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STRUCTURING SYSTEMS OF NATURAL, POSITIVE RATIONAL,
AND RATIONAL NUMBERS

Milosav M. Marjanović, Zoran Kadelburg

Abstract. In this paper, we are concerned with the extensions of the system
N of natural numbers with 0 to the system Q+ of positive rational numbers with 0
and then, the extension of this latter system to the system Q of rational numbers.
Structuring these systems, we start with the system of natural numbers forming the
list of its basic operative properties (i.e. the properties of operations and the order
relation) and using only these postulated properties, we deduce from them a series of
properties of proportions and equalities that relate differences. While deducing, we
suppose that all involved ratios and differences are defined in N , i.e. they have the
value which is a natural number.

Keeping in mind these properties, we define equivalence of arbitrary ratios
(without supposing their values in N) and then, we extend the meaning od addition,
multiplication and order relation to the equivalence classes of these ratios. Thus, the
system of positive rational numbers with 0 is constructed and the list of its basic
properties is accomplished.

Comparing this new list and that with properties of N , two lists are identical
except that the variables are denoted by different letters and the new list contains an
item more: the existence of multiplicative inverse. Omitting this item, two systems
become formally identical. Therefore, they have the same postulated properties, as
well as those deduced from them. This is a precise formulation of the Peacock’s
principle of permanence, telling which properties are transferable and it is also the
way of its logical justification.

Similarly, Q+ is extended by equivalence classes of formal differences in Q+ and
addition, multiplication and the order relation are defined in this set of equivalence
classes. Thus, the system Q of rational numbers is constructed and the list of its
basic properties accomplished. Taking the operative properties of the systems N , Q+

and Q as axioms, the N -structure, Q+-structure and Q-structure (standardly called
the ordered field) are defined, respectively. Since the axioms of N -structure are least
restrictive, it follows that the systems of positive rational and rational numbers and
of real numbers are examples of N -structure. Thereby, all operative properties of
N and those deduced from them are also valid in these number systems, when they
are transcribed writing corresponding variables. This is the necessary precision and
logical justification for the Peacock’s principle of permanence.

At the end, we prove that each system satisfying axioms of N -structure contains
an isomorphic copy of the system N with 0, what characterizes the system of natural
numbers with 0 as the smallest system satisfying the axioms of N -structure.
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1. Introduction

Genesis of natural numbers has always been related to the experience of dis-
crete realities. Such realities are collections of visible objects in the surrounding
space, which we call sets at the sensory level. This dependence of the idea of nat-
ural number on the perception of sets at the sensory level, we express in the form
of Cantor principle of invariance of number :

Starting with the perception of a set A of visible objects and abstracting (for-
getting)

(i) The nature of these objects
and
(ii) Any structure with which the set A is endowed (ordering, grouping of its ele-

ments, etc.)

an abstract idea A of number results.
Manipulations with sets lead to the ideas of set operations and abstracting

further, the ideas of arithmetic operations are created. These latter operations
are used when the number blocks are built (up to 10, 20, 100, 1000 and so on
inductively), what results in the construction of positional number system. Then it
is supposed that the number of elements of each finite set can be counted, in other
words to each such set a unique positional notation is attached as the indicator of
its cardinality and the cardinalities of two sets are compared, by comparing the
positional notations that are attached to them.

In [4] and [5], several properties of the system of natural numbers have been
established and used to sketch the extensions of this system to the systems of
positive rational numbers and integers. In this paper we consider the extension of
the system of natural numbers with 0 to the system of positive rational numbers
with 0, and then, as the next step, the extension of this latter system to the system
of all rational numbers. These extensions will be performed here in a much more
systematic way, looking at these systems of numbers as being the structures with
the prescribed sets of properties.

As the first step, we take the system N of natural numbers to be a structure
which consists of the set N of all natural numbers (including 0) together with two
operations: addition (+) and multiplication (·), and the order relation (<) with
the assumed operative properties written in List 1 (Section 2), which we call basic
operative properties of N. Then, these properties are used to deduce a series of
properties of operations and the order relation in N, and in particular, the stress
is laid on the properties of proportions, i.e. equalities that relate rations as well
as the equalities that relate differences. Let us also add that all quotients and
all differences are supposed, of course, to be defined in N (i.e. their values are
natural numbers). We are guided with these properties when we extend N by
ratios m : n, (n > 0) and when the system Q+ of positive rational numbers with 0
is constructed. Then, the basic properties of Q+ (List 2, Section 3) are verified and
the existence of the multiplicative inverse proved. Comparing List 1 and List 2,
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we see that the latter list is enriched with the property stating the existence of the
multiplicative inverse. Omitting this property, two lists become identical (up to
the letters used to denote variables) and from the listed properties the same sets
of deduced properties follow (with variables denoted by different letters denoting
elements of different sets). Hence, in transition from N to Q+, all basic and deduced
properties of N are equally valid in Q+, what provides a precise formulation to and
serves as the logical justification of the Peacock’s principle of permanence in this
specific case of extension.

Let us note that Euclid in his Elements, ([2]), derives a long series of properties
of proportions, relating ratios of magnitudes of the same kind (in particular, line
segments). This is due to his following of the Eudoxus theory of real numbers. We
relate the meaning of natural, positive rational and rational numbers to the discrete
phenomena and we use algebra as early as the system of natural numbers. (Let us
also note that Early Algebra is a branch of didactics of mathematics mostly having
its objectives pedagogically oriented. The book [3] is an up-to-date presentation of
this discipline.)

