - ged(b, d) - ged(c, d),
G3 = ged(a, b, ¢) - ged(a, b,d) - ged(a, ¢, d) - ged(b, ¢, d), Gy := ged(a, b, c,d).

In order to prove Theorem 1, we need the following lemma.

LEMMA 1. Letn be an integer with n > 3. Suppose a1, ..., a, are real numbers.
Then we have the following identities:

(a) If n is odd, then

2)

min{a1, as} + min{ay,as} + -+ + min{a,—1,a,}
+ min{ay, as,as, a4} + - - + min{a,_3,an_2,an-1,a,}
+ min{ay, as,...,a6} + - +min{an—_5,dn-a,@n-3,An-2,0n_1,an}
+ -+ min{ay,...,an_1} + - + min{az,as,...,an}

=min{ay, + oy, + -+ a5, _, |1 <01 <02 < - <0p_1 <n}

+ min{a1, as, as} + min{ay,as, a4} + - - + min{a,—o2,an_1,a,}
+ min{ay, az,as, a4, a5} + - + min{a,—4,an-3,@n_2,an_1,a,}
+ -+ min{ay,...,a,};
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(b) if n is even, then

min{ay,as} + min{ay,as} + -+ + min{a,—1,a,}
+ min{ay, as,as, a4} + - + min{a,_3,an_2,an-1,0,}
+ min{ay, ag,...,a6} + -+ +min{an—_5, dn-a,@n-3,An-2,0n_1,an}
+ -4+ minf{ay,...,a,}
=min{as, + oy + -+ ag, , |1 <01 <03< - <o0p_1 <n}
+ min{a1, as, as} + min{ay,as, a4} + - - + min{a,—o2,an—1,a,}
+ min{ay, a2, a3, a4,a5} + -+ + min{an_4,an_3,4n-2,an_1,an}

+ -+ minf{ay,...,ap_1} + - + min{az, as,...,a, }.

Proof. We shall prove just the case when n is odd, for the proof of the case
when n is even is similar. Let n be a positive odd integer with n > 3. Since
the desired identity is transpositionally, and cyclically symmetrical, it suffices to
consider the case of a; < as < -+ < a,. Then the left-hand side of (2) equals

n—1

5 n—2k+1 .
n—17
as
> a(50)
k=1 j=1
while its right-hand side is
el n;1 2l )
n—j
Yoy (")
j=1 =1 j=1
Hence, it suffices to show
2 n—2k+1 n—j n—1 2t -2l n—j
@ XY w(p )T e ("))
k=1 j=1 j=1 =1 j=1

it follows that

o)
)



76 Yuanhong Zhi

if m is even, and

(5) <7§> * @) * (T) T (mﬂz 1)
() G+ G) e ()

if m is odd. Also, we have

(6)

S ) () () (1)
(T (000) e

e (O e (0D

(e ()05 e (55)
P

2

From the equations (4)—(7), we obtain (3), as desired. Therefore the identity (2)
follows. m

Now we proceed to prove Theorem 1.

Proof of Theorem 1. Let P denote the set of all primes. Suppose that for each
a;, the canonical prime expansion is

a; = H paj(p)v

peP
where ¢ (p) is a nonnegative integer for each p € P. Then

a;(p)

2
H aj = H pj#l s
Jj#1 peEP
and so, by a property of ged (for reference, see [1], [2]),

gcd(Haj,Haj,...,Haj,...,Haj)
J#1 J#2 Jj#k Jj#n
_ H pmin{;aj(p),jé;aj(P)p-w]é:naj(p)}

pEP

)
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7
where Y a;(p) :== " a(p), k€ {1,2,...,n}.
J#k Jj=1
J#k
Similarly,
{ai(p),a;(p)}
Gy = H P 192’9 ,
pEP
and hence 5
GGy Gpoy = H peven,
peEP
where Y denotes

