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RECURSIVE FORMULAS FOR ROOT CALCULATION
INSPIRED BY GEOMETRICAL CONSTRUCTIONS

Rik Verhulst

Abstract. This article describes a method for calculating arithmetic, geomet-
ric and harmonic means of two numbers and how they can be represented geomet-
rically. We extend these mean values to arithmetic, geometric and harmonic thirds,
fourths, etc. For this we will only use the tools of the affine planar geometry. Also,
we will make allusion to the more general interpretation in the projective plane.

From the relations between these means we can deduce a multitude of recursive
formulas for n-th root calculation and represent them by geometric constructions.
These formulas give a solution for reducing the power of the root. Surprisingly, one of
these algorithms turns out to be the same as the one using Newton’s tangent method
for calculating zero values of functions of the form f(x) = xn−c, but obtained without
use of analysis. Moreover, regarding speed of convergence these algorithms are faster
than Newton’s tangent method.

This geometric interpretation of mean values and root calculation fits into the
larger context of affine geometry, where we use multi-projections as generating trans-
formations for building up all the affine transformations. Our focus will primarily be
on mean values and roots.
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Part 1. Arithmetic, geometric and harmonic means of an interval

1. Geometric construction of the different means
In the affine plane parallel rulers (well known from nautical navigation) are a

convenient tool for constructions using parallel lines only.

Fig. 1

For example, this instrument is a good help for constructing multiples and powers
of a real number a, represented on an axis, by use of translations and homotheties.
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Fig. 2

When we reverse the problem and aim for a construction to divide a number
in half or to extract the square root of a positive number, using parallel lines only,
then the construction is possible for the first (at the left) but not for the second
(at the right), as we will show soon.

Constructions with parallel rulers only allow operations defined by the group
of dilatations, namely addition, subtraction, multiplication and division. Root
extraction needs in addition metric transformations, for example rotations (circles).
The same situation remains for the arithmetic and the geometric mean of two
numbers a and b, represented on a real number axis.

Fig. 3

We can construct the arithmetic mean as seen below on the left figure but
not the geometric mean on the right figure. However, a construction with parallel
lines only leads to the harmonic mean of two numbers a and b represented on a
real number axis.

Fig. 4
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Both results follow from Thales’ Intercept theorem: the ratio of x−a to b−x
is the same as that of the section parts of the diagonals:

In the parallelogram on the left: x− a = b− x =⇒ x =
a + b

2
;

in the trapezium on the right: the ratio of the section parts of the diagonals is the
same as that of a to b, because of the similarity of triangles, so

x− a

b− x
=

a

b
=⇒ x =

2ab

a + b
.

This is the harmonic mean of a and b.
There exist inequality relations between the arithmetic, the harmonic and the

geometric mean of two numbers that easily can be proved algebraically but can be
represented geometrically as well.

Fig. 5

We notice that for a 6= b,

2ab

a + b
<

√
ab <

a + b

2
.

The geometric mean of a and b equals the geometric mean of the arithmetic mean
and the harmonic mean of a and b:

√
2ab

a + b
· a + b

2
=

√
ab.

This means that we can approach the geometric mean of a and b by iterating on
the arithmetic and harmonic mean of a and b, since with each step the distance
between the arithmetic mean and the harmonic mean of two numbers becomes less
than half of the difference between these two numbers.

a + b

2
− 2ab

a + b
=

(b− a)2

2(a + b)
<

(b− a)(b + a)
2(a + b)

=
b− a

2
.

So the iteration process converges to the geometric mean of a and b.
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Since the square root of a strictly positive number c can be defined as the
geometric mean of 1 and c,

√
1 · c =

√
c, we can also use this iteration process for

calculating the square root of c starting from the arithmetic and harmonic mean
of 1 and c.

For example, the square root of 2 is the geometric mean of a = 1 and b = 2.

a + b

2
1.5 1.4166 . . . 1.414215 . . .

2ab

a + b
1.33 . . . 1.4111 . . . 1.414211 . . . Thus,

√
2 = 1.41421 . . .