Extending the system Q+ to the set of all formal differences q− r and imbed-
ding this system into this set of differences, taking q − 0 instead of q, we will be
guided by the properties of N (considered as being transferred to Q+ and enu-
merated by the same number to which the prime is added), when the equivalence
relation, the operations and the ordering are defined. The set of equivalence classes
will be denoted by Q and together with the corresponding operations and the order
relation, this set will be called the system of rational numbers. After the verifica-
tion based on properties of Q+, List 3 (Section 4) of the basic operative properties
of Q is formed. Reasoning in the same way as in the case of the former extension
of N to Q+, we conclude that the properties in List 1 as well as the properties
deduced from them are formally carried over to the system Q, what also justifies
logically the Peacock’s principle of permanence in the case of this extension. Let
us also notice that the properties in List 3 are the system of axioms of the ordered
field.

We will call provisionally a structure satisfying conditions in List 1 , the N -
structure and a structure satisfying condition in List 3 , the Q-structure (or, as
it is standardly called, an ordered field). Each ordered field is an example of N -
structure, as the number systems Q+ and N are also such examples. As we prove
it in the section Concluding remarks, each example of an N -structure contains an
isomorphic copy of the system N of natural numbers with 0. Hence, the system of
natural numbers with 0 is the smallest system satisfying the conditions in List 1.
This characterizes natural numbers in the same way as the smallest ordered field is
the characteristic of rational numbers. The system of real numbers is a continuous
ordered field, what is again an example of N -structure and a case of the transfer
of basic properties and those deduced from them.

Finally, let us add that whenever k + l = m, we write m − k = l and when
k · l = m, (k > 0), we write m : k = l, thus having subtraction and division defined
partially as binary operations.
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2. Structuring the system of natural numbers

It is a common practice to denote the set of natural numbers by the letter N.
But when the set N is viewed together with two arithmetic operations, addition
(+) and multiplication (·), and with the order relation (<), then it is referred to
as the system of natural numbers. Here, we view that system as a mathematical
structure

(N, +, ·, <),

assigning to the operations and the order relation only the properties listed below.
The variables k, l, m, . . . are arbitrary natural numbers and, for the sake of brevity,
we usually write kl instead of k · l.
(i) (∀k)(∀l) k + l = l + k (iv) (∀k)(∀l) kl = lk

(ii) (∀k)(∀l)(∀m) (k + l) + m = k + (l + m) (v) (∀k)(∀l)(∀m) (kl)m = k(lm)

(iii) (∃0)(∀k) k + 0 = k (vi) (∃1)(0 < 1 and (∀k) k · 1 = k)

(vii) (∀k)(∀l)(∀m) k(l + m) = kl + km

(viii) (∀k)(∀l) (k < l ⇐⇒ (∃m > 0) k + m = l)

(ix) (∀k)(∀l) (k < l or k = l or l < k)

(x) (∀k)(∀l)(∀m) (xi) (∀k)(∀l)(∀m > 0)
(k < l ⇐⇒ k + m < l + m) (k < l ⇐⇒ km < lm)

List 1

We call these properties the basic operative properties of N and, as it will be
shown latter, they suffice when N is extended to the systems of positive rational
numbers and rational numbers.

Two other operational signs, “−” and “ : ”, can be introduced, defining “par-
tial” operations on N, in the following way:

(1) If k + l = m, then l is called the difference of m and k, which is denoted as
l = m− k;

(2) If kl = m and k 6= 0, then l is called the quotient of m and k, which is denoted
as l = m : k.

Now we use basic operative properties of N to deduce from them a series
of other properties of operations and the order relation in N. In what follows,
the variables k, l,m, n are supposed to be arbitrary natural numbers, except for
the properties where differences and quotients are involved, when their values are
bound to the cases for which such expressions are defined.

(3) a) (k + l)− l = k, (k − l) + l = k;

b) (k · l) : l = k, (k : l) · l = k.

a) Applying definition (1) to k + l = k + l, and k − l = k − l, relations under
a) follow.
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b) Applying definition (2) to k · l = k · l, and k : l = k : l, relations under b)
follow.

(4) a) k = l ⇐⇒ k + m = l + m.

b) If m 6= 0, then k = l ⇐⇒ k ·m = l ·m.

a) Applying (1) and (3)a), we have that k = l ⇐⇒ (k + m) −m = l ⇐⇒
k + m = l + m.

b) Applying (2) and (3)b), we have that, for m 6= 0, k = l ⇐⇒ (k ·m) : m =
l ⇐⇒ k ·m = l ·m.

(5) k(l −m) = kl − km.

Set l − m = x; then by (1), l = m + x, and by (vii), kl = km + kx, hence,
kx = kl − km, while k(l −m) = kx. Thus, k(l −m) = kl − km.

(6) Additive and multiplicative identity elements (postulated in (iii) and (vi)) are
uniquely determined.

Indeed, if 01 and 02 were two additive identity elements, we would have 01 =
01 + 02 = 02 + 01 = 02. The proof for multiplicative case is similar.

