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A NOTE ON BRAUER’S THEOREM

Aaron Melman

Abstract. We present an elementary proof of Brauer’s theorem, which shows
how knowledge of an eigenpair can be used to change a single eigenvalue of a matrix.
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An interesting theorem by Alfred Brauer from 1952 allows one to use an
eigenpair of a matrix to create a new matrix whose spectrum differs in only one
eigenvalue, which can be chosen freely. It is often used in deflation techniques when
computing eigenvalues [3, 4.2]. We propose a self-contained proof using only basic
concepts.

Before we do, we need a little background and notation. Throughout, ma-
trices will be square and complex, and we denote by A∗ the Hermitian conjugate
of the matrix A, i.e., A∗ = ĀT . If Av = λv, then v is an eigenvector with eigen-
value λ, also referred to as a right eigenvector, and if w∗A = µw∗, then w is a
left eigenvector with eigenvalue µ. The left and right eigenvalues of a matrix are
the same, but this is not necessarily true for the corresponding eigenvectors. Since
λw∗v = w∗(λv) = w∗Av = µw∗v, λ 6= µ implies that w∗v = 0, i.e., left and right
eigenvectors belonging to different eigenvalues are orthogonal. This property is
called biorthogonality [2, 7.9].

Informally, Brauer’s theorem states that, when (λ, v) is an eigenpair of A ∈
Cn×n and u ∈ Cn is arbitrary, then the matrix A − vu∗ has the same eigenvalues
as A, except for λ, which is replaced by λ − u∗v. When λ is a simple eigenvalue,
the proof is short and straightforward. A more subtle approach is required when it
is not.

The original proof in [1] relies, as does our proof, on the biorthogonality
property, but proves a slightly weaker result. This is clarified in a remark after our
proof below. The proof in [2, p. 51] explicitly uses the characteristic polynomial
of A − vu∗, and shows that it can be factored, which involves the adjoint of the
matrix and properties of determinants, while the proof in [2, p. 122] uses Schur
triangularization in which a unitary matrix is used to triangularize A−vu∗, allowing
the eigenvalue λ− u∗v to be split off. These are the proofs that are typically cited
in the literature.
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Here, we provide a different but elementary proof based on the biorthogonality
property and the trace of a matrix. Our intention is not to find the shortest proof
(ours is somewhat longer than the aforementioned proofs), but rather to present
a nontraditional one. A view from a different angle is always a useful tool in the
classroom.

Theorem [1]. Let A ∈ Cn×n with eigenvalues λ1, . . . , λn, let vk be an
eigenvector associated with λk, and let u ∈ Cn be arbitrary. Then the matrix
B = A− vku∗ has eigenvalues λ1, . . . , λk−1, λk − u∗vk, λk+1, . . . , λn.

Proof. We start by introducing the basic spectral properties of the matrices
A and B, along with some notation. For convenience, we set λ = λk, v = vk, and
relabel the eigenvalues of A as µ1, . . . , µs, λ, . . . , λ, where the (algebraic) multiplicity
of λ is n − s, 0 ≤ s ≤ n − 1, and µj 6= λ for all j. If all the eigenvalues of A are
equal to λ, we assign the value s = 0, and, throughout, adopt the convention that
a quantity with a nonpositive subscript is not present. Define B = A − vu∗ and
let wj be a left eigenvector of A corresponding to one of the eigenvalues µj . Since
µj 6= λ implies w∗j v = 0, we obtain w∗j B = w∗j A − w∗j vu∗ = w∗j A = µjw

∗
j , which

means that µj is also an eigenvalue of B. Moreover, Bv = Av−vu∗v = (λ−u∗v) v,
i.e., λ− u∗v is an eigenvalue of B.

In view of the above, we can label the eigenvalues of B as ν1, . . . , νs′ , λ −
u∗v, . . . , λ − u∗v, where the multiplicity of λ − u∗v is n − s′, 0 ≤ s′ ≤ n − 1, and
νj 6= λ − u∗v for all j. Analogously, the eigenvalues νj of B are also eigenvalues
of A.

We now define `, with 0 ≤ ` ≤ s, as the largest integer such that the eigenval-
ues µ1, . . . , µ` of A are equal to the eigenvalues ν1, . . . , ν` of B, after reordering, with
the remaining µ`+1, . . . , µs necessarily all being equal to λ − u∗v, since they must
be eigenvalues of B, different from any νj . Likewise, the eigenvalues ν`+1, . . . , νs′

are necessarily all equal to λ since they must be eigenvalues of A, different from
any µj . By our convention, the value ` = 0 is assigned when none of them are
equal. These eigenvalues µj = νj 6= λ, λ−u∗v have the same multiplicities since if,
for some index i, µi had a multiplicity larger than that of νi, then an infinitesimal
perturbation of the “extra” eigenvalues µi would send them to λ − u∗v, which is
impossible since they would also be infinitesimally close to µi = νi 6= λ − u∗v.
A similar argument holds if the multiplicity were less with the roles of µi and νi

reversed. A similar argument holds if the multiplicity were less with the roles of µk

and νk reversed. This means that

spectrum of A =
{
µ1, . . . , µ`, λ− u∗v, . . . , λ− u∗v︸ ︷︷ ︸

s−`

, λ, . . . , λ︸ ︷︷ ︸
n−s

,
}

,

spectrum of B =
{
µ1, . . . , µ`, λ, . . . , λ︸ ︷︷ ︸

s′−`

, λ− u∗v, . . . , λ− u∗v︸ ︷︷ ︸
n−s′

}
.

Until here, the proof is similar to Brauer’s proof. Now, since trace(B) =
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trace(A)−u∗v and the trace of a matrix is the sum of its eigenvalues, we have that

∑̀

j=1

µj + (s′ − `)λ + (n− s′)(λ− u∗v) =
∑̀

j=1

µj + (s− `)(λ− u∗v) + (n− s)λ− u∗v ,

and therefore
(
(n− s′)− (s− `)

)
u∗v = u∗v. If u∗v = 0, then the eigenvalues of A

and B coincide and the proof follows. If u∗v 6= 0, then n− s′ = s− ` + 1, so that
s′ − ` = n− s− 1, implying that

spectrum of B =
{
µ1, . . . , µ`, λ, . . . , λ︸ ︷︷ ︸

n−s−1

, λ− u∗v, . . . , λ− u∗v︸ ︷︷ ︸
s−`+1

}
,

which are the eigenvalues of A with one of its eigenvalues λ replaced by λ− u∗v.
We note that the theorem we have just proved is somewhat stronger than the

theorem in [1], as the latter only states that, when λk 6= λk − u∗vk, its multiplicity
for the matrix A− vku∗ is less than its multiplicity for the matrix A. Our theorem
here, which is the same as in [2] and elsewhere in the literature, states that its
multiplicity is decreased by exactly one.
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