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CHAPTER III. SET

1. Sets and subsets

The notion of a set has a somewhat different meaning in mathematics than
in everyday language. The ordinary word “set” usually means a large number of
certain objects1. In mathematics a set is an arbitrary collection of objects defined
by a certain property which they all have. The objects which comprise a set are
called its elements. So, for instance, we may talk about sets of one or two elements.
A set is usually denoted by a capital letter (for example, M) and its elements by
small letters (for example, a, b, . . . , α, β, . . . ). The fact that a is an element of
the set M is written in the form a ∈ M and we also say that a belongs to M . If M
consists of elements a1, . . . , an, we write M = {a1, . . . , an}.

A set containing a finite number of elements is called a finite set, while a set
containing an infinite number of elements is called an infinite set. The number of
elements of a finite set M is denoted by n(M).

In this chapter we shall mainly be concerned with finite sets. The finite sets
M and M ′ are said to be equivalent (equipotent) if they have the same number
of elements, i.e. if n(M) = n(M ′). We shall now describe the method which is
usually used to establish the equivalence of two sets. One-to-one correspondence
between two sets M and M ′ is coupling, or pairing off, their elements into pairs
(a, a′), where a ∈ M , a′ ∈ M ′, so that each element a of M is coupled with one
and only one element a′ of M ′, and each element a′ of M ′ is coupled with one and

This paper is an English translation of: I. R. Xafareviq, Izbranye glavy algebry, Matem-
atiqeskoe obrazovanie, 3, okt.--dek. 1997, Moskva, str. 2--45. In the opinion of the editors, the paper
merits wider circulation and we are thankful to the author for his kind permission to let us make
this version.

1This is not so much true for the English language as it is for Russian. The Russian word
for the set mno�estvo has the same root as the word mnogo (many).
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Fig. 1

only one element a of M . If we represent the sets M and M ′ graphically and draw
lines connecting those elements which belong to one pair, we see that each element
of M is connected to one and only one element of M ′ and vice versa (Fig. 1).

For instance, if n(M) = n and if we numerate the elements of M as follows:
M = {a1, . . . , an}, we have established a one-to-one correspondence between the
set M and the set N of numbers 1, 2, . . . , n.

If we choose two points O and E on a straight line, then to each point A which

lies on that line we can correspond the real number
|OA|
|OE| with the + sign if A is

on the same side of O as E, and with − sign in the opposite case. This establishes
a one-to-one correspondence between the set of the points of the straight line and
the set of all real numbers which is usually denoted by R. We shall consider this
in more detail in one of the subsequent chapters.

If we have a one-to-one correspondence between the sets M and M ′, and if
the elements a ∈ M and a′ ∈ M ′ are coupled in the pair (a, a′) we say that the
element a corresponds to the element a′, and that the element a′ corresponds to
the element a.

Two finite sets are equivalent if and only if it is possible to establish a one-to-
one correspondence between them.

This statement is so ovious, that it can hardly be called a theorem. If n(M) =
n(M ′) = n, we can write our sets as follows: M = {a1, . . . , an}, M ′ = {a′1, . . . , a′n},
and by forming pairs (ai, a

′
i) of elements with the same index we establish a one-

to-one correspondence between M and M ′. Conversely, if there exists a one-to-
one correspondence between M and M ′, and if we write M in the form M =
{a1, . . . , an}, then each ai belongs to a pair with one and only one element a′ ∈ M ′,
and we can give it the same index, i.e. we can put a′ = ai. By the definition of
a one-to-one correspondence, we can numerate in this way all the elements of M ′,
and we obtain that M ′ = {a′1, . . . , a′n}.

R. Dedekind (the second part of the 19th century) who did a lot to clear the role
which sets have in mathematics, thought that the above statement gives, in a hidden
form, the definition of a positive integer. According to him, it is first necessary to
define the notion of one-to-one correspondence, and then a positive integer is the
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general property possessed by all finite sets among which it is possible to establish
one-to-one correspondence. This is probably how the notion of a positive integer
was formed historically (of course, without the present terminology). For example,
the notion “two” was formed, as we said in Section 1 of Chapter I, by abstracting,
i.e. by considering the general property shared by the sets consisting of: two eyes,
two oars in a boat, two travellers walking along the road, and more generally by all
the sets which can be put into a one-to-one correspondence with one of the above.

This means that the notion of a set is the most fundamental notion of math-
ematics, since the notion of a positive integer is founded upon the notion of a
set.

In further text we shall often construct new sets, starting with two given sets.
The product of sets M1 and M2 is the set whose elements are all the pairs

(a, b), where a is an arbitrary element of M1 and b is an arbitrary element of M2.
The product of M1 and M2 is denoted by
M1 ×M2.

For example, if M1 = {1, 2}, M2 =
{3, 4}, then M1 × M2 consists of the pairs
(1, 3), (1, 4), (2, 3), (2, 4).

If M1 = M2 is the set R of all real num-
bers, M1 × M2 is the set of all pairs (a, b),
where a and b are real numbers. The co-
ordinate method in the plane establishes a
one-to-one correspondence between the set
M1×M2 and the set of all points of the plane
(Fig. 2).