(7) k · 0 = 0.

k + (k · 0)
(vi)
= (k · 1) + (k · 0)

(vii)
= k(1 + 0)

(iii)
= k · 1 (vi)

= k, and it follows by (6)
that k · 0 = 0.

We note that, based on (7), the implication part k = l =⇒ km = lm of
property (4)b) holds without the assumption m 6= 0.

(8) k : l < (=, >) m : n if and only if kn < (=, >) lm.

Set k : l = x, m : n = y; then k = lx, m = ny, kn = lnx, lm = lny. Now,

since l, n 6= 0, we have that x = y
(4)⇐⇒ lnx = lny ⇐⇒ kn = lm.

Since l, n > 0, we have that x < y
(xi)⇐⇒ lnx < lny ⇐⇒ kn < lm.

(9) k(l : m) = (kl) : m.

Set l : m = x, l = mx; then kl = k(mx) = m(kx), hence (kl) : m = kx. Since
k(l : m) = kx, the given relation follows.

(10) (k : l) : m = k : (lm).

Set k : (lm) = x; then k = lmx, k : l = mx, and (k : l) : m = x.

(11) k : (l : m) = (km) : l.

Set k : (l : m) = x; then k = x(l : m)
(9)
= (xl) : m, km = xl, and x = (km) : l.

(12) (k : l) : (m : n) = (kn) : (lm).

(k : l) : (m : n)
(10)
= k : (l(m : n))

(9)
= k : ((lm) : n)

(11)
= (kn) : (lm).

(13) For each m > 0, k : l = (mk) : (ml).

The following conditions are equivalent for m > 0: k : l = x, k = lx, mk =
(ml)x, (mk) : (ml) = x.

(14) (k : l) · (m : n) = (km) : (ln).
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Indeed, (k : l) · (m : n)
(9)
= ((k : l)m) : n

(9)
= ((km) : l) : n

(10)
= (km) : (ln).

(15) (m± n) : k = m : k ± n : k.
Let (m + n) : k = x; then m + n = kx. Set also m : k = y, n : k = z; then

m + n = ky + kz = k(y + z), and since kx = k(y + z), we get by (4) (since k 6= 0)
that x = y + z. The proof in the case of minus sign is similar.
(16) (k : l)± (m : n) = (kn± lm) : (ln).

Applying (13) and (15), we get (k : l) + (m : n) = (kn) : (ln) + (lm) : (ln) =
(kn + lm) : (ln). The proof in the case of minus sign is similar.

The following are some properties of the difference defined by (1).
(17) k − l < (=, >)m− n ⇐⇒ k + n < (=, >)l + m.

Set k − l = x, m − n = y; then k = l + x, m = n + y, k + n = (l + x) + n =

(l + n) + x, l + m = l + (n + y) = (l + n) + y. Now, x = y
(3)⇐⇒ (l + n) + x =

(l + n) + y ⇐⇒ k + n = l + m.

Similarly, x < y
(x)⇐⇒ (l + n) + x < (l + n) + y ⇐⇒ k + n < l + m.

(18) (k − l)−m = k − (l + m).

Indeed, (k − l)−m = x
(1)⇐⇒ k − l = m + x

(1)⇐⇒ k = (m + x) + l
(i),(ii)⇐⇒ k =

x + (m + l)
(1)⇐⇒ x = k − (m + l).

(19) (k + l)−m = k + (l −m).

Indeed, k+(l−m) = x
(4)⇐⇒ (k+(l−m))+m = x+m

(ii)⇐⇒ k+((l−m)+m) =

x + m
(3)⇐⇒ k + l = x + m

(1)⇐⇒ x = (k + l)−m.
(20) k − (l −m) = (k + m)− l.

Indeed, k−(l−m) = x
(1)⇐⇒ k = (l−m)+x

(4)⇐⇒ k+m = ((l−m)+x)+m
(ii)
=

((l −m) + m) + x
(3)
= l + x

(1)⇐⇒ x = (k + m)− l.
(21) (k − l) + m = (k + m)− l.

Let k − l = x. Then k = l + x, k + m = (l + x) + m = l + (x + m),
x + m = (k + m) − l. On the other hand x + m = (k − l) + m, and the desired
relation follows.
(22) (k − l) + (m− n) = (k + m)− (l + n).

Indeed, let k− l = x, m−n = y, and x+y = (k− l)+(m−n). Then k = x+ l,
m = n + y, k + m = (x + l) + (y + n) = (x + y) + (l + n), x + y = (k + m)− (l + n).
(23) (k − l)− (m− n) = (k + n)− (l + m).

Let k− l = x, m−n = y, x−y = (k− l)− (m−n). Then k = l+x, m = n+y,
k + n = (l + n) + x, l + m = (l + n) + y, x − y = (x + (l + n)) − (y + (l + n)) =
(k + n)− (l + m).
(24) (k − l)(m− n) = (km + ln)− (kn + lm).

Indeed, (k − l)(m − n)
(5)
= (k − l)m − (k − l)n

(5)
= (km − lm) − (kn − ln)

(23)
=

(km + ln)− (lm + kn).
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3. Positive rational numbers with zero and their properties

Now we introduce the set of all ratios k : l, where k and l > 0 are arbitrary
natural numbers. Mapping k onto k : 1, the set N of natural numbers is imbedded
into the set of all ratios. Guided by the properties of N, we define equivalent ratios
and on the set of equivalence classes we define two operations and the order relation,
constructing so the system (Q+, +, ·, <) of positive rational numbers with zero.