If c is large, then the convergence starting from 1 and c will be rather slow. In
that case it is better to start from c and a close estimation x of the root. We will
show this later on. In order to generalise these relations, we introduce the following
notations:
HM1/2 = the harmonic mean (which we will also refer to as the harmonic half),
GM1/2 = the geometric mean ( . . . geometric half),
AM1/2 = the arithmetic mean ( . . . arithmetic half).

2. Arithmetic, geometric and harmonic thirds of an interval

Fig. 6

From a + 3(x− a) = b a
(x

a

)3

= b

and a + 2(x− a) = y a
(x

a

)2

= y

follows x =
2a + b

3
= AM1/3 x = 3

√
a2b = GM1/3

y =
a + 2b

3
= AM2/3 y = 3

√
ab2 = GM2/3.

We can refer to AM1/3 as the first arithmetic third, to AM2/3 as the second arith-
metic third, GM1/3 as the first geometric third, etc. Using the similarity of triangles
and the property of the diagonals of a trapezium we can also construct the harmonic
thirds of an interval (Fig. 7).

We can also construct the arithmetic thirds in an analogous way as in Fig. 7
(Fig. 8).
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Fig. 7

x = AM1/3, z = AM1/2, y = AM2/3

Also this can be proven by using the similarity of triangles and the property
of the diagonals of a trapezium. For example:

z − x

x− a
=

1
2

and z =
a + b

2
=⇒ x =

2a + b

3
= AM1/3.

We have the following relations:
AM1/3 ·H2/3 = ab, GM1/3 ·GM2/3 = ab, AM2/3 ·HM1/3 = ab.

3. Arithmetic, geometric and harmonic fourths of an interval

Fig. 9
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Fig. 10

We have the following relations:

AM1/4 ·H3/4 = ab, AM2/4 ·HM2/4 = ab, AM3/4 ·HM1/4 = ab,

GM1/4 ·GM3/4 = ab, GM2/4 ·GM2/4 = ab.

4. Arithmetic, geometric and harmonic n-th parts of an interval

The following formulas apply respectively to the i-th and the (n− i)-th arith-
metic, geometric and harmonic n-th part of the interval [a, b] where 0 < i < n and
a 6= b:

AMi/n =
(n− i)a + ib

n
, GMi/n = n

√
an−ibi, HMi/n =

nab

ia + (n− i)b
,

AM(n−i)/n =
ia + (n− i)b

n
, GM(n−i)/n = n

√
aibn−i, HM(n−i)/n =

nab

(n− i)a + ib
.

Observe that AMi/n ·HM(n−i)/n = ab, AM(n−i)/n ·HMi/n = ab,
GMi/n ·GM(n−i)/n = ab.

5. Interpretation with double ratios

The relation between the i-th arithmetic n-th part and the (n−i)-th harmonic
n-th part of an interval can also be expressed by means of double ratios in the
projective plane. [This section is not essential for understanding the next sections,
but offers an interpretation in a more general background.]

The division ratio [a, b, x] of three numbers a, b, x is the quotient of x− a and
x− b. If x is infinity (∞) then we take [a, b,∞] = 1.

The double ratio of four numbers [a, b, x, y] is the quotient of [a, b, x] and
[a, b, y]. So we have in particular [a, b, x,∞] = [a, b, x] : [a, b,∞] = [a, b, x] : 1 =
[a, b, x].
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If we divide the interval [a, b] in n equal parts and the abscissa of x respective
to a and b is i

n (i and n being natural numbers), then x is the i-th arithmetic n-th

of [a, b]: x = AMi/n =
(n− i)a + ib

n
and the double ratio [a, b, x,∞] = [a, b, x] =

x− a

x− b
=

i
n − 0
i
n − 1

=
i

i− n
.

