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CHARACTERIZED BY THEIR OPERATIVE PROPERTIES”

Milosav M. Marjanović, Zoran Kadelburg

Abstract. The starting point of our approach to the number systems
is the selection of basic operative properties of the systemN0 of natural numbers
with 0. This set of properties has proved itself to be sufficient for extension of
this system to the systems of integers Z, positive rational numbers Q+ ∪ {0}
and rational numbers Q and for the formation of basic operative properties of
these extended systems.

In all these cases of number systems, the corresponding set of numbers
with basic operative properties is an example of a concrete algebraic structure.
These structures can be viewed abstractly as the structure (S, +, ·, <), where
S is a non-empty set, “+” and “·” are two binary operations on S and “<” is
the order relation on S, which satisfy the postulated conditions that are formed
according to the basic operative properties of these systems. When matched
up with N0, Z, Q+ ∪ {0} and Q, the structure (S, +, ·, <) is called ordered
semifield, ordered semifield with additive inverse, ordered semifield with mul-
tiplicative inverse and ordered field, respectively. Then, these number systems
are characterized as being the smallest semifield with which they fit togeth-
er. Proofs of these facts require deduction of some properties of all mentioned
types of this abstract structure upon which they will be clearly relied. Hence,
the main aim of this paper is this deduction and some improvements of proofs
contained in the paper whose reconsideration is this note.
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1. Introduction

Let us begin with the explanation of the main ideas of our approach to the
number systems (see [1]). First of all, we have selected the list of basic operative
properties of the system N0 of natural numbers with 0. These properties have
proved themselves to be sufficient when the system N0 is extended to the systems
of integers, positive rational numbers with 0 and rational numbers.

What is also specific for our approach is the deduction from the list of
basic properties of N0 a series of its properties, which then serve as the basis for
its further extension. Namely, among these properties there exist the relations
which express the sum of two differences and two quotients as a difference and a
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quotient, respectively as well as the product of two sums and two quotients as a
difference and a product, respectively. In addition, the conditions under which two
differences and two quotients are related by the relation “<” are also given. As our
terminology suggests it clearly all such differences and such quotients are supposed
to be defined in N0. Thus, extending N0 we extend the validity of these relations
and of this condition, using them for definitions of sums, products and the order
relation in the extended systems. This is, of course, a significant difference between
our approach and the existing approaches where such definitions are given formally.

All extensions of the system N0 have the form of a construction of the
extended systems (see [1]). Thus, the existence of such systems is effective what
also proves that their basic properties are not a contradictory set of conditions.

Taken abstractly, the systems N0, Z, Q+ with 0 and Q can be viewed
as the structure (S, +, ·, <), where S is a non-empty set, “+” and “·” are two
binary operations on the set S and “<” is the order relation on S. Basic operative
properties of these number systems are postulated as the properties of this abstract
structure and then, their specific variables are replaced by a, b, c, . . . For example,
when the basic operative properties of N0 are transcribed, the following list is
obtained

(i) (∀a)(∀b) a + b = b + a (iv) (∀a)(∀b) a · b = b · a
(ii) (∀a)(∀b)(∀c) (a + b) + c = a + (b + c) (v) (∀a)(∀b)(∀c) (a · b) · c = a · (b · c)
(iii) (∃0)(∀a) a + 0 = a (vi) (∃1)(0 < 1 and (∀a) a · 1 = a)

(vii) (∀a)(∀b)(∀c) a · (b + c) = a · b + a · c
(viii) (∀a)(∀b) (a < b ⇐⇒ (∃c > 0) a + c = b)

(ix) (∀a)(∀b) (a < b or a = b or b < a)

(x) (∀a)(∀b)(∀c) (xi) (∀a)(∀b)(∀c > 0)
(a < b ⇐⇒ a + c < b + c) (a < b ⇐⇒ a · c < b · c)

List 1

and the structure which satisfies conditions on this list is called the ordered semi-
field. In the same way, the structure (S, +, ·, <) which satisfies conditions on List 2,
Section 2 of this paper is called the ordered semifield with additive inverse, when
this structure satisfies conditions on List 3, Section 3 of this paper it is called the
ordered semifield with multiplicative inverse and finally, when this structure satis-
fies conditions on List 4, Section 4 of this paper it is called the ordered field. The
systems N0, Z, Q+ with 0 and Q are characterized as the smallest ordered semifields
satisfying conditions on List 1, List 2, List 3 and List 4, respectively. The clear
proofs of these facts require deduction of some properties from the lists of postu-
lated properties of the structure (S, +, ·, <) . The aim of this paper is to form a
series of such properties (1S)–(3S), (4S)a–(11S)a, (4S)m–(9S)m and to apply them
to the proofs of the above facts. These properties are very well known and related
to different algebraic structures. But it is easier to group them according to the
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type of a semifield and sketch their proofs than to search for references. Hence, we
improve here our paper [2].