Inspired by property (8) (Section 2), we take that two ratios k : l and m : n
are equivalent if kn = lm. It is easy to verify that, in this way, an equivalence
relation on the set of all ratios is defined. For the sake of simplicity, we will be
denoting an equivalence class by one of its elements, i.e., instead of [k : l] we write
simply k : l, and we will be referring to that class as a positive rational number (or
zero).

Inspired by property (15) (Section 2), the sum of two rational numbers k : l
and m : n is to be

(k : l) + (m : n) = (kn + lm) : (ln).

To prove that this definition is correct, let us suppose that k : l = k′ : l′ and
m : n = m′ : n′, i.e. kl′ = k′l and mn′ = m′n. Then (kn + lm)l′n′ = (kl′)nn′ +
(mn′)ll′ = (k′l)nn′ + (m′n)ll′ = (k′n′ + l′m′)ln, and so (kn + lm) : (ln) and
(k′n′ + l′m′) : (l′n′) belong to the same equivalence class.

Inspired by property (14) (Section 2), the product of two rational numbers
k : l and m : n is taken to be

(k : l)(m : n) = (km) : (ln).

It is easy to see that the product does not depend on the choice of representatives
of the equivalence classes. Indeed, suppose that k : l and k′ : l′ belong to the
same class, as well as m : n and m′ : n′. Then kl′ = k′l and mn′ = m′n, hence
kl′mn′ = k′lm′n. By (8), it follows that (km) : (ln) = (k′m′) : (l′n′).

Inspired by (8), the order relation in Q+ is defined taking

k : l < m : n if kn < lm.

To prove the independence of the choice of representatives, let again kl′ = k′l,
mn′ = m′n and suppose that k : l < m : n, i.e., kn < lm. Then knk′lmn′ <
lmkl′m′n, and it follows that k′n′ < l′m′, i.e., k′ : l′ < m′ : n′.

Difference and quotient of two elements in Q+ are defined similarly as in N,
by:
(1’) If (k : l) + (m : n) = i : j, then m : n is called the difference of i : j and k : l

and denoted as m : n = (i : j)− (k : l);
(2’) If (k : l)(m : n) = i : j and k > 0, then m : n is called the quotient of i : j and

k : l and denoted as m : n = (i : j) : (k : l).
Now we prove that

(k : l)− (m : n) = (kn− lm) : (ln) and (k : l) : (m : n) = (kn) : (lm), m > 0.
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Let us put (k : l)− (m : n) = i : j; then k : l = (m : n) + (i : j) = (mj + ni) : (nj),
knj = lmj + lni, (kn− lm)j = lni, (kn− lm) : (ln) = i : j.

Similarly, putting (k : l) : (m : n) = i : j, we have that k : l = (m : n)(i : j) =
(mi) : (nj). Thus, k(nj) = l(mi) and then i : j = (kn) : (lm).

The set N of natural numbers is imbedded in Q+, identifying k with k : 1.
If m : n is also a representative of k : 1, then these two ratios are equivalent, i.e.,
m = kn holds, showing that all other representatives are (kn) : n.

Let us also notice that

(k : 1)± (l : 1) = (k ± l) : 1, (k : 1) · (l : 1) = (kl) : 1,

(k : 1) : (l : 1) = k : l, k : 1 < l : 1 if and only if k < l.

As we see, this imbedding preserves operations and the order relation.
For a positive rational number k : l, (k > 0), the number l : k is also positive

and (k : l) · (l : k) = (kl) : (lk) = 1 : 1. Hence, each positive k : l from Q+ has
its multiplicative inverse l : k that will be denoted as (k : l)−1. Let us check that
multiplicative inverse does not depend on the chosen representative. Let k′ : l′ be
another representative, i.e., let kl′ = k′l. Then (k : l)(l′ : k′) = (kl′) : (k′l) = 1 : 1.

Using the letters q, r, s, t, . . . to denote variables in Q+, we list the basic
operative properties of this system in the form of List 2 and then, we proceed
further with verification of these properties.

(i) (∀q)(∀r) q + r = r + q (iv) (∀q)(∀r) qr = rq

(ii) (∀q)(∀r)(∀s) (q + r) + s = q + (r + s) (v) (∀q)(∀r)(∀s) (qr)s = q(rs)
(iii) (∃0)(∀q) q + 0 = q (vi) (∃1)(0 < 1 and (∀q) q · 1 = q)

(vii) (∀q 6= 0)(∃r) qr = 1

(viii) (∀q)(∀r)(∀s) q(r + s) = qr + qs

(ix) (∀q)(∀r) (q < r ⇐⇒ (∃s > 0) q + s = r)

(x) (∀q)(∀r) (q < r or q = r or r < q)

(xi) (∀q)(∀r)(∀s) (xii) (∀q)(∀r)(∀s > 0)
(q < r ⇐⇒ q + s < r + s) (q < r ⇐⇒ qs < rs)

List 2

Verification of the properties:
(i) Let q = k : l and r = m : n. Then q + r = (kn + lm) : (ln) and

r + q = (ml + nk) : (nl), what was to be proved.
(ii) Let q = k : l, r = m : n and s = i : j. Then

(q + r) + s = ((kn + lm) : (ln)) + (i : j) = ((knj + lmj) + lni) : (lnj),

q + (r + s) = (k : l) + ((mj + ni) : (nj)) = (knj + (lmj + lni)) : (lnj),

and the desired equality follows.
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(iii) (k : l) + (0 : 1) = (k · 1 + l · 0) : (l · 1)
(7)
= k : l.