Fig. 11

The (n − i)-th harmonic n-th part HM(n−i)/n of the interval [a, b] is y =
nab

(n− i)a + ib
. We calculate the double ratio

[a, b, y, 0] =

nab

(n− 1)a + ib
− a

nab

(n− 1)a + ib
− b

:
0− a

0− b
=

nab− (n− i)a2 − iab

nab− (n− i)ab− ib2
· b

a

=
nb− (n− i)a− ib

na− (n− i)a− ib
=

(a− b)i− (a− b)n
i(a− b)

=
i− n

i
.

This precisely is the reverse of the double ratio [a, b, x,∞]. Thus,
[a, b, x,∞][a, b, y, 0] = 1, which is the projective interpretation of the relation xy =
AMi/n ·HM(n−i)/n = ab.

Let [a, b, x] =
x− a

x− b
= k; then x =

a− kb

1− k
. From x · y = a · b follows

y =
(1− k)ab

a− kb
. We select some integer values and their reverses for parameter k

and calculate the corresponding arithmetic and harmonic means x = AMi/n and
y = HM(n−i)/n.

k − 1
n

. . . −1
3

−1
2

−1 −2 −3 . . . −n

1
k

−n . . . −3 −2 −1 −1
2

−1
3

. . . − 1
n

x
na + b

n + 1
. . .

3a + b

4
2a + b

3
a + b

2
a + 2b

3
a + 3b

4
. . .

a + nb

n + 1

y
(n + 1)ab

na + b
. . .

4ab

3a + b

3ab

2a + b

2ab

a + b

3ab

a + 2b

4ab

a + 3b
. . .

(n + 1)ab

a + nb

xy ab . . . ab ab ab ab ab . . . ab
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We notice that in particular for k = −1 it shows:

x =
a + b

2
and thus [a, b, x,∞] = [a, b,

a + b

2
,∞] = −1,

y =
2ab

a + b
and thus [a, b, y, 0] = [a, b,

2ab

a + b
, 0] = −1.

We call a double ratio harmonic if it equals −1. The arithmetic mean of a and b
is the harmonic conjugate of ∞ with respect to a and b. The harmonic mean of a
and b is the harmonic conjugate of 0 with respect to a and b.

In the projective plane the har-
monic conjugate x of p with respect to
a and b is constructed as in Fig. 12.

The constructions of the arithme-
tic and the harmonic mean of a and
b in Section 1 are thus affine versions
of this construction. In the first situ-
ation with p and q at infinity, in the
second with p = 0 and q at infinity.
Now we will use all these relations be-
tween arithmetic, geometric and har-
monic means for creating quite a lot of
recursive formulas for root calculation.

Fig. 12

Part 2: Reductive formulas for root calculation

6. Square root calculation

We already learned in Section 1 that we can calculate the square root of a
positive number c, different from 0, by iterating on the arithmetic and the harmonic
mean of 1 and c. If c is large then the convergence starting from these might be
slow. In this case it is better to start from a closer estimate x for the square root

of c. Since
√

1
c

=
1√
c
, we can restrict the problem to the case that 1 < c.

If x is an underestimate for the square root of c, then c/x is an overestimate
for this square root, because x <

√
c implies

c

x
>

c√
x

, which implies
c

x
>
√

c. So
the interval [x, c/x] contains

√
c.

Now,
√

c is the geometric mean of x and c/x, because
√

x · c
x =

√
c. If we

choose a = x and b = c/x then, with the relations from Section 1, we can calculate√
c by iterating on the arithmetic and harmonic mean of x and c/x:

AM1/2 =
x +

c

x
2

=
x2 + c

2x
and HM1/2 =

2x · c

x

x +
c

x

=
2cx

x2 + c
.
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We know that HM1/2 =
2cx

x2 + c
<
√

c <
x2 + c

2x
= AM1/2.

The algorithm based on this two-sided approximation can be represented ge-
ometrically by the following construction that we call nomogram.

Fig. 13

For example, let c = 4711. We start with the estimate x0 = 68 (682 = 4624 <

4711); then
c

x0
=

4711
68

= 69.279 . . . ,

HM1/2 =
2cx0

x2
0 + c

=
2 · 4711 · 68
682 + 4711

= 68.633 · · · = x1,

AM1/2 =
x2

0 + c

2x0
=

682 + 4711
2 · 68

= 68, 639 . . .

