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1. Introduction

Let (Q, F, 1) be a measure space (yu is a positive measure). For all measurable
functions f,g: Q — C, we recall the Holder’s inequality:

(H) /Q|ch|d,u§(/ﬂf|”d,u>p(/Q|f|qd,u>q7 Vp,quwith%—i—é:l.

If p = q¢ = 2 then we obtain the Cauchy-Schwarz inequality:

(C) [ssdan<( [ IfIQdM)é( / |f|2du)é.

Their discrete versions are respectively given by:
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for all positive integers n and all vectors (21,...,%n), (Y1, .- ,Yn) € K", where the

field K is real or complex.

Obviously, we have (H) = (C-S). It is natural to raise the question: does
(C-S) imply (H)?
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There is a positive answer to this question. Indeed, the proof of this fact is
already known in the literature but, often, through indirect implications. See, for
instance, [4, 6, 7].

Many connections between classical discrete inequalities were studied in the
book [7], where, in particular, the equivalence (H)q <= (C-S)q was deducted
through several intermediate results.

A. W. Marshall and I. Olkin pointed out in their book [6] that the Cauchy-
Schwarz inequality implies Lyapunov’s inequality which itself implies the arithme-
tic-geometric mean inequality. The conclusions are that, in a sense, the arithme-
tic-geometric mean inequality, Holder’s inequality, the Cauchy-Schwarz inequality,
and Lyapunov’s inequality are all equivalent [6, p. 457].

In 2006, Y-C. Li and S-Y Shaw [5] gave a proof of Holder’s inequality by using
the Cauchy-Schwarz inequality. Their method lies on the fact that the convexity of a
function on an open and finite interval is equivalent to continuity and midconvexity.

In 2007, the equivalence between the integral inequalities (H) and (C-S) was
studied by C. Finol and M. Wéjtowicz in [3]. They gave a proof that (C-S) implies
(H) by using density arguments and mathematical induction.

The aim of this note is to investigate a new method of proving that (C-S)
implies (H). A report concerning this method of proof was recently posted in [1].
We present a proof of this implication which is different from those made in [3] and
[5]. Indeed, our proof will make use of a simple improvement of the well known
Young’s inequality and the Cauchy-Schwarz inequality.

Let a,b be two positive numbers and let o € [0,1]. We denote by Y («) the
Young’s inequality:

(Y()) a®b' ™ < aa+ (1 — a)b.

2. Proof of the implication: (C-S) = (H)

We avoid the trivial cases, so we suppose that 1 < p,q with 1/p+1/¢q = 1.
We suppose also that || f||, # 0 and ||g||q # 0.

By using Young’s inequality (Y(%)), for all positive numbers a and b, we have:
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By setting a = [f()|/|[f]l, and b = |g(x)|/[|gllq in the inequality (2.1), we obtain
the following inequality:

[f(@)g(@)] _ [f@)P @) = 2 [f@)IP2 lg()|*2
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By integrating both sides of (2.2), we get

‘f(x)g(x”du(x) < %+%+%/ |£P/21g|9/? dp.
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Therefore, we have
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Now, by using the Cauchy-Schwarz inequality, we obtain the following inequality:
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From (2.3) and (2.4), we deduce that
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This finishes the proof.

q

REMARK. The inequality (2.3) implies the following improvement to Holder’s
1‘ fI2 lgl?

inequality.
2
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for all f € L, \ {0} and all g € L, \ {0}. The inequality (2.5) above was obtained
by J. M. Aldaz [2] in a different manner.

(2.5) [ \fslan < |f||p||g||q<1 -
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