Verification of properties (iv)–(vi) are easy and omitted.
(vii) For q 6= 0, qq−1 = 1 holds by the definition of the multiplicative in-

verse q−1.
(viii) Let q = k : l, r = m : n and s = i : j. Then

q(r + s) = (k : l)((m : n) + (i : j)) = (k : l)((mj + ni) : (nj))

= (kmj + kni) : (lnj),

qr + qs = (k : l)(m : n) + (k : l)(i : j) = (km : ln) + (ki : lj)

= (kmlj + klni) : (llnj)
(13)
= (kmj + kni) : (lnj),

and the right-hand sides of the last two equalities are equivalent to the same ratio.
(ix) Let q = k : l, r = m : n and q < r, i.e. kn < lm and so lm − kn > 0.

Denoting i = lm − kn, j = ln and s = i : j, we have that (k : l) + (i : j) = m : n,
i.e. q + s = r.

Conversely, if q + s = r, where q = k : l, r = m : n and s = i : j (with
i > 0), then (kj + li) : (lj) = m : n, and so n(kj + li) = lmj. It follows that
knj + lni = lmj, with lni > 0, meaning that knj < lmj and kn < lm. Therefore,
k : l < m : n, i.e. q < r.

(x) Trichotomy follows because k : l < (=, >)m : n ⇐⇒ kn < (=, >)lm.
(xi) Let k : l, m : n, i : j be elements of Q+ (l, n, j > 0). Then, using

definitions of operations and order relation in Q+, as well as basic properties of the
system N, we obtain that

k : l < m : n ⇐⇒ kn < lm
(xi)⇐⇒ knjj < lmjj

(iv),(v),(x)⇐⇒ (nj)(kj) + (nj)(li) < (lj)(mj) + (lj)(ni)
(vii)⇐⇒ (nj)(kj + li) < (lj)(mj + ni)

⇐⇒ (kj + li) : (lj) < (mj + ni) : (nj)

⇐⇒ (k : l) + (i : j) < (m : n) + (i : j).

(xii) Let again k : l, m : n, i : j be elements of Q+ (l, n, j > 0 and, in addition,
i > 0). Then we get that

k : l < m : n ⇐⇒ kn < lm
(xi)⇐⇒ knij < lmij

⇐⇒ (ki) : (lj) < (mi) : (nj) ⇐⇒ (k : l)(i : j) < (m : n)(i : j).

When property (vii) is taken off List 2, systems N and Q+ have identical
sets of basic properties (up to the letters denoting variables). Thus, all properties
deduced from these sets are also identical. In particular, all basic properties of
N and all those deduced from them are equally valid in Q+. This confirms the
Peacock’s principle of permanence in the case of this extension.
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We shall deduce some additional properties that follow from the existence of
multiplicative inverse.

(25′) For each q ∈ Q+, q 6= 0, the multiplicative inverse is unique.
Let q1 and q2 be two multiplicative inverses of q. Then q1 = q1 ·1 = q1(qq2) =

(q1q)q2 = 1 · q2 = q2.
(26′) If q, r ∈ Q+ and q > 0, then the equation qx = r has a unique solution

in Q+.
Since q(q−1r) = (qq−1)r = 1 · r = r, then q−1r is a solution for qx = r.

Conversely, if qx = r, then (qx)q−1 = rq−1, implying that x = q−1r.
(27′) Whenever r > 0, the quotient of numbers q and r from Q+ can be

expressed as q : r = qr−1.
(28′) qr = 0 if and only if q = 0 or r = 0.
The implication (q = 0 or r = 0) =⇒ qr = 0 was proved in (7) (Section 2)

in the case of natural numbers, and is transferred to Q+. To prove the converse,
assume, e.g., that r 6= 0. By (7′), 0 is a solution (for q) of the equation qr = 0.
Since, by (26′), this equation has a unique solution, it follows that q = 0.

4. Rational numbers and their properties

In this section, we will be concerned with the extension of system Q+ to
system Q of rational numbers. As we will be often referring to the operative
properties of Q+, we write (1′), (2′), (3′), . . . to denote properties (1), (2), (3), . . .
from Section 2, imagining them as being transferred to Q+, i.e., taking their form
completely unchanged except that the variables q, r, s, t, . . . are used.

For arbitrary q, r ∈ Q+, we consider the set of all formal differences q − r.
Inspired by (17′), we define the relation “∼” on this set, taking

q − r ∼ s− t if q + t = r + s.

1. The relation “∼” is an equivalence relation.
It is trivial to verify that “∼” is a reflexive and symmetric relation. For the

transitivity, let us suppose that q−r ∼ s−t and s−t ∼ u−v or else that q+t = r+s
and s + v = t + u. Then, adding v to both sides of the first equality, and r to both
sides of the second, we get q + t + v = r + s + v and r + s + v = r + t + u. Hence,
q + t + v = r + t + u and cancelling t we get q + v = r + u, i.e., q − r ∼ u− v.