(Since AM1/2 ·HM1/2 = c = 4711, we can calculate AM1/2 also by AM1/2 =
c

HM1/2
=

4711
68.633 . . .

= 68.639 . . . )

After the first iteration it already shows 68.633 · · · <
√

4711 < 68.639 . . . and
thus

√
4711 = 68.63 . . . . We continue the iteration with x1 = 68.633 . . . .

HM1/2 =
2cx1

x2
1 + c

= 68.6367238 · · · = x2,

AM1/2 =
x2

1 + c

2x1
= 68.636724 . . . .

After just two iterations we already know the result up to the 5th decimal
after the decimal point:

√
4711 = 68.63672 . . . . This algorithm converges very

fast.
In a program running these iterative algorithms we can include a stop, based

on the desired difference between AM1/2 and HM1/2, i.e. AM1/2−HM1/2 < 10−n.
So we can calculate the root up to any desired decimal.

But there is something interesting with the right side approximation in the
formula. The square root of c can also be interpreted as a zero value of the function
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f(x) = x2 − c. So we can use Newton’s tangent method for approaching this zero
value. Therefore we need the derivative of f , i.e. f ′(x) = 2x. With x0 as the first
estimate and T as the tangent to the graph of f at the point (x0, f(x0)) we obtain
a better approximation x1 as the abscissa of the intersection point of T and the
x-axis.

Fig. 14

The value x1 is calculated from the equations of T and the x-axis (y = 0):

x1 = x0 − f(x0)
f ′(x0)

= x0 − x2
0 − c

2x0
=

x2
0 + c

2x0
.

And this result is the same as AM1/2.
But the great advantages of developing these formulas in the geometrical way

are:
• we do not need analysis;
• we can use approximations not only from one side, but from both sides. So

we can take control of the number of exact decimals;
• we have a geometrical interpretation in nomograms;
• but first of all, when we extract roots of higher power, we will see further on

that with the geometrical procedure we get a choice of algorithms with vari-
ous convergence speeds and among those, the one given by Newtons tangent
method is one of the two slowest.

7. Cube root calculation

The cube root of a positive number c can be interpreted as the first geometric

third GM1/3 of 1 and c because 3
√

12 · c = 3
√

c. Since 3

√
1
c

=
1
3
√

c
, we can restrict

the problem to the case 1 < c.

When x is an underestimate of the cube root of c, then
c

x2
is an overestimate,

for:
x < 3

√
c =⇒ x2 < 3

√
c2 =⇒ c

x2
>

c
3
√

c2
=⇒ c

x2
> 3

√
c.
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So the interval [x, c/x2] contains 3
√

c. The first geometric third GM1/3 of this

interval is also 3
√

c because 3

√
x2 · c

x2
= 3

√
c.

The first arithmetic third AM1/3 =
2x + c

x2

3
=

2x3 + c

3x2
(see Section 2) of this

interval is then a new approximation of 3
√

c, larger than 3
√

c, i.e.,

(1) 3
√

c < AM1/3 =
2x3 + c

3x2
.

It follows from x < 3
√

c that x2 < 3
√

c2 and
c

x
>

c
3
√

c
= 3

√
c2 and thus the interval

[x2, c/x] contains 3
√

c2.

The second geometric third GM2/3 of this interval is again 3
√

c2 because

3

√
x2 · c2

x2
= 3

√
c2 and the second harmonic third HM2/3 =

3x2 · c
x

2x2 + c
x

=
3cx2

2x3 + c

(s. Section 2) of this interval is then a new approximation of 3
√

c2, less than 3
√

c2.
So, HM2/3 < 3

√
c2 and thus

(2)
√

HM2/3 =

√
3cx2

2x3 + c
< 3

√
c.