Fig. 2

As another example, suppose that M1 consists of the numbers 1, 2, . . . , n, and
M2 of the numbers 1, 2, . . . , m. Introduce two new variables x and y and correspond
to a number k ∈ M1 the monomial xk and to the number l ∈ M2 the monomial yl.
An element of the set M1 × M2 has the form (k, l) and we can correspond to it
the monomial xkyl. In this way we obtain a one-to-one correspondence between
the set M1 ×M2 and the set of monomials of the form xkyl, where k = 1, . . . , n;
l = 1, . . . , m. In other words this is the set of monomials which stand on the
right-hand side of the equality

(1) (x + x2 + · · ·+ xn)(y + y2 + · · ·+ ym) = xy + x2y + xy2 + · · ·+ xnym.

Hence, the set of these monomials is equivalent to the set M1 ×M2.
Analogously, let M1, M2, . . . , Mr be arbitrary sets. Their product is the

set consisting of all sequences (a1, . . . , ar) where the i-th place is taken by an
arbitrary element of the set Mi. The product of the sets M1, . . . , Mr is denoted
by M1 × · · · ×Mr.

For example, if M1 = M2 = M3 is the set of all real numbers R, the coordinate
method in the space establishes a one-to-one correspondence between the points of
the space and the set M1 ×M2 ×M3.
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But in this chapter we are considered with finite sets.

THEOREM 1. If the sets M1, . . . , Mr are finite, then the set M1 × · · · ×Mr

is also finite, and n(M1 × · · · ×Mr) = n(M1) · · ·n(Mr).

We shall first prove the theorem for the case of two sets, i.e. when r = 2; this
will be the induction basis. If M1 = {a1, . . . , an}, M2 = {b1, . . . , bm}, then all the
pairs (ai, bj) can be written in the form of a rectangle

(2)

(a1, b1) . . . (an, b1)
(a1, b2) . . . (an, b2)

. . . . . . . . .
(a1, bm) . . . (an, bm)

The j-th row above contains pairs whose last element is always bj . In each row the
number of pairs is equal to the number of all ai’s, i.e. it is n. The number of the
rows is equal to the number of all bj ’s, i.e. it is equal to m. Hence, the number of
pairs is nm. Notice that the rectangle (2) resembles, in a way, Fig. 2. (A different
line of reasoning would be to say that the set M1 is equivalent to the set {1, . . . , n}
or to the set of monomials {x, x2, . . . , xn} and that M2 is equivalent to the set
{y, y2, . . . , ym}. Then, n(M1 × M2) is, as we have seen, the number of terms in
the right-hand side of (1). Putting x = 1, y = 1, we conclude that this number of
terms is nm.)

The proof of the general case of r sets M1, . . . , Mr will be carried out by
induction on r. In each sequence (a1, . . . , ar) we introduce two more brackets, and
write it in the form ((a1, . . . , ar−1), ar). Clearly, this does not alter the number
of the sequences. But the sequence ((a1, . . . , ar−1), ar) is the pair (x, ar), where
x = (a1, . . . , ar−1) can be considered to be an element of the set M1 × · · · ×Mr−1.
Hence, the set M1 × · · · ×Mr is equivalent to the set P ×Mr, where P = M1 ×
· · · ×Mr−1. We have proved that n(P ×Mr) = n(P )n(Mr), and by the induction
hypothesis we have n(P ) = n(M1) · · ·n(Mr−1). Therefore, n(M1 × · · · × Mr) =
n(M1) · · ·n(Mr−1)n(Mr) and the proof is complete.

Using Theorem 1 we can once more form the expression for the number of
divisors of a positive integer n. Suppose that n has the cannonical representation

n = pα1
1 · · · pαr

r .

In Section 3 of Chapter I we saw that the divisors of n can be written in the form

m = pβ1
1 · · · pβr

r ,

where βi can take any integral value between 0 and αi (formula (11) of Chapter I).
In other words, the set of divisors is equivalent to the set of sequences (β1, . . . , βr)
where βi takes the above mentioned values. But this is exactly the product M1 ×
· · · ×Mr of the sets Mi where Mi is the set {0, 1, . . . , αi}. Since n(Mi) = αi + 1,
according to Theorem 1 the number of divisors is (α1 +1)(α2 +1) · · · (αr +1). This
formula was derived in a different way in Section 3, Chapter I.
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If the sets M1, . . . , Mr coincide, i.e. if M1 = M2 = · · · = Mr = M their
product M1 × · · · × Mr is denoted by Mr. Consider the case when M1 = · · · =
Mr = I, and the set I has two elements a and b. An element of Ir is a sequence
of r symbols, each one being a or b, e.g. aababbba (for shortness sake we omit the
commas). This can be considered as a word of r letters written in the alphabet of
two letters, a being a dot and b a dash. Therefore, n(Ir) is equal to the number
of words of length r, written in Morse’s alphabet. As we see, it is equal to 2r (all
ni = 2).

In further text we consider sets contained in a given set M . They are called its
subsets. This means that a subset N of a set M contains only elements of M , but
not necessarily all of them. The fact that N is a subset of M is written as N ⊂ M .
We also take that M is a subset of itself. As we shall see later, it is very convenient
to consider the subset of M containing no elements—this simplifies greatly many
definitions and theorems. This subset is callled the empty subset and is denoted
by ∅. By definition we take n(∅) = 0.

If N ⊂ M , the set of all elements of M which do not belong to N is called the
complement of N and is denoted by N . For instance, if M is the set of all positive
integers, and if N is the set of all even positive integers, then N is the set of all
odd positive integers. If N = M , then N = ∅.