From the definition of the relation “∼”, it immediately follows
2. For each q, r and s in Q+ :

q − r ∼ (q + s)− (r + s).

The equivalence class of q − r we will denote, writing simply q − r (instead
of [q − r]).
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In view of 2., for q > r: q − r ∼ (q − r) − 0 and let us put αqr = q − r and
βqr = 0 and for q < r: q − r ∼ 0− (r − q) and let us put αqr = 0 and βqr = r − q.
Then, q − r in the former case and r − q in the latter are called the absolute value
of q− r. By 2., q− r ∼ αqr−βqr and αqr−βqr is called the standard representative
of the class q − r.

Permuting the sum r + s in (18′), we have
3. (q − r)− s = (q − s)− r, (q > r + s).
Now we prove that the standard representative is unique within its equivalence

class. Namely,
4. If q − r ∼ s− t, then αqr = αst and βqr = βst.
When q > r, from q + t = r + s, it follows that q = (r + s) − t and q − r =

((r+s)−t)−r
3.= ((r+s)−r)−t

(3′)
= s−t. Hence, αqr = αst and evidently βqr = βst.

But when q < r, it follows that r = (q + t) − s and r − q = ((q + t) − s) − q =
((q + t)− q)− s = t− s. Hence, βqr = βst and evidently αqr = αst.

The set of all equivalence classes is denoted by Q and called the set of rational
numbers.

Now we proceed further, defining in Q the order relation and the operations
of addition and multiplication. These definitions will be given in terms of standard
representatives, what ensures their independence of the chosen representatives.

Inspired by (17′), we take that

q − r < s− t if αqr + βst < βqr + αst.

It is easy to verify that “<” is an order relation in Q.
Inspired by (22′), the sum of two rational numbers q− r and s− t is taken to

be
(q − r) + (s− t) = (αqr + αst)− (βqr + βst).

The element 0−0 is the canonical representative of its class. For each q−r ∈ Q,
(q − r) + (0 − 0) = (αqr + 0) − (βqr + 0) = αqr − βqr = q − r. Thus, we see that
0− 0 is additive identity element.

For q − r, αqr = βrq and αrq = βqr. Thus,

(q − r) + (r − q) = (αqr − βqr) + (αrq − βrq)

= (αqr + αrq)− (βrq + βqr) = 0− 0,

and we see that r − q is the additive inverse for q − r. We denote this inverse as
r − q = (q − r)−.

Inspired by (24′), we define the product of two rational numbers q − r and
s− t, taking

(q − r) · (s− t) = (αqrαst + βqrβst)− (αqrβst + βqrαst).

The element (1− 0) ∈ Q has the form of standard representative and the role
of multiplicative identity element. Indeed,

(q − r) · (1− 0) = (αqr · 1 + βqr · 0)− (αqr · 0 + βqr · 1) = αqr − βqr = q − r.
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Let us notice that the mapping q 7→ q − 0 imbeds Q+ into Q, preserving the
operations and the order relation.

Using the letters a, b, c, d, . . . to denote variables in Q, we list now the basic
operative properties of this system in the form of List 3 and then we proceed further
with verification of these properties.

(i) (∀a)(∀b) a + b = b + a (v) (∀a)(∀b) ab = ba

(ii) (∀a)(∀b)(∀c) (a + b) + c = a + (b + c) (vi) (∀a)(∀b)(∀c) (ab)c = a(bc)
(iii) (∃0)(∀a) a + 0 = a (vii) (∃1)(0 < 1 and (∀a) a · 1 = a)
(iv) (∀a)(∃b) a + b = 0 (viii) (∀a 6= 0)(∃b) ab = 1

(ix) (∀a)(∀b)(∀c) a(b + c) = ab + ac

(x) (∀a)(∀b) (a < b ⇐⇒ (∃c > 0) a + c = b)

(xi) (∀a)(∀b) (a < b or a = b or b < a)

(xii) (∀a)(∀b)(∀c) (xiii) (∀a)(∀b)(∀c > 0)
(a < b ⇐⇒ a + c < b + c) (a < b ⇐⇒ ac < bc)

List 3

Verification of the properties:
(i) and (ii) follow easily from the definition of addition, using properties (i)

and (ii) of system Q+ (List 2 ), and (iii) has been already explained.
(iv) a + a− = 0 holds by the definition of the additive inverse a−.
(v) Let q − r and s− t be elements of Q. Then

(q − r)(s− t) = (αqrαst + βqrβst)− (αqrβst + βqrαst),

(s− t)(q − r) = (αstαqr + βstβqr)− (αstβqr + βstαqr),

and the conclusion follows from properties (i) and (iv) of Q+ (List 2 ).
(vi) Let q − r, s− t, u− v be elements of Q. Then

((q − r)(s− t))(u− v) = ((αqrαst + βqrβst)− (αqrβst + βqrαst))(αuv − βuv)

= (αqrαstαuv + βqrβstαuv + αqrβstβuv + βqrαstβuv)

− (αqrαstβuv + βqrβstβuv + αqrβstαuv + βqrαstαuv),

(q − r)((s− t)(u− v)) = (αqr − βqr)((αstαuv + βstβuv)− (αstβuv + βstαuv))