2. Characterization of the system Z via its operative properties

As it has already been said, the number system Z can be viewed as a
structure (S, +, ·, <), where S is a non-empty set, “+” and “·” are two binary
operations on S and “<” is an order relation on S. We denote identity elements
in S writing 0S and 1S , but we leave operations and the order relation without
subscript S. The list of properties of this abstract structure is given below as List
2, and we call this structure the semifield with additive inverse.

(i) (∀a)(∀b) a + b = b + a (v) (∀a)(∀b) a · b = b · a
(ii) (∀a)(∀b)(∀c) (a + b) + c = a + (b + c) (vi) (∀a)(∀b)(∀c) (a · b) · c = a · (b · c)
(iii) (∃0S)(∀a) a + 0S = a (vii) (∃1S)(0S < 1S and (∀a) a · 1S = a)
(iv) (∀a)(∃b) a + b = 0S

(viii) (∀a)(∀b)(∀c) a · (b + c) = a · b + a · c
(ix) (∀a)(∀a) (a < b ⇐⇒ (∃c > 0S) a + c = b)

(x) (∀a)(∀b) (a < b or a = b or b < a)

(xi) (∀a)(∀b)(∀c) (xii) (∀a)(∀b)(∀c > 0S)
(a < b ⇐⇒ a + c < b + c) (a < b ⇐⇒ a · c < b · c)

List 2

Now we start listing the properties of the semifield with additive inverse.
In each ordered semifield the following three properties hold:

(1S) The identity elements 0S and 1S are unique.

Suppose 0′ is also the additive identity element. Then, 0′+0S is equal to 0S

when 0′ is the identity element and to 0′ when 0S is the identity element. Hence,
0′ = 0S . Similarly 1S is proved to be unique.

(2S) (∀a ∈ S) a · 0S = 0S .

From 0S + 0S = 0S , by (vii) on List 1, a · 0S + a · 0S = a · 0S . Since 0S is
unique, it follows that a · 0S = 0S .

(3S) For each a, b, c ∈ S, a = b ⇐⇒ a + c = b + c.

According to (x), List 1, a < b ⇐⇒ a + c < b + c and b < a ⇐⇒ b + c <
a + c. Thus, the only possibility for a = b is to be equivalent to a + c = b + c.

Now we use the postulated properties of the ordered semifield with additive
inverse (List 2 ) to deduce some of its additional properties. The additive inverse
of a ∈ S will be denoted by −a.
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(4S)a (∀a ∈ S)− (−a) = a.

Indeed, from (−a) + a = 0S , it follows that −(−a) = a.

(5S)a Additive inverse is unique.

Suppose that a′ is another additive inverse of a, i.e., a + a′ = 0S . Then,
applying (3S), we have (−a)+(a+a′) = (−a), i.e., −a = ((−a)+a)+a′ = 0S +a′ =
a′.

(6S)a (∀a, b ∈ S) a < b ⇐⇒ −b < −a.

According to (xi), List 2,

a < b ⇐⇒ a + (−b) < b + (−b) ⇐⇒ a + (−b) < 0S

⇐⇒ (−a) + (a + (−b)) < (−a) ⇐⇒ −b < −a.

In particular, a > 0S ⇐⇒ −a < 0S .

(7S)a (∀a, b ∈ S) ((−a) · b = a · (−b) = −(a · b)) and (−(a + b) = (−a) + (−b)).

Indeed, a · b + (−a) · b = (a + (−a)) · b = 0S · b = 0S . Then, according to
(5S)a, −(a · b) = (−a) · b. Similarly, −(a · b) = a · (−b) is proved.

(a + b) + ((−a) + (−b)) = a + b + (−a) + (−b) = 0S .

(8S)a The value of a sum of arbitrary many summands does not depend on the
order of summands. The same is true for products. (See [3]).

(9S)a For all a, b, c ∈ S, when c < 0S then a < b ⇐⇒ b · c < a · c.

Applying property (xii), List 2 and then (7S)a and (6S)a, we have

a < b ⇐⇒ (−c) · a < (−c) · b ⇐⇒ −(c · a) < −(c · b) ⇐⇒ c · b < c · a.

(10S)a Let a, b ∈ S. Then,

(i) a > 0S and b > 0S implies a · b > 0S.