If N1 and N2 are two subsets of M (i.e. N1 ⊂ M and N2 ⊂ M) then the set of
all elements which belong to N1 and N2 is called their intersection and is denoted
by N1 ∩N2. For example, if M is the set of all positive integers, if N1 is the subset
of all those divisible by 2, and N2 the subset of all those divisible by 3, then N1∩N2

is the set of all positive integers divisible by 6.
If N1 and N2 do not have common elements, then by definition N1 ∩N2 = ∅,

the empty set. So, if M and N1 are the same as in the previous example, and N2

is the set of odd positive integers, then N1 ∩N2 = ∅.
The set containing elements which belong to the subset N1 or the subset N2 is

called their union and is denoted by N1∪N2. For example, if M is again the set of
all positive integers, and N1 and N2 are the subsets of all even and odd numbers,
respectively, then N1 ∪N2 = M .

a) b)
Fig. 3

Intersections and unions of sets can be represented graphically as in Figure 3.
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In Fig. 3a) M1 ∪ M2 is hatched by horizontal and M1 ∩ M2 by vertical lines. In
Fig. 3b) the set (M1 ∪M2) ∩M3 is hatched.

In this chapter we shall consider subsets of a finite set M , which satisfy certain
conditions and we shall derive formulas for the number of all such subsets. The
branch of mathematics concerned with such questions is called combinatorics.

Therefore, combinatorics is the theory of arbitrary finite sets. We do not use
notions such as distance or the magnitude of an angle, equation or its roots, but
only the notion of a subset and the number of its elements. Hence, it is very
surprising that, using only such miserly material, we can find many regularities
and connections with other branches of mathematics which are not at all obvious.

Problems

1. Let M = M ′ be the set of all positive integers. Couple into pairs the
number a ∈ M with b ∈ M ′ such that b = 2a. Is this a one-to-one correspondence
between M and M ′?

2. Let N be the set of all positive integers, let M = N × N and let M ′ be
the set of positive rational numbers. Couple into pairs (n1, n2) ∈ M with a ∈ M ′

if a = n1/n2. Is this a one-to-one correspondence?

3. How many different one-to-one correspondences exist between two sets M
and M ′ if n(M) = n(M ′) = 3? Draw them analogously as in Fig. 1.

4. Every one-to-one correspondence between the sets M and M ′ defines the
set of those pairs (a, a′), where a ∈ M and a′ ∈ M ′ correspond to each other, i.e.
it defines a subset Γ ⊂ M ×M ′ which is called the graph of correspondence. Let
Γ1 and Γ2 be graphs of two one-to-one correspondences. Prove that Γ1 ∩ Γ2 is a
graph of a one-to-one correspondence if and only if Γ1 = Γ2 and the two given
correspondences coincide.

5. Let n(M) = n(M ′) = n and let Γ be the graph of a one-to-one correspon-
dence between M and M ′ (see Problem 4). Evaluate n(Γ).

6. Let M be the set of all positive integers, let N1 ⊂ M be the subset of
all numbers divisible by a given number a1 and let N2 ⊂ M be the subset of all
numbers divisible by a given number a2. Describe the sets N1 ∪N2 and N1 ∩N2.

7. Prove that (N) = N , i.e. that the complement of the complement of a
subset N is exactly N .

2. Combinatorics

We start with the simplest question: determine the number of all subsets of a
finite set.

We first solve the problem for small values of n(M). We will write down the
subsets N of M writing in one row all the subsets with the same number of elements
(i.e. with the same value of n(N)). The rows are arranged in the ascending order
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of n(N).

1. n(M) = 1, M = {a}
n(N) = 0; N = ∅
n(N) = 1; N = M = {a}

2. n(M) = 2, M = {a, b}
n(N) = 0; N = ∅
n(N) = 1; N = {a}, N = {b}
n(N) = 2; N = M = {a, b}

3. n(M) = 3, M = {a, b, c}
n(N) = 0; N = ∅
n(N) = 1; N = {a}, N = {b}, N = {c}
n(N) = 2; N = {a, b}, N = {a, c}, N = {b, c}
n(N) = 3; N = M = {a, b, c}

Table 1

We see that if n(M) = 1, the number of subsets is 2, if n(M) = 2 it is 4 and
if n(M) = 3 it is 8. This suggests the general statement.

THEOREM 2. The number of all subsets of a finite set M is 2n(M).

There is a general method which reduces the investigation of an arbitrary finite
set to the investigation of sets with smaller number of elements. The set M is called
the sum of its two subsets M1 ⊂ M and M2 ⊂ M if M1 ∪M2 = M , M1 ∩M2 = ∅.
Clearly, this is equivalent to M2 = M1 and M1 = M2. In this case each element of
M belongs to one of the subsets M1 or M2 (since M1 ∪M2 = M) and only to one
of them (since M1 ∩M2 = ∅). Hence, n(M) = n(M1) + n(M2). The fact that M
is the sum of M1 and M2 is written as M = M1 + M2. Such a representation is
also called a partition of M into M1 and M2.