= (αqrαstαuv + αqrβstβuv + βqrαstβuv + βqrβstαuv)

− (βqrαstαuv + βqrβstβuv + αqrαstβuv + αqrβstαuv),

and the conclusion follows from the properties of system Q+.
(vii) As has been already shown, 1− 0 is a multiplicative identity element in

Q. The inequality 0− 0 < 1− 0 follows from the definition of the order relation.
(viii) Let (q−r) ∈ Q, q−r 6= 0−0. Since αqr−βqr 6= 0, two cases are possible:

(a) αqr > 0 and βqr = 0, or (b) αqr = 0 and βqr > 0. In the first case, take s−t ∈ Q
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with αst = 1 : αpq, βst = 0. Then (q − r)(s − t) = (αqr − 0) ((1 : αqr)− 0) =
1 − 0. In the second case take αst = 0, βst = 1 : βqr and then (q − r)(s − t) =
(0 − βqr) (0− (1 : βqr)) = 1 − 0. Hence, in both cases, s − t is the multiplicative
inverse of q − r.

(ix) Let q − r, s− t, u− v be elements of Q. Then
(q − r)((s− t) + (u− v)) = (αqr − βqr)((αst + αuv)− (βst + βuv))

= (αqrαst + αqrαuv + βqrβst + βqrβuv)

− (αqrβst + αqrβuv + βqrαst + βqrαuv),

(q − r)(s− t) + (q − r)(u− v) = ((αqrαst + βqrβst)− (αqrβst + βqrαst))

+ ((αqrαuv + βqrβuv)− (αqrβuv + βqrαuv))

= (αqrαst + βqrβst + αqrαuv + βqrβuv)

− (αqrβst + βqrαst + αqrβuv + βqrαuv).

(x) Let q−r and s−t be elements of Q such that q−r < s−t, i.e., q+t < r+s.
Take u = r + s, v = q + t. Then (q − r) + (u − v) = (q + u) − (r + v) =
(q + (r + s))− (r + (q + t)) = ((q + r) + s)− ((q + r) + t) 2.= s− t.

Conversely, let (q−r)+(u−v) = s−t and 0−0 < u−v, i.e., q+u+t = r+v+s
and v < u. From (q+u+t)−v = (r+v+s)−v or ((q+t)+u)−v = ((r+s)+v)−v,
applying (3′) and (19′) it follows that (q + t) + (u + v) = r + s. Hence, by (ix),
List 2, q + t < r + s, i.e., q − r < s− t.

(xi) Let q − r and s − t be arbitrary elements of Q. By property (x) of Q+,
one of the following relations must hold: q+ t < s+r, q+ t = s+r, or s+r < q+ t.
Hence, one of the relations q − r < s− t, q − r = s− t, s− t < q − r is true.

(xii) Let q − r, s− t and u− v be arbitrary elements of Q. Then
q − r < s− t ⇐⇒ αqr − βqr < αst − βst ⇐⇒ αqr + βst < βqr + αst

⇐⇒ (αqr + βst) + (αuv + βuv) < (βqr + αst) + (αuv + βuv)

⇐⇒ (αqr + αuv) + (βst + βuv) < (βqr + βuv) + (αst + αuv)

⇐⇒ (αqr + αuv)− (βqr + βuv) < (αst + αuv)− (βst + βuv)

⇐⇒ (αqr − βqr) + (αuv − βuv) < (αst − βst) + (αuv − βuv)

⇐⇒ (q − r) + (u− v) < (s− t) + (u− v).

(xiii) Let q − r, s − t and u − v be elements of Q, with 0 − 0 < u − v. Then
αuv > 0, βuv = 0, hence

q − r < s− t ⇐⇒ αqr − βqr < αst − βst ⇐⇒ αqr + βst < βqr + αst

⇐⇒ (αqr + βst)αuv < (βqr + αst)αuv

⇐⇒ αqrαuv + βstαuv < βqrαuv + αstαuv

⇐⇒ αqrαuv − βqrαuv < αstαuv − βstαuv

⇐⇒ (αqr − βqr)(αuv − 0) < (αst − βst)(αuv − 0)

⇐⇒ (αqr − βqr)(αuv − βuv) < (αst − βst)(αuv − βuv)

⇐⇒ (q − r)(u− v) < (s− t)(u− v).
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When property (iv) is taken off List 3, systems Q+ and Q have identical
sets of basic properties (up to the letters denoting variables). Thus, all properties
deduced from these sets are also identical. In particular, all basic properties of
Q+ and all those deduced from them are equally valid in Q. We write (1′′), (2′′),
(3′′), . . . to denote properties (1′), (2′), (3′), . . . from Section 3, imagining them
as being transferred to Q, i.e., taking their form completely unchanged except that
the variables a, b, c, . . . are used.

We state some additional properties that follow from the existence of additive
inverse.

(29′′) For each a ∈ Q, the additive inverse is unique.

This can be shown similarly as in the case of multiplicative inverse in (25′)
(Section 3).

(30′′) If a, b ∈ Q, then the equation a + x = b has a unique solution in Q.

Since a + (a− + b) = (a + a−) + b = 0 + b = b, then a− + b is a solution for
a + x = b. Conversely, if a + x = b, then (a + x) + a− = b + a−, implying that
x = b + a−.