(ii) (a > 0S and b < 0S) or (a < 0S and b > 0S) implies a · b < 0S.

(iii) a < 0S and b < 0S implies a · b > 0S.

Simple verification of these implications relies upon (xii), List 2 and the
property (8S)a.

From (10S)a it immediately follows:

(11S)a (i) (∀a, b ∈ S)(a 6= 0S and b 6= 0S implies a · b 6= 0S),

i.e.,

(ii) (∀a, b ∈ S)(a · b = 0S implies a = 0S or b = 0S).
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When proving the following statement we use the mapping defined in Chap-
ter 5 of [1], as well as the properties (4S)a–(11S)a. When which of these properties,
the reader will find it easily.

The system Z of integers is the smallest ordered semifield with additive
inverse.

As Z+ ∪ {0} is an isomorphic copy of N0, we consider the mapping n 7→ an

to be defined on this set of non-negative integers by a0 = 0S and an+1 = an + 1S .
Let us extend it to the mapping ϕ : Z → S, taking ϕ(n) = an, n ∈ Z+ ∪ {0} and
ϕ(−n) = −an, −n ∈ Z−.

As for each n ∈ Z+∪{0}, an < an+1, i.e., ϕ(n) < ϕ(n+1), applying (6S), it
follows that −an+1 < −an, i.e., ϕ(−(n+1)) < ϕ(−n). Thus, it follows immediately
that ϕ is a one to one mapping which also preserves the order relation.

Let us suppose that m > 0 and n > 0. Then, am+n = am + an, i.e.,
ϕ(m + n) = ϕ(m) + ϕ(n). Being −am+n = −(am + an) = (−am) + (−an), we also
have ϕ(−(m + n)) = ϕ((−m) + (−n)) = ϕ(−m) + ϕ(−n).

For n > m, ϕ(n + (−m)) = ϕ(n−m) = an−m and from an−m + am = an,
i.e., an−m = an +(−am), it follows that ϕ(n+(−m)) = ϕ(n)+ϕ(−m). For n < m,

ϕ(n + (−m)) = ϕ(−(m− n)) = −am−n = (−am) + an = ϕ(n) + ϕ(−m).

Thus, we have proved that ϕ preserves the operation “+”.
Let m,n be positive integers. Then,

ϕ(m · n) = am·n = am · an = ϕ(m) · ϕ(n).

Furthermore,

ϕ((−m) · n) = ϕ(−m · n) = −am·n = −(am · an) = (−am) · an = ϕ(−m) · ϕ(n)

and

ϕ((−m) · (−n)) = ϕ(m · n) = am·n = am · an = (−am) · (−an) = ϕ(−m) · ϕ(−n).

Thus, we have proved that ϕ[Z] is an isomorphic copy of the ordered semifield Z.

3. Characterization of the system Q+ with 0 via its operative properties

Similarly as in the previous chapter, the number system Q+ ∪ {0} can be
viewed as a structure (S, +, ·, <), where S is a non-empty set, “+” and “·” are two
binary operations on S and “<” is an order relation on S. The list of properties of
this abstract structure is given below as List 3. We call this structure the semifield
with multiplicative inverse.

(i) (∀a)(∀b) a + b = b + a (iv) (∀a)(∀b) a · b = b · a
(ii) (∀a)(∀b)(∀c) (a + b) + c = a + (b + c) (v) (∀a)(∀b)(∀c) (a · b) · c = a · (b · c)
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(iii) (∃0S)(∀a) a + 0S = a (vi) (∃1S)(0S < 1S and (∀a) a · 1S = a)
(vii) (∀a 6= 0S)(∃b) a · b = 1S

(viii) (∀a)(∀b)(∀c) a · (b + c) = a · b + a · c
(ix) (∀a)(∀b) (a < b ⇐⇒ (∃c > 0S) a + c = b)

(x) (∀a)(∀b) (a < b or a = b or b < a)

(xi) (∀a)(∀b)(∀c) (xii) (∀a)(∀b)(∀c > 0S)
(a < b ⇐⇒ a + c < b + c) (a < b ⇐⇒ a · c < b · c)

List 3

Now we use the postulated properties of the ordered semifield with multi-
plicative inverse (List 3 ) to deduce some of its additional properties. The multi-
plicative inverse of a ∈ S, a 6= 0S will be denoted by a−1.

(4S)m (∀a, b, c ∈ S, c 6= 0S) a · c = b · c ⇐⇒ a = b.

This follows from the existence of a multiplicative inverse.

(5S)m (i) (∀a ∈ S \ {0S}) a−1 6= 0S .
(ii) (∀a ∈ S \ {0S}) (a−1)−1 = a.

