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A NOTE ON BRAUER’S THEOREM
Aaron Melman

Abstract. We present an elementary proof of Brauer’s theorem, which shows
how knowledge of an eigenpair can be used to change a single eigenvalue of a matrix.
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An interesting theorem by Alfred Brauer from 1952 allows one to use an
eigenpair of a matrix to create a new matrix whose spectrum differs in only one
eigenvalue, which can be chosen freely. It is often used in deflation techniques when
computing eigenvalues [3, 4.2]. We propose a self-contained proof using only basic
concepts.

Before we do, we need a little background and notation. Throughout, ma-
trices will be square and complex, and we denote by A* the Hermitian conjugate
of the matrix A, i.e., A* = AT. If Av = Av, then v is an eigenvector with eigen-
value A, also referred to as a right eigenvector, and if w*A = pw*, then w is a
left eigenvector with eigenvalue pu. The left and right eigenvalues of a matrix are
the same, but this is not necessarily true for the corresponding eigenvectors. Since
Aw*v = w* (W) = w*Av = pw*v, X\ # p implies that w*v = 0, i.e., left and right
eigenvectors belonging to different eigenvalues are orthogonal. This property is
called biorthogonality [2, 7.9].

Informally, Brauer’s theorem states that, when (A, v) is an eigenpair of A €
C™*™ and u € C" is arbitrary, then the matrix A — vu* has the same eigenvalues
as A, except for A, which is replaced by A — u*v. When X is a simple eigenvalue,
the proof is short and straightforward. A more subtle approach is required when it
is not.

The original proof in [1] relies, as does our proof, on the biorthogonality
property, but proves a slightly weaker result. This is clarified in a remark after our
proof below. The proof in [2, p. 51] explicitly uses the characteristic polynomial
of A — vu*, and shows that it can be factored, which involves the adjoint of the
matrix and properties of determinants, while the proof in [2, p. 122] uses Schur
triangularization in which a unitary matrix is used to triangularize A—vu*, allowing
the eigenvalue A — u*v to be split off. These are the proofs that are typically cited
in the literature.
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Here, we provide a different but elementary proof based on the biorthogonality
property and the trace of a matrix. Our intention is not to find the shortest proof
(ours is somewhat longer than the aforementioned proofs), but rather to present
a nontraditional one. A view from a different angle is always a useful tool in the
classroom.

THEOREM [1]. Let A € C™ ™ with eigenvalues A1,..., An, let vy be an
eigenvector associated with A, and let w € C™ be arbitrary. Then the matriz
B = A —vpu* has eigenvalues A1, ..., Ag—1, A\g — WOk, Akt 1, .-+ An-

Proof. We start by introducing the basic spectral properties of the matrices
A and B, along with some notation. For convenience, we set A = A\g, v = v, and
relabel the eigenvalues of A as 1, ..., tis, A, ..., A, where the (algebraic) multiplicity
of Nisn—s5,0<s<n—1,and u; # A for all j. If all the eigenvalues of A are
equal to A\, we assign the value s = 0, and, throughout, adopt the convention that
a quantity with a nonpositive subscript is not present. Define B = A — vu* and
let w; be a left eigenvector of A corresponding to one of the eigenvalues ;. Since
pj # A implies wjv = 0, we obtain wiB = wjA — wjvu* = wjA = pjw;, which
means that ; is also an eigenvalue of B. Moreover, Bv = Av—vu*v = (A —u*v) v,
i.e., A —u*v is an eigenvalue of B.

In view of the above, we can label the eigenvalues of B as vy,...,vg, A —
u*v,...,\ — u*v, where the multiplicity of A —u*visn—s', 0 < s <n—1, and
v; # A —u*v for all j. Analogously, the eigenvalues v; of B are also eigenvalues
of A.

We now define ¢, with 0 < £ < s, as the largest integer such that the eigenval-
ues fi1, - - -, ¢ of A are equal to the eigenvalues v, . .., vy of B, after reordering, with
the remaining fip41,.. ., s necessarily all being equal to A — u*v, since they must
be eigenvalues of B, different from any v;. Likewise, the eigenvalues voi1,..., Vs
are necessarily all equal to A\ since they must be eigenvalues of A, different from
any pj. By our convention, the value ¢ = 0 is assigned when none of them are
equal. These eigenvalues u; = v; # A, A —u*v have the same multiplicities since if,
for some index i, y; had a multiplicity larger than that of v;, then an infinitesimal
perturbation of the “extra” eigenvalues p; would send them to A\ — u*v, which is
impossible since they would also be infinitesimally close to p; = v; # A — u*v.
A similar argument holds if the multiplicity were less with the roles of p; and v;
reversed. A similar argument holds if the multiplicity were less with the roles of u
and v, reversed. This means that

SpectrumofA:{ul,...,ug7)\—u*v,...,)\—u*v,)\,...7)\,},
——
s—¢ n—s

spectrum of B = {1, ..., e, A, ..., A —uv, o A —uu)
——

s'—0 n—s’

Uuntil here, the proof is similar to Brauer’s proof. Now, since trace(B) =
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trace(A) — u*v and the trace of a matrix is the sum of its eigenvalues, we have that
¢ ¢

Sl + (8 = OA+ (n— YA —urv) = 3 iy + (s — DA —u ) + (n — 5)A — v,

j=1 j=1

and therefore ((n —s') — (s — £))u*v = u*v. If u*v = 0, then the eigenvalues of A
and B coincide and the proof follows. If u*v # 0, then n — s’ = s — £ + 1, so that
s’ — ¢ =mn—s— 1, implying that

spectrum of B = {uh...,ug,)\,...,)\,)\—u*v,...J\—u*v},
——

n—s—1 s—0+1

which are the eigenvalues of A with one of its eigenvalues A replaced by A — u*v. m

We note that the theorem we have just proved is somewhat stronger than the
theorem in [1], as the latter only states that, when \; # \i, — u*vy, its multiplicity
for the matrix A — viu™* is less than its multiplicity for the matrix A. Our theorem
here, which is the same as in [2] and elsewhere in the literature, states that its
multiplicity is decreased by exactly one.
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