(31′′) The difference of numbers a and b from Q can be expressed as a − b =
a + b−.

(32′′) Let x− and 1− be additive inverses of x and 1, respectively. Then
x− = 1− · x.

It follows from x + 1− · x = 1 · x + 1− · x = (1 + 1−)x = 0 · x = 0 and (30′′)
that 1− · x is the additive inverse of x.

The set of all a ∈ Q satisfying 0 < a is denoted by Q+ and called the set of
positive rational numbers. Similarly, the set of all a ∈ Q satisfying a < 0 is denoted
by Q− and called the set of negative rational numbers. By property (xi),

a < 0, or a = 0, or 0 < a

holds. Thus, set Q is a disjoint union Q = Q+ ∪ {0} ∪Q−.

5. (a) The product of two positive or two negative numbers is positive.

(b) The product of a positive and a negative number is negative.

Indeed, if q > 0 and r > 0, then qr > 0 and

(q − 0)(r − 0) = (qr − 0), (0− q)(0− r) = (qr − 0),

and (a) is proved. Also,
(q − 0)(0− r) = (0− qr),

and (b) is proved.

6. If a, b, c ∈ Q and c < 0, then a < b ⇐⇒ bc < ac.

Let a = αqr − βqr, b = αst − βst and c = αuv − βuv, where αuv = 0 and
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βuv > 0. Then

a < b ⇐⇒ αqr − βqr < αst − βst ⇐⇒ αqr + βst < βqr + αst

⇐⇒ (αqr + βst)βuv < (βqr + αst)βuv

⇐⇒ αqrβuv + βstβuv < βqrβuv + αstβuv

⇐⇒ βstβuv − αstβuv < βqrβuv − αqrβuv

⇐⇒ (αst − βst)(0− βuv) < (αqt − βqr)(0− βuv)

⇐⇒ (αst − βst)(αuv − βuv) < (αqr − βqr)(αuv − βuv)
⇐⇒ ac < bc.

5. A more general view on number systems

In the process of extending number systems, the Peacock’s principle of the
permanence of equivalent forms plays a role of a guiding principle. Being undoubt-
edly very suggestive, this principle lacks a precision which could not be attained at
the Peacock’s time when the abstract conception of mathematics did not exist yet
and which, half a century later, the ideas of set and mathematical structure have
brought.

Let us look at {N, +, ·, <}, {Q+, +, ·, >} and {Q, +, ·, <} as abstract struc-
tures: N, Q+, Q are sets with two operations and the order relation and the con-
ditions on List 1, List 2 and List 3 are taken to be axioms of these structures, re-
spectively, which we call provisionally N -structure, Q+-structure and Q-structure
(which is standardly called the ordered field). The system of natural numbers satis-
fies the axioms of N -structure, the system of positive rational numbers the axioms
of Q+-structure and the system of rational numbers axioms of Q-structure. The
existence of these systems (constructing them and verifying their properties) en-
sures that the axioms of these structures are not contradictory. The least restrictive
are the axioms of N -structure and all following systems: natural numbers with 0,
positive rational numbers with 0, rational and real numbers (being the continuous
ordered field) are the examples of N -structure. Therefore, all basic operative prop-
erties of the system of natural numbers and those deduced from them are also the
properties of positive rational numbers with 0, rational numbers and real numbers,
when they are transcribed writing the corresponding letters to denote variables of
these extended systems. This is a precise and logically justified form of the Pea-
cock’s principle of permanence. (Let us remark that the system of real numbers is
characterized as a continuous ordered field but the existence of that field is ensured
by a construction (Dedekind cuts, Cauchy sequences, infinite decimal fractions)
or, of course, not very rigorously as it is done in school, interpreting real numbers
geometrically on the number axis).

Let {S, +, ·, <} be an example of N -structure. Now we define inductively a
sequence N∗ in S, starting with a0 = 0S and a1 = 1S . Supposing that an has been
defined, we take an+1 = an + 1S .
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Let us prove that an+m = an + am. This relation is true when m = 1
and let us suppose that an+m = an + am (this is the inductive hypothesis). Then,
an+(m+1) = a(n+m)+1 = an+m+1S = (an+am)+1S = an+(am+1S) = an+am+1,
what was to be proved.

Let us also prove that an·m = an · am. For m = 1, we have an·1 = an =
an · 1S = an · a1. Supposing that an·m = an · am, we have an(m+1) = an·m+n =
an·m + an = an · am + an = an · am + an · 1S = an(am + 1S) = an · am+1.

Since for each n, an < an+1, the sequence N∗ is increasing. Thus, n < m
implies an < am.

Taking the above facts into account, we see that the mapping n 7→ an is an
isomorphism and N∗ is an isomorphic image of the system of natural numbers.

Since the system N of natural numbers is an example of N -structure and
each example of N -structure contains, as a subsystem, a copy of the system N, we
conclude that the system N of natural numbers is the smallest system satisfying
the axioms of the N -structure. This is a characterization of the system of natural
numbers with 0 analogous to that one which characterizes the system of rational
numbers as the smallest ordered field.

We should notice that H. Grassmann in 1861 exploited a mapping similar to
n 7→ an to define addition and multiplication in the set of natural numbers and to
establish their basic properties (see, for example, [1]).
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