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Abstract. In this paper, we find new approximations of the Euler number e
and using Matlab we compare the existing approximations and the new approxima-
tions by testing their convergence rate to the Euler number for some terms.
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1. Introduction

The Euler number e first appeared in 1618 in contributions to the logarithms
of the Scottish mathematician John Napier as abasis of logarithms. The discovery is
attributed to Swiss mathematician Jakob Bernoulli, who tried to find lim

n→∞
(
1+ 1

n

)n,
and found that its value, with the first 20 decimals, is 2,71828182845904523536.
The name e for this number was given by Swiss mathematician Leonhard Euler in
1727.

The Euler number can be presented in different ways, as an infinite series or
infinite product, a continuous ratio or a sequence limit, which is usually taken as
a definition in mathematical analysis courses, i.e., e = lim

n→∞
(
1 + 1

n

)n. But for its
calculation with the highest precision, it is most appropriate to take it as a infinite

series, i.e., e =
∞∑

n=0

1
n! which converges very quickly.

The idea of finding approximations of number e is not new, but it has attract-
ed the attention of many mathematicians, and even today efforts are made to find
the fastest and most accurate approximations. The importance of finding these ap-
proximations lies in the fact that the number e is an irrational, even transcendental
number, and that it appears in many important formulas, not only in mathematics
but also in other disciplines. Hence, it is important to find a series which would
yield more digits of this constant with fewer summation terms.

In this paper, we present some inequalities involving the Euler number. To
achieve them, we use expansion in power series, in particular the Taylor expansion,
expansion in Fourier series and some known inequalities, in particular Carleman’s
inequality and its generalization obtained by Polya. The obtained series, which
approximate the Euler number, are compared with the well-known approximations

obtained by the series e =
∞∑

n=0

1
n! .
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2. Auxiliary facts

In order to obtain our results, we need the following well-known facts.

(
1 +

1
n

)n

< e, n ∈ N;(1)

1
(n + 1)!

< e−
n∑

k=0

1
k!

<
3

(n + 1)!
, n = 0, 1, 2, . . . ;(2)

1
n + 1

+
1

n + 2
+ · · ·+ 1

2n
< 1, n ∈ N.(3)

Lemma 2.1. (Carleman’s inequality)
∞∑

n=1
(a1a2 · · · an)

1
n < e

∞∑
n=1

an, where

an > 0, n ∈ N and
∞∑

n=1
an < ∞.

A generalization of Carleman’s inequality was for the first time given by Polya
in the following form:

(4)
∞∑

n=1

λn(aλ1
1 aλ2

2 · · · aλn
n )

1
σn < e

∞∑
n=1

λnan,

where λn > 0, σn =
n∑

k=1

λk, an > 0, n ∈ N, and 0 <
∞∑

n=1
λnan < ∞. It was stated

in [2, 4] and its proof can be found in [2].
We will also need the following well-known facts.

Lemma 2.2.
∞∑

k=1

1
α2 + k2

=
eαπαπ − shαπ

2α2 shαπ
, α ∈ R.

Lemma 2.3. sgn sin x =
4
π

∞∑
n=1

sin(2n− 1)x
2n− 1

, x ∈ R.

Proofs of these lemmas, using Fourier series, can be found in most of the
textbooks on Mathematical analysis.

3. Main results and numerical presentations

Proposition 3.1. e =
∞∑

n=1

2n− 1
3(n− 1)!

.

Proof. Using the Taylor expansion for ex we have ex2
=

∞∑
n=0

x2n

n!
and, taking

derivative, xex2
=

∞∑
n=1

x2n−1

(n− 1)!
. Taking another derivative, we obtain

(1 + 2x2)ex2
=

∞∑
n=1

(2n− 1)x2n−2

(n− 1)!
, x ∈ R.

For x = 1 we get the desired result.
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The Matlab code to generate the partial sums of the above series and some of
the results are given below.

function e sum = e sum(n)
s=0;
for i=1:n
s=s (2*i-1)/(3*factorial(i-1));
endfor
e sum = s;
endfunction

Proposition 3.2.

(2e− 1)(n + 1)!− 6
(n + 1)!

<

n∑

k=1

2k2 − k + 3
3k!

<
(2e− 1)(n + 1)!− 2

(n + 1)!
, for all n ∈ N.

Proof. From (2), e −
n∑

k=0

1
k!

<
3

(n + 1)!
and it is easily seen that also

e−
n∑

k=1

2k − 1
3(k − 1)!

<
3

(n + 1)!
for all n ∈ N. Adding these inequalities, we get:

2e−
( n∑

k=0

1
k!

+
n∑

k=1

2k − 1
3(k − 1)!

)
<

6
(n + 1)!

,

2e− 1−
( n∑

k=1

( 1
k!

+
2k − 1

3(k − 1)!

))
<

6
(n + 1)!

,

2e− 1− 6
(n + 1)!

<

n∑

k=1

3 + k(2k − 1)
3k!

,

(2e− 1)(n + 1)!− 6
(n + 1)!

