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Miljan Knežević and Dragana Savić

Abstract. The subject matter of this article is a beautiful theorem developed
by Ptolemy (about 100–178) in Chapters 10 and 11 of the first book of Almagest, the
Great Collection of Astronomy in 13 books. In order to solve astronomical problems,
Ptolemy used mathematical tools to calculate the length of the chord in the circle of
radius 60 as a function of the central angle. The application of Ptolemy’s theorem
is presented by giving some interesting examples. The paper analyzes the results in
solving problems from the competitions in which Ptolemy’s theorem is applied.
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1. Introduction

Claudius Ptolemaeus or Ptolemy (about 100–178 AD) was a Greek mathemati-
cian, astronomer, geographer and astrologer who lived in the city of Alexandria,
in the Roman province of Egypt, under the rule of the Roman Empire. Some-
where between 146 and 170 AD, he created the Great Mathematical Collection of
Astronomy in 13 books or the Great Syntax, which was later named Almagest by
connecting the Arab “al” with the Greek “megiste” [8, p. 310].

When the Arabs occupied Alexandria, they became heirs to much of its in-
tellectual heritage. Many of the finest works of the Greek mathematicians were
translated into Arabic (in many cases that was the only form in which they could
survive). The Ptolemy’s work was translated as Al magest (the greatest) and this
term was latter adopted by the Romans under the Latin name Almagestum. In
English, we refer to it still as Ptolemy’s Almagest [6].

In Almagest, he used, not only astronomical models, but also mathematical
tools of the elementary geometry, among them trigonometry, that were needed by
astronomy.

The theory that provides numerical solutions to geometrical problems, involv-
ing angles, is called trigonometry. This literally means measurement of triangles.
Ptolemy developed this subject in Chapters 10 and 11 of the first book of the
Almagest [1, p. 103].

The geometry of the circle was of vital importance for the study of astronomy
and geography (the earth is round, the observer’s position in relation to the sphere).
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The Greeks did not use modern trigonometric functions, but they used chords. For
the purpose of astronomical calculations, Ptolemy needed to compare the distance
between the points on the circle, or to find the length of the chord over a given
central angle. Ptolemy made a table of chords, that was divided into three columns.
The first column showed the angles of (1/2)◦ to 180◦ at intervals of (1/2)◦. The
second column showed the values of the chord and the third column contained the
sixtieths, giving the 1/30 increments from one line to the next one.

Considering the mathematical steps followed by Ptolemy in order to develop
the chord table, the impression is that they were not new to him, but are based on
previous known theories (Euclid, Archimedes, Aristarchus, Hipparchus) [5, p. 29].
But his contribution in this direction was unquestionable, which cannot be missed
by any cautious reader of Almagest. The truth can be reached by different ways,
or methods.

His table gives the length of the chord in the circle, as a function of the central
angle (Fig. 1). It is clear that this, in its essence, is the sine function. Ptolemy used
a circle of radius 60, most likely because it is the basis of the Vavilonian number
system, which was used for calculating. Contemporary authors denote the length
of the chord by crd (from the English word chord).

2. The general form and a proof of Ptolemy’s theorem

Theorem 1. In each oriented and convex quadrilateral ABCD the following
inequality holds

AB · CD + DA ·BC ≥ AC ·BD,

where the equality is valid if and only if the quadrilateral ABCD is cyclic.

Fig. 1 Fig. 2
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Proof. Let E be a point in the plane of the given quadrilateral, such that
the triangles AEB and DCB are similar, i.e., such that ]EBA = ]CBD and
]BAE = ]BDC, and have the same orientation (the point E is on the same side
of the line AB as the points C and D, Fig. 2). Obviously, the point E is different
from the points A, B and C, since ]CBA > ]CBD (for the first two points it is
obvious).

Thus, since 4AEB ∼ 4DBC, we obtain
AE

CD
=

EB

BC
=

AB

BD
, i.e.

(1) BD =
AB · CD

AE
,

and, since ]DBA = ]CBE and
EB

BC
=

AB

BD
, we get4ADB ∼ 4ECB. Therefore,

DA

EC
=

BD

BC
, i.e.

(2) BD =
DA ·BC

EC
.