Let M = M1 + M2 and let N ⊂ M be an arbitrary subset. Then any element
a ∈ N belongs either to M1 (in this case a ∈ N ∩ M1) or to M2 (in this case
a ∈ N ∩ M2), and only one of these cases can take place (since M1 ∩ M2 = ∅).
Hence N = (N∩M1)+(N∩M2). Conversely, if N1 ⊂ M1 and N2 ⊂ M2 are arbitrary
subsets, then N1 ⊂ M , N2 ⊂ M and N = N1 ∪ N2 ⊂ M , whereas N ∩M1 = N1

and N ∩M2 = N2. In this way we establish a one-to-one correspondence between
the subsets N of M and the pairs (N1, N2) where N1 and N2 are arbitrary subsets
of M1 and M2, respectively.

We now formulate this result in terms of sets. Denote by U(M) the set of all
subsets of a set M . One should not be alarmed because we consider here subsets as
elements of a new set. So, for example, associations of civil or electrical engineers
are elements of the general association of engineers. In Table 1 we decribed the sets
U(M) when n(M) = 1, 2 or 3. The result obtained above can be formulated as
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follows: if M = M1 + M2 is a partition of M , then the set U(M) is in a one-to-one
correspondence with the set U(M1) × U(M2). Denote the number n(U(M)) by
v(M)—this is the required number of all subsets. Applying Theorem 1 we deduce
that

(3) v(M1 + M2) = v(M1)v(M2).

The equality (3) reduces the evaluation of v(M) to the evaluation of v(M1)
and v(M2) for the sets M1 and M2 with smaller number of elements. In order
to obtain the final result, consider the partition of M not into two, but into an
arbitrary number of subsets. We can define this concept inductively, saying that
M = M1 + · · · + Mr if M = (M1 + · · · + Mr−1) + Mr, where the expression
M1 + · · · + Mr−1 is taken to be already defined. In fact, when we say that M =
M1+· · ·+Mr, this means that M1, . . . , Mr are subsets of M and that every element
of M belongs to one and only one of the subsets M1, . . . , Mr. For example, if M
is the set of all positive integers, then M = M1 +M2 +M3, where M1 is the subset
of all numbers divisible by 3, M2 is the subset of all numbers of the form 3r + 1
and M3 is the subset of all numbers of the form 3r + 2.

From (3), for finite sets Mi we obtain, by induction

(4) v(M1 + · · ·+ Mr) = v(M1) · · · v(Mr).

If n(M) = n, then there exists the “tiniest” partition of M into n subsets Mi,
each having only one element, i.e. M = M1 + · · ·+ Mn. If M = {a1, . . . , an}, then
Mi = {ai}. The one element set Mi has two subsets: the empty set ∅ and Mi

itself (see Table 1, first row). Hence, v(Mi) = 2 and applying formula (4) to the
partition M = M1 + · · ·+ Mn we obtain that v(M) = 2n, as stated in Theorem 2.

The question of the number of all subsets of a given set appears in connection
with certain problems regarding numbers. For example, consider the following
question: in how many ways can a positive integer n be written as a product of
two relatively prime factors? Let n = ab, where a and b are relatively prime and let
n = pα1

1 · · · pαr
r be the canonical prime factorization. Then a and b are divisors of n

and, as we saw in Section 3 of Chapter I, each one of them has the form pβ1
1 · · · pβr

r

where 0 6 βi 6 αi. But since a and b are relatively prime, then if some pi divides a,
then it cannot divide b and hence appears in a with degree αi. Therefore, in order
to obtain the required factorization n = ab, it is necessary to choose an arbitrary
subset N of the set M = {p1, . . . , pr} and to equate a to the product of pαi

i for
pi ∈ N . Then a divides n and n = ab is the required factorization. According to
Theorem 2, the number of all factorizations of n into products of two relatively
primer factors is 2r, where r is the number of different prime factors of n.

It should be noted that in the above evaluation we considered the factorization
n = ab and n = ba to be different. In fact, if a, and hence the factorization
n = ab, corresponds to the subset N ⊂ {p1, . . . , pr}, then b corresponds to the
subset consisting of those pi ∈ M which do not belong to N , i.e. which belong
to the complement N of N . Therefore, in our evaluation we corresponded the
factorizations n = ab and n = ba to two different subsets N and N . Hence, if we
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do not want to make a difference between the factorizations n = ab and n = ba,
then the two subsets N and N should be treated as one, and then the number of
all factorizations in this sense would be 2r−1.

We now pass on to a more subtle problem: find the number of subsets of a
given finite set M which contain m elements and m is a given number. In order to
do this, we again collect all the subsets N ⊂ M such that n(N) = m into one set
denoted by U(M, m). If we put n(U(M, m)) = v(M,m), then this is the number
which we wish to find. In Table 1 we wrote the sets which belong to U(M, m) on
one row. Hence, we obtain the values of v(M,m) for small values of n(M):

n(M) = 1 : v(M, 0) = 1, v(M, 1) = 1

n(M) = 2 : v(M, 0) = 1, v(M, 1) = 2, v(M, 2) = 1

n(M) = 3 : v(M, 0) = 1, v(M, 1) = 3, v(M, 2) = 3, v(M, 3) = 1

Table 2

THEOREM 3. If n(M) = n, the number of subsets N ⊂ M of the set M which
contain m elements (i.e. such that n(N) = m) is equal to the binomial coefficient
Cm

n . In other words, v(M, m) = Cm
n .