From (1) and (2), we get:

(3)
√

HM2/3 =

√
3cx2

2x3 + c
< 3

√
c <

2x3 + c

3x2
= AM1/3.

This can be represented geometrically by the nomogram:

Fig. 15

The first geometric third GM1/3 of
√

H2/3 and AM1/3 is again 3
√

c, since

GM1/3 =
3

√√
HM2/3

2

·AM1/3 =
3

√√√√
√

3cx2

2x3 + c

2

· 2x3 + c

3x2
= 3

√
c2.
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So we can iterate on AM1/3 as well as on
√

HM2/3 in (3) for calculating the cube
root of c. Since the length of the new interval is less than a third of the former, the
iterations will converge to 3

√
c. Indeed,

2x3 + c

3x2
−

√
3cx2

2x3 + c
<

1
3

( c

x2
− x

)
⇐⇒ 2x3 + c

3x2
− 1

3

( c

x2
− x

)
<

√
3cx2

2x3 + c

⇐⇒ x <

√
3cx2

2x3 + c
⇐⇒ x2(2x3 + c) < 3cx2

⇐⇒ 2x3 + c < 3c ⇐⇒ x3 < c ⇐⇒ x < 3
√

c,

which was stated from the beginning.
For example, let c = 1789. Take x = 12 as an underestimate for 3

√
c (123 =

1728 < 1789); then
c

x2
=

1789
122

= 12.4236 . . . is an overestimate of 3
√

c. The first

arithmetic third of the interval [x, c/x2] is

AM1/3 =
2x3 + c

3x2
=

2 · 123 + 1789
3 · 122

= 12.141203 . . .

The square root of the second harmonic third of the interval
[x2, c/x] = [144, 149.0833 . . . ] is

√
HM2/3 =

√
3cx2

2x3 + c
=

√
3 · 1789 · 122

2 · 123 + 1789
= 12.1387592 . . .

We continue the iteration by repeating these calculations on the interval
[12.1387592 . . . , 12.141203 . . . ]:

AM1/3 =
2 · 12.1387592 . . .3 + 1789

3 · 12.1387592 . . .
= 12.139574 . . .(4)

√
HM2/3 =

√
3 · 1789 · 12.1387592 . . .2

2 · 12.1387592 . . .3 + 1789
= 12.139573 . . .(5)

It follows from (4) and (5) that 3
√

1789 = 12.13957 . . . .
As in the case of square root calculation it is possible to obtain the formula at

the right-hand side of (3) by Newton’s tangent method on the function f(x) = x3−c

with f ′(x) = 3x2. Let x0 be an initial estimate for the zero 3
√

c of this function.
We obtain a better approximation by

x1 = x0 − f(x0)
f ′(x0)

= x0 − x3
0 − c

3x2
0

=
2x3

0 + c

3x2
0

.

Moreover, beside these iterations on the left-hand and on the right-hand sides of
(3), we could give even more formulas for calculating 3

√
c inspired by other relations

between mean values. Indeed, we have used above the relation AM1/3 ·HM2/3 = c,
but we could have used the relation AM2/3 ·HM1/3 = c, as well.
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When programming a one-sided approach, the geometrical way inspires us for
four formulas, Newton’s tangent method being one of them. On these procedures
we have the same comments as for the square root in Section 4. The formula on
the left-hand side of (3), based on the square root of the second harmonic third,
calculates the cube root by means of the square root and therefore gives a solution
for the reduction of the root exponent.

8. General recursive formulas for root calculation

If x is an underestimate for the n-th root of a positive number c, then we
can prove that the interval

[
xi,

c

xn−i

]
contains n

√
ci, for i = 1, 2, . . . , n − 1 (n − 1

intervals).

AMi/n in the interval
[
xi,

c

xn−i

]
is an overestimate of n

√
ci and thus the

i-th root of AMi/n is an overestimate of n
√

c. Complementary, HM(n−i)/n in the

interval
[
xn−i,

c

xi

]
is an underestimate of n

√
cn−i and thus the (n − i)-th root of

HM(n−i)/n is an underestimate of n
√

c.