Finally, by applying the triangle inequality to the triple of points A, E and C, we
obtain AE + EC > AC, which is equivalent to

AE ·BD + EC ·BD > AC ·BD,

and then, by using (1) and (2), we get the desired inequality.
Observe that the equality holds if and only if the points A, E and C are

collinear, which is equivalent to ]BAC = ]BAE = ]BDC, i.e., if and only if the
quadrilateral ABCD is cyclic.

Mathematician Carl Anton Bretschneider (1808–1878), from Gotha (Ger-
many), carried out the following generalization of Ptolemy’s theorem, which refers
to the product of diagonals in a convex quadrilateral.

Theorem 2. Assume that ABCD is a convex quadrilateral. Then

AC2 ·BD2 = AB2 · CD2 + AD2 ·BC2 − 2 ·AB ·BC · CD ·DA · cos(]B + ]D),

is valid, where ]B and ]D are the inner angles at the vertices of the given quadri-
lateral.

Proof. Denote the lengths of the sides AB, BC, CD, DA, AC, BD of the
given quadrilateral by a, b, c, d, e and f , respectively. Consider a point E, outside
of the quadrilateral ABCD, such that ]CDE = ]CBA and ]DCE = ]BCA.
Then, 4CDE ∼ 4CBA (Fig. 3).

Thus,
CD

CB
=

DE

BA
=

EC

AC
, i.e.,

c

b
=

DE

a
=

EC

e
, which implies DE =

ac

b
and

EC =
ce

b
. From the equality of the angles ]BCD = ]ACE and side proportion

BC

AC
=

CD

CE
, it follows 4BCD ∼ 4ACE. Hence,

BC
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=

CD

CE
=

BD

AE
, i.e.,

b
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c
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f
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. So, CE =
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ef

b
.
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By using the law of cosines for the triangle ADE, we get

AE2 = AD2 + DE2 − 2 ·AD ·DE · cos(]ADE),

that is
e2f2

b2
= d2 +

a2c2

b2
− 2 · d · ac

b
· cos(]B + ]D),

hence
e2f2 = b2d2 + a2c2 − 2abcd cos(]B + ]D).

Note that if the quadrilateral ABCD is cyclic, its opposite angles are supple-
mentary, so

e2f2 = b2d2 + a2c2 − 2abcd cos 180◦ = (ac + bd)2

holds, i.e. ef = ac + bd. In general case, since cos(]B + ]D) > −1, we get
ef > ac + bd, that also proves Ptolemy’s theorem.

Fig. 3 Fig. 4

3. Applications of Ptolemy’s theorem

Example 1. Let R and r be the radii of the circumscribed circle and the
inscribed circle, respectively, of an arbitrary acute-angled triangle ABC. If the
distance from the circumcenter O to the related sides of that triangle is denoted by
u, v and w, prove that

u + v + w = R + r.

Proof. Let a, b and c be the lengths of the sides of a given triangle and let
A1, B1 and C1 be the midpoints of the sides BC, CA and AB, respectively. These
points are also the feet of the perpendiculars from the center O to the sides (Fig. 4)
of 4ABC.

The segments A1B1, B1C1 i C1A1 are the middle lines of the triangle ABC,

so we have the following lengths equalities: A1B1 =
c

2
, B1C1 =

a

2
and C1A1 =

b

2
.

Also, it is obvious that OB = OC = OA = R.
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By applying Ptolemy’s theorem to the cyclic quadrilaterals BA1OC1, CB1OA1

and AC1OB1 (sums of the pairs of opposite angles are equal to 180◦), we get

a

2
· w +

c

2
· u =

b

2
·R,

b

2
· u +

a

2
· v =

c

2
·R,

c

2
· v +

b

2
· w =

a

2
·R.

By adding these equalities, we get

(3)
a

2
· w +

c

2
· u +

a

2
· v +

c

2
· v +

b

2
w =

1
2
(a + b + c) ·R.

Since O is the inner point of the triangle ABC, its area is equal to the sum of the
areas of 4BCO, 4CAO and 4ABO, i.e.,

P (4ABC) = P (4BCO) + P (4CAO) + P (4ABO),

and we obtain

(4)
a · u
2

+
b · v
2

+
c · w

2
=

1
2
· (a + b + c) · r.