The proof is based upon the same idea as the proof of Theorem 2. Namely,
suppose that the set M is the sum of two subsets: M = M1 + M2 and we shall
express the number v(M,m) in terms of the numbers v(M1,m) and v(M2,m). If
M = M1 +M2, then each subset N ⊂ M can be written in the form N = N1 +N2,
where N1 = N∩M1, N2 = N∩M2. If we take into account the condition n(N) = m,
then we must have n(N1) + n(N2) = m. Let k and l be two nonnegative integers
such that k + l = m. Consider all subsets N ⊂ M such that n(N ∩M1) = k, and
n(N ∩M2) = l, denote the set of all these subsets by U(k, l) and put n(U(k, l)) =
v(M, k, l). Then in the same way as in the proof of Theorem 2 we see that

(5) v(M, k, l) = v(M1, k)v(M2, l).

The set U(M, m) can clearly be partitioned into sets U(M, k, l) for various
pairs of numbers k, l, such that k + l = m. Therefore the number of its elements
v(M, m) is equal to the sum of all numbers v(M, k, l) for all k and l such that
k + l = m, i.e. for all the values: k = 0, l = m; k = 1, l = m− 1; . . . ; k = m, l = 0.
From the relation (5) we obtain

(6) v(M, m) = v(M1,m)v(M2, 0)+v(M1,m−1)v(M2, 1)+· · ·+v(M1, 0)v(M2, m).

Of course, if in the product v(M1, k)v(M2, l) it turns out that k > n(M1), we have
to take v(M1, k) = 0 and the same holds for v(M2, l).

We have obtained a relation analogous to the relation (3), although it is more
complicated.

We have met the relation (6) in connection with a completely different problem.
This is, in fact, the coefficient of xm in the product of two polynomials f(x) and
g(x) if the coefficient of xk in f(x) is v(M1, k) and the coefficient of xl in g(x)
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is v(M2, l); see formula (1) od Chapter II. In order to establish the connection
between these two statements, define for an arbitrary finite set M the polynomial
fM (x) whose coefficients are v(M, s):

(7) fM (x) = v(M, 0) + v(M, 1)x + · · ·+ v(M, n)xn,

where n = n(M).
For instance, according to Table 2, if n(M) = 1, then fM (x) = 1 + x, if

n(M) = 2 then fM (x) = 1+2x+x2, if n(M) = 3, then fM (x) = 1+3x+3x2 +x3.
Now comparing the relations (6) and (7) we can write

(8) fM (x) = fM1(x) · fM2(x), if M = M1 + M2.

Hence, if we introduce polynomials fM (x) instead of the numbers v(M) we obtain
a complete similarity with the formula (3). We see that the polynomial fM (x)
turns out to be a just replacement for the number v(M) in our more complicated
problem. This is not a rare thing to happen. If we have to deal not with one
number, but with a finite sequence of numbers (a0, . . . , an), then its properties are
often well expressed by means of the polynomial a0 + a1x + · · · + anxn. We shall
see that later, in other examples.

It remains literally to repeat the end of the proof of Theorem 2. If M =
M1 + · · ·+ Mr, then from (8) we obtain, by induction,

fM (x) = fM1(x) · · · fMr (x).

Now put n(M) = n and partition the set M into n subsets each containing one
element: M = M1 + · · ·+Mn, n(Mi) = 1. The one element set Mi has two subsets:
the empty set ∅ with n(∅) = 0 and Mi with n(Mi) = 1. Therefore, v(Mi, 0) = 1,
v(Mi, 1) = 1, v(Mi, k) = 0 for k > 1, fMi = 1 + x and we conclude that for any
finite set M we have

fM (x) = (1 + x)n(M).

The expression (1+x)n(M) can be written in the form of a polynomial in x by
means of the binomial formula. We have seen (formulas (20) and (24) of Chapter II)
that for n = n(M):

(1 + x)n = C0
n + C1

nx + C2
nx2 + · · ·+ Cn

nxn, where Cm
n =

n!
m! (n−m)!

.

Therefore, recalling the definition of the polynomial fM (x) (formula (7)), we obtain

(9) v(M, m) = Cm
n =

n!
m! (n−m)!

for n = n(M).

This is the answer to our question.
By counting the subsets of M containing 0, 1, 2, . . . , n elements where n =

n(M), we have counted all the subsets of M . Therefore, v(M, 0) + v(M, 1) + · · ·+
v(M, n) = v(M), or using (9) and Theorem 2, C0

n + C1
n + · · · + Cn

n = 2n. This
relation for the binomial coefficients is easily obtained from the binomial formula,
as we have done in Section 3 of Chapter II.
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A subset of m elements of the set {a1, . . . , an} is sometimes called a combina-
tion of n elements, taken m at a time. Hence, the binomial coefficient Cm

n is the
number of all such combinations.

The above question of the number of subsets N ⊂ M , if n(M) = n, n(N) = m,
is connected with some questions regarding positive integers. For example, consider
the question: in how many ways can we write a positive integer n in the form of
r summands, where r is a given number? In other words, what is the number of
solutions of the equation x1+· · ·+xr = n in positive integers x1, . . . , xr? Solutions
with different order of the unknowns are considered to be different. For example,
if n = 4, r = 2, we have 4 = 1 + 3 = 2 + 2 = 3 + 1, and hence there are three
solutions: (1, 3), (2, 2), (3, 1).