We now use the relation AMi/n ·HM(n−i)/n = c (see the end of Section 2) to
construct the following recursive formulas for calculating n

√
c:

AMi/n =
(n− i) · xi + i · c

xn−i

n
=

(n− i) · xn + ic

nxn−i
,

HM(n−i)/n =
n · xn−i · c

xi

(n− i) · xn−i + i · c

xi

=
ncxn−i

(n− i) · xn + ic
.

So, for n
√

c we get

n−i

√
HM(n−i)/n = n−i

√
ncxn−i

(n− i) · xn + ic
< n

√
c <

i

√
(n− i) · xn + ic

nxn−i
= i

√
AMi/n.

If we want to program an algorithm with a formula from one side for any value
of i < n then we have no less than 2(n−1) alternatives for iterative calculations for
n
√

c with a root exponent less than n. So these iterative formulas give a solution
for reduction of the root exponent.

Nevertheless, there is a difference in convergence speed between the different
algorithms. The higher the root exponent the faster the algorithm. So we obtain
the fastest approximation for n

√
c by using the formula with root exponent n − 1.

For example, in

n−1

√
HM(n−1)/n = n−1

√
ncxn−1

(n− 1) · xn + c
< n

√
c <

(n− 1) · xn + c

nxn−i
= AM1/n,



48 R. Verhulst

the algorithm using the formula at the left-hand side is one of the fastest while the
algorithm using the formula at the right-hand side one of the slowest.

The formula on the right-hand side is essentially Newton’s tangent method
applied to the function f(x) = xn − c, for f ′(x) = nxn−1 and

x− f(x)
f ′(x)

= x− xn − c

nxn−1
=

(n− 1)xn + c

nxn−1
= AM1/n.

All these algorithms can be represented geometrically in nomograms. A wonderful
marriage between geometry and algebra, with a beautiful progeny!

We finish by presenting a test for n = 5 and c = A = 32. There are 2·(5−1) = 8
algorithms. In order to compare the convergence of these algorithms, we need a
sufficient number of iterations; that is why we start from the roughly chosen initial
approximation x0 = 5. We enumerate the algorithms from X1 to X8:

X1 : (HM4/5)1/4 = ((5AX4
1/(4X5

1 + A))1/4 (root exponent 4)

X2 : AM1/5 = (4X5
2 + A)/5X4

2 (Newton, root exponent 1)

X3 : (HM3/5)1/3 = ((5AX3
3/(4X5

3 + 2A))1/3 (root exponent 3)

X4 : (AM2/5)1/2 = ((3X5
4 + 2A)/5X3

4 )1/2 (root exponent 2)

X5 : (HM2/5)1/2 = ((5AX2
5/(2X5

5 + 3A))1/2 (root exponent 2)

X6 : (AM3/5)1/3 = ((2X5
6 + 3A)/5X2

6 )1/3 (root exponent 3)

X7 : HM1/5 = 5AX7/(X5
7 + 4A) (root exponent 1)

X8 : (AM4/5)1/4 = ((X5
8 + 4A)/5X8)1/4 (root exponent 4)

The results obtained by a computer program are presented in the next page.
We notice that

X7 6 X5 6 X3 6 X1 6 A1/5 = 2 6 X8 6 X6 6 X4 6 X2 (Newton)

X1, with root exponent 4, is already exact to the 8th decimal after 5 iterations,
while X2 (Newton) with root exponent 1 needs 8 iterations. The higher the root
exponent, the higher the speed of convergence.

Conclusion

This material offers a favourable didactical context for application of elemen-
tary algebra and geometry, within the reach of young pupils, and with astonishingly
deep mathematical results. In the Platonic world of mathematical concepts there
are many pearls and diamonds waiting to be discovered, even with just simple tools.

Acknowledgement. An outline of this method was integrated in the article
[1]. As an article in an article my contribution was rather brief. Since the article
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it in a broader context and make the reading easier by mentioning more explicitly
the several steps that led me to the results.
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