Thus, from (3) and (4), we get

1
2
· (a + b + c) · (u + v + w) =

1
2
(a + b + c) · (R + r),

i.e., u + v + w = R + r. 4
Remarks. 1◦ If 4ABC is obtuse-angled with the obtuse angle at the vertex

A (Fig. 5), then

b

2
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c

2
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2
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2
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2
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2
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a
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Thus,
b

2
R +

c

2
u +

c

2
R +

b

2
u +

a

2
R =

a

2
w +

a

2
v +

b

2
w +

c

2
v,

i.e.,

(5)
1
2
(a + b + c)R = w

(a

2
+

b

2

)
+ v

(a

2
+

c

2

)
− u

( b

2
+

c

2

)
.

Since O lies in the exterior of triangle ABC, the area of triangle ABC is equal
to the sum of the areas of triangles BAO and OCA, reduced by the area of triangle
BOC, so

(6)
cw

2
+

bv

2
− au

2
=

1
2
(a + b + c)r.
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Fig. 5 Fig. 6

By adding equalities (5) and (6), we obtain

1
2
(a + b + c) · (−u + v + w) =

1
2
(a + b + c) · (R + r),

i.e., −u + v + w = R + r. Observe that, in the case that the triangle ABC is
obtuse-angled, with the obtuse angle at the vertices B or C, respectively, then
u− v + w = R + r or u + v − w = R + r.

2◦ If the triangle ABC is right-angled, with the right angle at the vertex C
(Fig. 6), then, by using well known relations c = 2R and a + b = 2(R + r), which
are valid in right-angled triangles, we obtain (ω = 0, since the point O belongs to
the hypotenuse of 4ABC)

u + v =
b

2
+

a

2
= R + r.

Example 2. Let ABCD be an arbitrary cyclic and convex quadrilateral. If
r1, r2, r3 and r4 are the lengths of the radii of inscribed circles in triangles ABC,
BCD, CDA and DAB, respectively, then

r1 + r3 = r2 + r4.

Proof. Let R be the length of radius of the circumscribed circle, with the
center at the point O, of the quadrilateral ABCD and let the distances from the
point O to the sides AB, BC, CD, and DA, as well as to the diagonals AC and
BD, be denoted by a, b, c, d, e and f , respectively (Fig. 7).

Without loss of the generality, let us assume that in the given quadrilateral
there does not exist a pair of opposite right angles and that the angles ]ABC
and ]BCD are obtuse, for example. Then, the angles ]CDA = 180◦ − ]ABC
and ]DAB = 180◦ − ]BCD are acute. Thus, by applying the results obtained in
Example 1 (and in the corresponding remarks), to the triangles ABC, BCD, CDA
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and DAB, respectively, we get,

a + b− e = R + r1, b + c− f = R + r2,

c + d + e = R + r3, a + d + f = R + r4.

By adding up the first and the third relations, and than, the second and the fourth,
we obtain the claim, i.e.

r1 + r3 = r2 + r4. 4

Fig. 7 Fig. 8

Example 3. [Yugoslavia – State competition, PG 1992] If h is the length of
the longest height of an acute-angled triangle ABC, then

(7) R + r 6 h,

where R and r are radii of circumscribed and inscribed circles of the triangle,
respectively.

Proof. Let us denote by a the length of the side of triangle ABC, corresponding
to the longest height h (Fig. 8).

Since the shortest side of the triangle corresponds to the longest height, a is
the shortest side, i.e., a 6 b and a 6 c, where b and c are the lengths of other
two sides of this triangle. Also, as 4ABC is acute-angled, so the center of its
circumscribed circle, i.e., the point O, lies in the interior of this triangle. Then,
the area of triangle ABC is equal to the sum of areas of triangles BCO, CAO and
ABO, i.e.,

P (4ABC) = P (4BCO) + P (4CAO) + P (4ABO).

Hence,
ah

2
=

au

2
+

bv

2
+

cw

2
, i.e.,

a(R + r) = a(u + v + w) 6 au + bv + cw = ah,

therefore (7) holds. 4
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Remarks. 1◦ Note that the equality holds in (7) iff the triangle is equilateral.
2◦ This problem was assigned for the 12th grade, at the 1992 State high school

student competition. Since it was not obvious that the task was a trivial conse-
quence of the relations obtained by Ptolemy’s theorem, only one of the students
completely solved the problem.