Consider the segment AB of length n. Its points whose distance from the initial
point A are integers will be called integral. Clearly, to each solution of the equation
x1 + · · ·+ xr = n corresponds a partition of the segment AB into r segments with
integral end points of length x1, x2, . . . , xr (Fig. 4).

Fig. 4

In its turn, such a partition is defined by the end points of the first r − 1
segments (the end point of the last one is B). These end points define a subset
N of the set M of integral points of the segment AB which are different from B.
Clearly, n(N) = r−1, and in this way we have defined a one-to-one correspondence
between the integer solutions of the equation x1 + · · · + xr = n and the subsets
N ⊂ M , where n(N) = r−1, n(M) = n−1. Therefore, the number of such solutions
is equal to the number of such subsets. Applying formula (9) we conclude that the
number of these subsets is Cr−1

n−1. If we do not fix the number of summands into
which the number n is decomposed, then the number of all partitions is evidently
equal to the sum of partitions into r summands for r = 1, 2, . . . , n. Therefore, the
number of partitions is equal to the sum of all binomial coefficients Cr−1

n−1 where
r = 1, 2, . . . , n. We know that this sum is 2n−1. In other words, a positive integer
n can be partitioned into integer summands in 2n−1 ways (if we allow arbitrary
number of summands, and take into account their order).

Return now to the derivation of formula (9). The method used—the introduc-
tion of the polynomials fM (x)—turns out to be very useful in other cases, and we
shall come back to it later. But formula (9) which connects the numbers v(M,m)
with binomial coefficients can be derived in another way. Consider the expression
(1 + x)n as the product of n equal factors

(10) (1 + x)n = (1 + x)(1 + x) · · · (1 + x)
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and let us expand the product on the right-hand side of (10). We numerate its
factors, i.e. we give them numbers 1, 2, . . . , n which form the set M = {1, 2, . . . , n}.
In order to expand the product (10) we have to multiply each time n terms 1 or x,
taking them from one of the brackets. Hence, each term of the expanded expression
(10) is defined by indicating from which brackets with m numbers i1, i2, . . . , im.
Then 1 is taken from the remaining n−m brackets, and as a result we obtain the
term xm. We see that each term of the expanded expression (10) is defined by the
subset N = {i1, . . . , im} of M which gives the number of brackets from which x
is taken. From the remaining brackets we take 1. The remaining brackets have
those numbers which belong to the complement N of N . Therefore, the number of
appearences of the term xm is equal to the number of subsets N ⊂ M containing
m elements, and this is v(M, m). Hence, the expression (10) in the expanded form
is the sum of the terms of the form v(M, m)xm:

(1 + x)n = v(M, 0) + v(M, 1)x + · · ·+ v(M, n)xn.

Comparing this with the definition of binomial coefficients (formula (20) of Chap-
ter II) we obtain a new proof of the equality v(M, m) = Cm

n .
The same reasoning can be applied to a more general case. Consider the

product of first degree polynomials x + ai, where the coefficient of x is 1. Let us
try to write the product

(11) (x + a1)(x + a2) · · · (x + an)

in the form of a polynomial in x. As before we numerate the n factors. Then each
term in the expanded product (11) is obtained by taking ai1 , ai2 , . . . , aim from the
factors numerated i1, i2, . . . , im and taking x from the remaining n −m factors.
The obtained term has the form ai1ai2 · · · aimxn−m and if all the terms of degree
n − m are collected together we get σm(a1, . . . , an)xn−m where σm(a1, . . . , an) is
the sum of all products of the form ai1 · · · aim where {i1, . . . , im} runs over all
sets of indices formed from 1, . . . , n. Hence, the polynomial σm(a1, . . . , an) has
Cm

n terms. For example, σ1(a1, . . . , an) = a1 + · · · + an, and σ2(a1, . . . , an) =
a1a2 + a1a3 + · · · + a2a3 + . . . an−1an—it is the sum of all products aiaj with
i < j. The last polynomial σn has the form σn(a1, . . . , an) = a1 · · · an. This is
the first time that we encounter polynomials in an arbitrary number n of variables.
Polynomials σ1, . . . , σn have a very important role in algebra. In particular, we
have proved the formula

(12) (x + a1) · · · (x + an) =

xm + σ1(a1, . . . , an)xn−1 + σ2(a1, . . . , an)xn−2 + · · ·+ σn(a1, . . . , an).

It is called Viète’s formula.
Viète’s formula expresses an important property of polynomials. Suppose that

the polynomial f(x) of degree n has n roots α1, . . . , αn. Then, as we have seen
more than once, it is divisible by the product (x− α1) · · · (x− αn), and since this
product is also of degree n, then f(x) = c(x−α1) · · · (x−αn), where c is a number.
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Suppose that the coefficient of the leading term of f(x) is 1. Then the number c
must also be 1, and we have

f(x) = (x− α1) · · · (x− αn).

We can apply Viète’s formula (12) to it by putting ai = −αi. Since all the terms
of the polynomial σk are products of k variables taken from a1, . . . , an, then
replacing ai by −αi gives rise to a factor (−1)k, namely: σk(−α1, . . . ,−αn) =
(−1)kσk(α1, . . . , an). Hence, from (12) we obtain

(13) (x−α1) · · · (x−αn) = xn−σ1(α1, . . . , αn)xn−1 + · · ·+(−1)nσn(α1, . . . , αn).