S minfai(p), a;(p)} + >
1<i<j<n

min{ae, (p), Ao, (P), Aoy (P), o, (D) }
1<01<02<03<04<n
ot 3

1<o1<02< - <on-1<n

min{aal (p)7 e Qo (p)}

Moreover,

>

G3G5 PPN Gn = H podd’
peEP
where ) denotes
odd
Z min{ag, (p), do, (p), oy (p) }
1<o1<02<03<n

+ Z min{ s, (p), ¥, (P), Aoy (D), Ao, (P), oy (P) }
1<01<03<03<04<05<n

44 min{al(p), ceey Oén(p)}'

Since we have assumed that n is odd, the identity we are proving is equivalent to

(8) gcd(Haj,Haj,...,Haj,..., H aj) -G(3)-G(5)---G(n)
J#1 J#2 J#k Jj#n

=G2)-G4)---Gn-1).

Clearly, we obtain

gcd(Haj,Haj,...,Haj,...,Haj) -G(3)-G(B)---G(n)
J#1 J#2 J#k Jj#n
min{Z%‘(ﬁ):Z aj(p)ys Y aj(p)} >
- H p i#1 72 J#n

. H p odd
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min{ D)) ey 04.7‘(10)}+E
J#1 J#2 J#EN odd

=1I» :

where

min{Zaj(p),Zaj(p)a-~-azaj(p)} +Z

J#1 J#2 j#n odd
= min{z a;(p), Zoéj(p), ey Z aj(p)}
j#£1 j#2 J#n

+ Z min{a,, (p), s, (P), 0oy (p) }

1<o1<02<03<n

+ Z min{ay, (p), Aoy (P)y Qs (D), Aoy (D), s (D) }

1<01<02<03<04<05<n
+ -+ min{a;(p),...,an(p)}.

Now, from Lemma 1 it follows that

min{Zaﬂp),Z%(p%...,Zaj(p)} +Z = 27

j#1 JF#2 ji#n odd even
which implies that (8) holds. Hence the proof of Theorem 1 is completed. m
2. An application of our result

Since we can easily show that (for the case of two integers, see Theorem 1.13
in [2], and for the case of three integers, see [3])

lcrjlcz;17a;27atlc|ln) :ng(Hajv Haj’ Ceey Haj, ceey Haj>;

J#1 J#2 J#k J#n

where lem denotes the least common multiple, by Theorem 1, the following corollary
is apparent.

COROLLARY 1. For all nonzero integers aq, ..., a,, with n > 3, we have
G(3)-G(5)--G(n) .
lem(ar, s an) = { SLGEL GO oy 0y -a],if n is odd,
1,025...,Un) — G(3)-G(5)---G(n— . .
%ﬂal-ay--anh if n is even.

REMARK. Actually, for the case of three nonzero integers, we can prove The-
orem 1, that is, identity (1), as follows.

(a,b)(b,c)(c,a)
= ((a,0)b, (a, b)) (c, a) (Th1.6)
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(ab,b*), (ac, b)) (c,a) = (ab,b*, ac, be)(c, a) (associativity)
(ab,b*, ac, be)e, (ab,b*, ac, be)a) (Th1.6)
(abe, b%c, ac?,bc?), (a®b, ab®, a’c, abe)) (Thl.6)

= (abe, b*c, ac?, bc?, a®b, ab?, a*c, abc) (associativity)
= 2 a*c,a’b, ab?, abc) (commutativity)
= (abe, b*c, be?, abe, ac?, a®c, a®b, ab®, abc) (idempotency)

(abe, b?c, bc?), (abe, ac?, a’c), (a
be(a, b, ¢), ac(b, ¢, a),ab(a, b, c))
be(a, b, c), ac(a, b, c),ab(a, b, c))

a, b, c)(be, ac, ab) = (a, b, c)(ab, be, ca),

%, ab®, abc)) (associativity)

(
(
(
(
(abe, b?c, be?, ac
(
(
(be(
(
(

where Th1.6 refers to the Theorem 1.6 of [2]. But for the general case, this method
is inapplicable.
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