4. Some problems from competitions with solutions
and students’ results

1. (AMC1 2016, 10A, Problem 24) [2] The quadrilateral is inscribed into a
circle of radius 200

√
2. The three sides of this triangle have length 200. What is

the length of the fourth side?
(A) 200 (B ) 200

√
2 (C) 200

√
3 (D) 300

√
2 (E) 500

Solution. Let O be the center of circle and, for example, let AB = BC =
CD = 200. Thus, OA = OB = OC = OD = 200

√
2 (Fig. 9).

Let us denote by X the intersection point of diagonals AC and OB of the
quadrilateral OABC. This quadrilateral is a deltoid, so CA = 2 · CX. Let us
express the length ha of the height, that corresponds to the side BC of the triangle
OBC, by using Pythagorean theorem. Thus, from the isosceles triangle OBC, one

can get ha =
√

(200
√

2)2 − 1002 = 100
√

7.

Further, we get
CX ·OB

2
=

CB · ha

2
, i.e.,

CX · 200
√

2
2

=
200 · 100

√
7

2
,

and, also, CX = 50
√

14 and AC = 100
√

14.
By applying Ptolemy’s theorem to the cyclic
quadrilateral ABCD we obtain

CA2 = AD ·BC + AB · CD.

That is (100
√

14)2 = AD · 200 + 200 · 200.
So, AD = 500. 4

Fig. 9

2. (AMC 2017, 12A, Problem 24) [3] The quadrilateral ABCD is inscribed
in a circle with the center O and has the side lengths AB = 3, BC=2, CD = 6

and DA = 8. Let X and Y be points of the segment BD such that
DX

BD
=

1
4

and
BY

BD
=

11
36

. Let the point E be the intersection of the line AX and the line
through Y parallel to AD. Let F be the point of intersection of the line CX and
line through E parallel to AC. Let G be a point on the circle, different from C,
that belongs to the line CX. What is the value of XF ·XG?

1American Mathematics Competitions
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(A) 17 (B)
59− 5

√
2

3
(C)

91− 12
√

3
4

(D)
67− 16

√
2

3
(E) 18

Solution. Let Z be the intersection of segments AC and BD. Then, 4BCZ ∼
4ADZ, so

BC

AD
=

BZ

AZ
, i.e.,

(8)
2
8

=
BZ

AZ
.

Also, by using similarity 4BZA ∼ 4CZD, we obtain

CD

BA
=

CZ

BZ
and

CD

BA
=

DZ

AZ
,

i.e.,

(9)
6
3

=
CZ

BZ
and

6
3

=
DZ

AZ
.

Fig. 10

From equalities (8) and (9), we find that AZ = 4BZ, CZ = 2BZ and DZ =
2AZ = 8BZ. Finally, by applying Ptolemy’s theorem to the cyclic quadrilateral
ABCD, it follows that

AB · CD + AD ·BC = AC ·BD = (AZ + ZC) · (BZ + ZD).

That is,
3 · 6 + 8 · 2 = (4BZ + 2BZ) · (BZ + 8BZ) = 54 BZ2.

Thus, BZ2 =
34
54

.
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Using the power of point X, with respect to the given circle, we get

GX ·XC = BX ·XD =
3
4
BD · 1

4
BD =

3
16

BD2 =
3
16

(BZ + ZD)2

=
3
16

(BZ + 8BZ)2 =
3
16
· 81BZ2 =

9 · 17
16

,

i.e., GX =
9 · 17

16 ·XC
.

On the other hand,

XY = BD −BY −XD = BD − 11
36

BD − 1
4
BD =

16
36

BD =
4
9
BD,

so, by using the similarity of triangles AXD and EXY , we get
AD

EY
=

XD

XY
, i.e.

8
EY

=
1
4BD
4
9BD

=
9
16

.

Hence, EY =
128
9

. Further we have
AD

EY
=

AX

EX
, i.e.,

AX

EX
=

9
16

. Also, from the

similarity of triangles ACX and EFX it holds
XF

XC
=

EF

CA
=

EX

AX
=

16
9

. Thus,

XF =
16
9

XC and, finally, XF ·XG =
16
9

XC · 9 · 17
16 ·XC

= 17. 4

3. (AMC 2018, 12A, Problem 20) [4] The triangle ABC is isosceles and right-
angled, with side lengths AB = AC = 3. Let M be the midpoint of hypotenuse
BC. Points I and E lie on the sides AC and AB, respectively, so that AI > AE
and AIME is a cyclic quadrilateral. The triangle EMI has area 2 and the length

of the CI can be written as
a−

√
b

c
, where a, b and c are positive integers and b is

not divisible by the square of any prime number. What is the value of a + b + c?
(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

Solution. Denote by F and G the points
on the sides AB and AC, respectively, such that
MF ⊥ AB and MG ⊥ AC (Fig. 11).