This formula expresses the coefficients of the polynomial f(x) = (x−α1) · · · (x−αn)
in terms of its roots and it is also called Viète’s formula. You know its special case
for the quadratic equation: in that case there are only two polynomials σ1 and σ2,
σ1 = α1 + α2, σ2 = α1α2.

In conclusion, consider again formula (9) for the number of subsets (or the
number of combinations). We deduced it from the binomial formula, which was,
in turn, proved in Section 3 of Chapter II using the properties of the derivative.
That is a rather involved method. It would be desirable to have another proof of
this formula based only upon combinatorial reasoning. We shall give such a proof
of an even more general formula. Notice that each subset N of the set M defines
a partition M = N + N where N is the complement of N . We consider a more
general case: an arbitrary partition M = M1+· · ·+Mr into subsets with prescribed
number of elements: n(M1) = n1, . . . , n(Mr) = nr. The sequence (n1, . . . , nr) will
be called the type of the partition M = M1 + · · · + Mr. We suppose that none of
the sets Mi is empty, i.e. that all ni > 0.

Since we are dealing all the time with one and only set M where n(M) = n, it
shall not always be present in our notations. Denote the number of all possible par-
titions of our set M which have the prescribed type (n1, . . . , nr) by C(n1, . . . , nr).
Of course, we must have n1 + · · · + nr = n. Notice also that we are taking into
account the order of the sets M1, . . . , Mr. For instance, for r = 2 and given n1

and n2, n1 + n2 = n, we take the partitions M = M1 + M2 and M = M2 + M1,
with n(M1) = n1 and n(M2) = n2, to be different. Indeed, if n1 6= n2 these
partitions are of different types. Owing to this, each partition M = M1 + M2 de-
fines one subset M1 (the first one) and we have a connection with the previously
considered problem: C(n1, n2) = v(M, n1). In other words, for any m < n, we
have v(M, m) = C(m, n − m). We shall now derive an explicit formula for the
number C(n1, . . . , nr). Consider an arbitrary partition M = M1 + · · · + Mr of
type (n1, . . . , nr). Suppose that at least one of the numbers n1, . . . , nr is differ-
ent from 1. For instance, suppose that n1 > 1 and choose an arbitrary element
a ∈ M1. Denote by M ′

1 the set of all elements of M1 different from a (this is
the complement of the set {a} taken as a subset of M1). Then we have the par-
tition M1 = M ′

1 + {a} and to our partition M = M1 + · · · + Mr corresponds
a new partition M = M ′

1 + {a} + M2 + · · · + Mr of type (n1 − 1, 1, n2, . . . , nr).
In this way from all partitions of type (n1, n2, . . . , nr) we obtain all partitions of
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type (n1 − 1, 1, n2, . . . , nr): the partition M = M ′
1 + {a} + M2 + · · · + Mr is ob-

tained from the partition M = M1 + · · ·+ Mr, where M1 = M ′
1 + {a}. Moreover,

one partition of type (n1, n2, . . . , nr) gives rise to n1 different partitions of type
(n1 − 1, 1, n2, . . . , nr), depending on the choice of a ∈ M1. Hence, we have

(14) n1C(n1, n2, . . . , nr) = C(n1 − 1, 1, n2, . . . , nr).

Applying the same method to partitions of type (n1 − 1, 1, n2, . . . , nr) we ob-
tain that (n1 − 1)C(n1 − 1, 1, n2, . . . , nr) = C(n1 − 2, 1, 1, n2, . . . , nr), i.e. that
n1(n1 − 1)C(n1, n2, . . . , nr) = C(n1 − 1, 1, 1, n2, . . . , nr) and

n1! C(n1, n2, . . . , nr) = C(1, . . . , 1︸ ︷︷ ︸
n1 times

, n2, . . . , nr).

We now apply the same reasoning to the parameter n2 in C(1, . . . , 1, n2, . . . , nr).
In the same way as before we obtain the relation n2!C(1, . . . , 1, n2, n3, . . . , nr) =
C(1, . . . , 1, n3, . . . , nr) where 1 appears in the first n1 + n2 places, that is to say

n1! n2!C(n1, n2, . . . , nr) = C( 1, . . . , 1︸ ︷︷ ︸
n1+n2 times

, n3, . . . , nr).

Finally, if we apply the procedure to all the parameters n1, n2, . . . , nr we
obtain the formula

(15) n1! n2! · · ·nr!C(n1, n2, . . . , nr) = C(1, 1, . . . , 1︸ ︷︷ ︸
n times

),

since n1+n2+· · ·+nr = n. It remains to find the value of the expression C(1, . . . , 1).
In order to do so notice that the above formula was proved for partitions of all types
(n1, . . . , nr). Apply it to the simplest type (n). There is only one partition of this
type, namely M = M , and so C(n) = 1. On the other hand, formula (15) gives

n! C(n) = C(1, 1, . . . , 1︸ ︷︷ ︸
n times

).

Therefore C(1, . . . , 1) = n! and substituting this into (15) we obtain the final ex-
pression

(16) C(n1, . . . , nr) =
n!

n1!n2! · · ·nr!
, where n = n1 + · · ·+ nr.

For n = 2 instead of (n1, n2), n1 + n2 = n it is more usual to write (n, m−n).
Since C(m,n−m) = v(M, m), formula (16) reduces to the relation (9).