<

n∑

k=1

2k2 − k + 3
3k!

,

for all n ∈ N. Similarly, using the inequalities

e−
n∑

k=0

1
k!

>
1

(n + 1)!
and e−

n∑

k=1

2k − 1
3(k − 1)!

>
1

(n + 1)!
,

one gets

2e− 1−
( n∑

k=1

( 1
k!

+
2k − 1

3(k − 1)!

))
>

2
(n + 1)!

,
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2e− 1− 2
(n + 1)!

>

n∑

k=1

2k2 − k + 3
3k!

,

n∑

k=1

2k2 − k + 3
3k!

<
(2e− 1)(n + 1)!− 2

(n + 1)!
,

for all n ∈ N. The two obtained inequalities prove our claim. qed

Proposition 3.3.
n + 1

n
< n

√
e

1
n+1 + 1

n+2 + · · ·+ 1
2n

, for all n ∈ N.

Proof. It follows from the relations (1) and (3) that
e(

1 +
1
n

)n > 1 >
1

n + 1
+

1
n + 2

+ · · ·+ 1
2n

.

and this can be easily transformed into the given inequality.

Proposition 3.4.
∞∑

n=1

qn

(2!)
q−q2

1−qn · (3!)
q2−q3

1−qn · . . . · (n!)
qn−1−qn

1−qn

< e1+q,

where 0 < q < 1.

Proof. Using Polya’s generalization (4) of Carleman’s inequality, with an =
1
n!

, λn = qn, we have that σn = q + q2 + · · ·+ qn = q
1− qn

1− q
, and we obtain:

∞∑
n=1

qn

(
1q ·

( 1
2!

)q2

·
( 1

3!

)q3

· . . . ·
( 1

n!

)qn) 1−q
q(1−qn)

< e

∞∑
n=1

qn

n!
,

∞∑
n=1

qn

(
1

(2!)q2 ·
1

(3!)q3 · . . . ·
1

(n!)qn ·
) 1−q

q(1−qn)
< e · eq,

and hence the desired inequality.

Proposition 3.5. e =

√
∞∑

n=0

(2n + 3) · 22n

(2n + 1)!
.

Proof. It is known that chx =
∞∑

n=0

x2n

(2n)!
and sh x =

∞∑
n=0

x2n+1

(2n + 1)!
hold for

every x ∈ R. For x = 2 we get ch 2 =
e2 + e−2

2
=

∞∑
n=0

22n

(2n)!
and sh 2 =

e2 − e−2

2
=

∞∑
n=0

22n+1

(2n + 1)!
. Adding these equalities, we obtain

e2 =
∞∑

n=0

(
22n

(2n)!
+

22n+1

(2n + 1)!

)
=

∞∑
n=0

22n(2n + 1) + 2 · 22n

(2n + 1)!
=

∞∑
n=0

(2n + 3)22n

(2n + 1)!
,

wherefrom the given formula follows.
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The Matlab code to generate the partial sums of the above series and some of
the results are given below.

function e sq = e sqrt(n)
s=0;
for i=0:n
s=s+((2*i+3)*2 (̂2*i))/factorial(2*i+1);
endfor
e sq = sqrt(s);
endfunction

Now consider the well known series e =
∞∑

n=0

1
n!

, which in Matlab has the fol-
lowing code, and some of the results.

function [e fact] = e factorial(n)
s=0;
for i=0:n
s=s+1/factorial(i);
endfor
e fact = s;
endfunction

We can see that approximations done using partial sums of the series from

Proposition 3.5 are closer to e than those of the usual sum e =
∞∑

n=0

1
n!

. In particular,

e.g., four exact decimals are obtained after 5 iterations in the case of the first sum,
and after 7 iterations in the second one.

Proposition 3.6. eπ =




∞∑
k=1

k2 + 1 + 2k+2

2k+2(1 + k2)
∞∑

k=1

(k2 + 1 + 2k+2

2k+2(1 + k2)
+

4(−1)k

2k − 1

)




1
2

.
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Remark. The number eπ is known as Gel’fond’s constant.
Proof. Using Lemma 2.2 for α = 1 we get

∞∑

k=1

1
1 + k2

=
eππ

2 sh π
− 1

2
,

∞∑

k=1

1
1 + k2

+
1
2

=
πeπ

eπ − e−π
,

∞∑

k=1

1
1 + k2

+
1
4

∞∑

k=1

1
2k

=
πe2π

e2π − 1
,

∞∑

k=1

( 1
1 + k2

+
1

2k+2

)
=

πe2π

e2π − 1
,

1− e−2π = π

( ∞∑

k=1

( 1
1 + k2

+
1

2k+2

))−1

,

e2π =

∞∑
k=1

( 1
1 + k2

+
1

2k+2

)

∞∑
k=1

( 1
1 + k2

+
1

2k+2

)
− π

.

Using Lemma 2.3 for x =
π

2
, i.e., π = 4

∞∑
k=1

(−1)k−1

2k − 1
, we get the desired result.
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