The point M is on the bisector ]BAC, so
MF = MG. Since AIME is a cyclic quadri-
lateral, it follows that ]EMI = 90◦. Next,
]EMF = 90◦ − ]GME = ]IMG. From the
congruent triangles EMF and IMG, we get
ME = MI. Therefore, the triangle EMI is
isosceles and right-angled. From the area of tri-
angle EMI, we find that MI = ME = 2 and
EI = 2

√
2 and, since M is the midpoint of hy-

potenuse BC, AM = MB =
BC

2
=

3
√

2
2

.
Fig. 11
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Let us denote by p and q the lengths of segments AE and AI, respectively.
By applying the Ptolemy’s theorem to the cyclic quadrilateral AIME, we obtain
MI · AE + ME · AI = EI · AM , i.e., 2 · p + 2 · q = 6, i.e., p + q = 3. Further,
by applying Pythagorean theorem to the triangle AEI, we get p2 + q2 = 8. Thus,
we need to solve the system of equations p + q = 3 and p2 + q2 = 8, that leads us

to q =
3 +

√
7

2
and p =

3−√7
2

. Hence, the required length of CI (by using the

assumption) is CI = 3− q =
3−√7

2
, so a + b + c = 12. 4

In 2019, after the approval of a competent higher institution in the Republic of
Serbia, we conducted a testing (which lasted 30 minutes) of all students of the 10th
grade of one selected secondary school in Belgrade, bearing in mind that during the
previous education they were introduced to the formulation, proof and applications
of Ptolemy’s theorem. We performed three types of tests, by dividing students into
three (equal in number of students) groups in a random manner. As expected, each
group contained almost equal number of students with similar achievements. The
first group of students was solving Problem 1, without any pre-given information.
Another group of students was solving Problem 2, and none of the students in that
group was told that they should apply Ptolemys theorem to solve that problem.
Finally, a third group of students was solving Problem 3, knowing in advance that
each of them should apply Ptolemy’s theorem when solving that task.

The first table below gives results on their achievements during this testing.
From the first column we can conclude that even in the case of a simple request,
unless the students are told in advance which theorem (property, relation, principle,
method) they should use, they cannot achieve the expected results (which are in
accordance with their grades). A similar situation, although Problem 2 is signifi-
cantly more difficult, also occurred in the case of the second group of students. The
third group of students, considering that they were aware in advance which con-
cept of the acquired knowledge in elementary geometry should be applied, certainly
achieved the best result.

Table 1 shows the percentage representation of students’ responses when solv-
ing Problems 1, 2 and 3.

Answer A B C D E No answer Unreadable
Problem 1 21.27 6.83 7.05 6.67 4.14 54.01 0.02
Problem 2 1.87 3.94 4.17 3.68 1.71 84.62 0.02
Problem 3 2.72 3.20 4.16 34.54 2.10 53.26 0.02

Table 1. Students’ responses expressed in percentages

4. (IMO2 1995, Problem 5) [7] Let ABCDEF be a convex hexagon with
AB = BC = CD, DE = EF = FA and ]BCD = ]EFA = 60◦. Points G and
H, inside the hexagon, are such that the angles AGB and DHE are equal to 120◦.

2International Mathematical Olympiad
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Prove that
AG + GB + GH + DH + HE > CE.

Solution. Triangles BCD and AFE are equilateral, because they are both
isosceles and have one angle of 60◦. The line BE is the axis of symmetry of
quadrilateral ABDE (BA = BD and EA = ED). By symmetry, one can map the
triangles BCD and AEF , with respect to the line BE, to the triangles BC ′A and
DEF ′ (Fig. 12).