Remark 1. Consider again the expression C(1, . . . , 1) which appeared at the
end of the above proof. What is a partition of type (1, . . . , 1)? It is a partition of M
into one element sets. But recall that we must take into account the order of the sets
in the partition M = M1+ · · ·+Mr. Hence, a partition M = {a1}+ · · ·+{an} gives
a numertaion of the elements of M . The number C(1, . . . , 1) shows in how many
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ways we can numerate the elements of M . It can be said that C(1, . . . , 1) gives the
number of different arrangements of the elements of M . As we know, the number
of such arrangements is n!. Various arrangements are also called permutations. For
example, if M = {a, b, c}, which means that n = 3, we have 6 permutations

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a).

Remark 2. In the case r = 2, the expression C(n1, n2) coincides with the
binomial coeffcient—we have already given two proofs of this fact. An analogous
interpretation has the expression C(n1, . . . , nr) for any r. It can be proved that
if x1, . . . , xr are variables, then in the expansion of (x1 + · · · + xr)n we obtain
terms of the form xn1

1 · · ·xnr
r with n1 + · · ·+ nr = n, ni nonnegative integers, and

that the coefficient of xn1
1 · · ·xnr

r is C(n1, . . . , nr). We have only to return to our
first definition of a partition, allowing the empty set to appear among Mi’s and
hence allowing zero to be among the numbers ni. It is easily seen that (16) remains
valid in this case also, provided we take 0! = 1. The proof of this generalization
of the binomial formula to the case of r variables is perfectly analogous to the
second (combinatorial) proof of the relation v(M, m) = Cm

n (where n = n(M))
given above.

For instance, this formula gives that (x1 + x2 + x3)3 is equal to the sum of
terms C(n1, n2, n3)xn1

1 xn2
2 xn3

3 where (n1, n2, n3) runs over all triplets of nonnegative
integers such that n1 + n2 + n3 = 3, and C(n1, n2, n3) is evaluated by formula (16)
(with the condition 0! = 1). Substitution gives

(x1 + x2 + x3)3 =

x3
1 + x3

2 + x3
3 + 3x2

1x2 + 3x1x
2
2 + 3x2

1x3 + 3x1x
2
3 + 3x2

2x3 + 3x2x
2
3 + 6x1x2x3.

Problems

1. Let I = {p, q} be a set containing two elements and let M = {a1, . . . , an}
be a set of n elements. To each subset N ⊂ M correspond the following element:
a word from In where on the i-th place stands p if ai ∈ N , and q if ai does not
belong to N . Prove that this establishes a one-to-one correspondence between the
sets U(M) and In. Use this to derive Theorem 2 from Theorem 1.

2. How can the intersection and the union of subsets N1 and N2 of the set M
be expressed in terms of their corresponding words from In (see Problem 1)?

3. Find the number of all partitions M1 + · · ·+Mr of all types, but for a fixed
number r. Verify that for r = 2 the answer is given by Theorem 2.

4. Find the sum of all numbers C(n1, . . . , nr) for all ni > 0, n1 + · · ·+nr = n,
for given r and n. Give two solutions: one based upon Problem 3 and the other
based upon the statement given in Remark 2.

5. Find the number of factorizations of a given positive integer n into a product
of r factors: n = a1 · · · ar, which are mutually relatively prime.

6. What is the number of solutions of the equation x1 + · · ·+xr = n, for given
n and r, in integers xi > 0? Use the following graphic interpretation of solutions,
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which is a modification of the interpretation given in Fig. 4. Let AB be a segment
of length n + r. Correspond to a solution (x1, . . . , xr) the partition of this segment
consisting of the segment of length x1 starting at A, the segment of length x2,
starting at the first integral point after the end of the first segment, etc; see the
figure in which we have x3 = 0.

7. Find the number of different partitions M = M1 + M2 of type (m,m)
if n(M) = 2m and the partitions M = M1 + M2 and M = M2 + M1 are not
taken to be different. The same question for the partitions M = M1 + M2 + M3

of type (m,m,m) if n(M) = 3m and if partitions with different order of M1, M2,
M3 are not taken to be different. Finally, the same question for the partitions of
type (k, k, l, l, l), n(M) = 2k + 3l and partitions in which equivalent subsets have
different order are not taken to be different.

8. What is the form of the term of the polynomial (x1 + · · ·+xn)2? The same
question for the polynomial (x1 + · · ·+ xn)3.

9. How many terms are there in the polynomial (x1 + · · · + xr)n, supposing
that similar terms are grouped together?

10. Express the polynomial a2
1 + a2

2 + · · · + a2
n in terms of polynomials σ1

and σ2. Suppose that the polynomial xn + axn−1 + bxn−2 + · · · has n real roots.
Prove that a2 > 2b. When does the equality a2 = 2b take place? Hint: use Bézout’s
theorem from Section 1 of Chapter II and the fact that a sum of squares of real
numbers cannot be negative.

11. Give a combinatorial proof of the relation Ck
n = Ck

n−1 +Ck−1
n−1 for binomial

coefficients (formula (26) of Chapter II), interpreting Ck
n as v(M,k) where n(M) =

n. Generalize this relation to the numbers C(n1, . . . , nr).
12. Give a combinatorial proof of the relation Cm

n = Cn−m
n for binomial

coefficients.

(to be continued in the next issue)
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