Since ]AGB + ]BC ′A = 180◦, then AC ′BG is a cyclic quadrilateral and by
applying the Ptolemy’s theorem we obtain AC ′ ·BG + BC ′ ·AG = AB ·C ′G, i.e.,
BG + AG = C ′G. Similarly, EF ′ ·HD + F ′D ·EH = ED ·HF ′, i.e., HD + EH =
HF ′. It follows that

AG + GB + GH + DH + HE = C ′G + GH + HF ′ > C ′F ′ = CF.

Equality holds if and only if the points G and H belong to the line C ′F ′. 4

Fig. 12 Fig. 13

5. (IMO 2001, Problem 6) [7] Let a, b, c and d be natural numbers such that
a > b > c > d and let

ac + bd = (b + d + a− c) · (b + d− a + c).

Prove that ab + cd is not a prime number.

Solution. We transform the given equality into

ac + bd = b2 + 2bd + d2 − a2 + 2ac− c2.

Thus, the equality ac + bd = (b + d + a− c) · (b + d− a + c) is equivalent to

(10) a2 − ac + c2 = b2 + bd + d2.



Ptolemy’s theorem and its applications 69

Let ABCD be the quadrilateral with the sides AB = a, BC = d, AD = c and let
]BAD = 60◦ and ]BCD = 120◦ (Fig. 13). On the basis of (10) and the law of
cosines, such a quadrilateral exists.

Denote ]ABC = α. Then ]CDA = 180◦−α. By applying the law of cosines
to the triangle ABC, we obtain

(11) AC2 = a2 + d2 − 2ad cosα.

Similarly, from the triangle ACD, we find

(12) AC2 = b2 + c2 − 2bc cos(180◦ − α) = b2 + c2 + 2bc cos α.

Then, by using the equalities (11) and (12), we get

b2 + c2 + 2bc cosα = a2 + d2 − 2ad cos α,

i.e., 2 cos α · (bc+ad) = a2 +d2− b2−c2. Thus, 2 cos α =
a2 + d2 − b2 − c2

bc + ad
. Hence,

AC2 = a2 + d2 − ad
a2 + d2 − b2 − c2

bc + ad

=
ab(ac + bd) + cd(bd + ac)

bc + ad
=

(ac + bd)(ab + cd)
bc + ad

.

Since the quadrilateral ABCD is cyclic (]BAD + ]BCD = 180◦), then, by using
Ptolemy’s theorem, we obtain AC2 ·BD2 = (ab + cd)2, i.e.,

(ac + bd)(ab + cd)
bc + ad

· (a2 + c2 − 2ac cos 60◦) = (ab + cd)2

hence

(13) (ac + bd) · (a2 + c2 − ac) = (bc + ad) · (ab + cd).

Since a > b > c > d, then (a − d) · (b − c) > 0, i.e., ab + cd > ac + bd. Also,
(a− b) · (c− d) > 0, i.e., ac + bd > ad + bc. Thus,

ab + cd > ac + bd > ad + bc.

Finally, let ab + cd be a prime number. Then, from (14), we get that ab + cd and
ac + bd are mutually prime. So, from (13), it must be that ac + bd divides bc + ad,
but this cannot be true by (14). 4

Table 2 shows the achievement of IMO students, in percentages, in solving
Problems 4 and 5. The maximum number of points, that can be won on each task,
is 7. Since usually brilliant students, with extraordinary capabilities, compete on
IMO, we could assume, in the case that they were told in advance that (in Problems
4 and 5) they should apply Ptolemy’s Theorem, that they would all solve this type
of problems.
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Number of points 0 1 2 3 4 5 6 7
Problem 4 34.22 11.65 7.28 1.94 0.24 1.70 1.21 41.75
Problem 5 80.33 4.23 3.38 1.69 2.11 1.90 0.63 5.71

Table 2. Students’ success rate expressed in percentages

5. Conclusion

Ptolemy’s theorem is one of the most advanced theorems in the stream of
elementary geometry, over the centuries. Ptolemy used the principles of similar
triangles to prove the first version of the theorem. The consequences are signifi-
cant and are seen through the linking of areas in the secondary school curriculums.
Ptolemy’s theorem and its proof introduces many geometric facts into the system,
such as Pythagorean theorem, some of trigonometric identities, etc. This theorem
makes it possible to connect algebraic relations with elementary geometry, where
the notion of cyclic quadrilateral surely occupies one of the crucial places. Its
greater application in secondary school can be considered useful in linking, devel-
oping and deepening the students’ knowledge.
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