Assertion (i) is a consequence of (2S). Then, from a−1 · a = 1S , it follows
that (a−1)−1 = a.

(6S)m For a 6= 0S, a−1 is unique multiplicative inverse of a.

Suppose a′ is another multiplicative inverse of a, i.e., a · a′ = 1S . Then,
a′ = a′ · 1S = a′ · (a · a−1) = (a′ · a) · a−1 = 1S · a−1 = a−1.

(7S) a > 0S (a < 0S) implies a−1 > 0S (a−1 < 0S).

Let a > 0S . By (4S)m, a−1 6= 0S . If a−1 < 0S , applying (xii), List 3 it
would follow that a ·a−1 < a ·0S , i.e., 1S < 0S what contradicts (vi), List 3. Hence,
a−1 > 0S .

a < 0S and a−1 > 0S implies a · a−1 < 0S · a−1, i.e., 1S < 0S , what
contradicts again (vi), List 3. Hence, a−1 < 0S .

(8S)m If a, b 6= 0S then (a · b)−1 = a−1 · b−1.

This follows from (a · b) · (a−1 · b−1) = (a · a−1) · (b · b−1) = 1S · 1S = 1S .

(9S)m (i) a · b = 0S implies a = 0S or b = 0S ,
i.e.,
(ii) a 6= 0S and b 6= 0S implies a · b 6= 0S .

This property was deduced as (11S)a in the case of a semifield with additive
inverse. In the case of a semifield with multiplicative inverse it can be shown as
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follows. When a · b = 0S and a 6= 0S then a−1 · (a · b) = a−1 · 0S , i.e., b = 0S .
Similarly, when a · b = 0S and b 6= 0S it follows that a = 0S . The statement under
(ii) is just logical transposition of the statement under (i).

Recall that the set Q+ ∪ {0} of positive rational numbers with zero can be
defined as

Q+ ∪ {0} = { k : l | k, l ∈ N0, l 6= 0 } ,

with k : l = k′ : l′ ⇐⇒ kl′ = k′l. Then, the system (Q+∪{0},+, ·, <) is an ordered
semifield with multiplicative inverse. Now, using the properties (4S)m–(9S)m, and
again the mapping n 7→ an given by a0 = 0S and an+1 = an + 1S for n ∈ N0, the
following statement will be proved.

The system of positive rational numbers with 0, (Q+ ∪ {0},+, ·, <) is the
smallest semifield with multiplicative inverse.

Let (S, +, ·, <) be an arbitrary ordered semifield with multiplicative inverse
and define the mapping ψ : Q+ ∪ {0} → S by

ψ(k : l) = ak · a−1
l , for k, l ∈ N0, l 6= 0.

We show that this mapping is injective and that it preserves operations “+” and
“·” and relation “<”.

Let (k1 : l1), (k2 : l2) ∈ Q+ ∪ {0} be such that ψ(k1 : l1) = ψ(k2 : l2).
Then ak1 · a−1

l1
= ak2 · a−1

l2
. It follows that ak1 · al2 = ak2 · al1 , hence ak1l2 = ak2l1 .

This means that k1l2 = k2l1 and finally k1 : l1 = k2 : l2. Thus, ψ is an injective
mapping.

For arbitrary elements (k1 : l1), (k2 : l2) of Q+ ∪ {0} the following holds:

ψ((k1 : l1) + (k2 : l2)) = ψ((k1l2 + k2l1) : (l1l2)) = ak1l2+k2l1 · a−1
l1l2

= (ak1al2 + ak2al1) · (al1al2)
−1 = (ak1 · a−1

l1
) + (ak2 · al2)

−1

= ψ(k1 : l1) + ψ(k2 : l2).

For all (k1 : l1), (k2 : l2) ∈ Q+ ∪ {0} we have that

ψ((k1 : l1) · (k2 : l2)) = ψ((k1k2) : (l1l2)) = ak1k2 · a−1
l1l2

= (ak1ak2) · (al1al2)
−1 = (ak1 · a−1

l1
) · (ak2 · al2)

−1

= ψ(k1 : l1) · ψ(k2 : l2).

Let k1 : l1 and k2 : l2 be elements of Q+ ∪ {0} such that k1 : l1 < k2 : l2.
Then k1l2 < k2l1, and it follows that ak1l2 < ak2l1 . Further, ak1al2 < ak2al1 , and
finally ak1 · a−1

l1
< ak2 · a−1

l2
, i.e., ψ(k1 : l1) < ψ(k2 : l2).

Thus, we have proved that ψ[Q+ ∪ {0}] is an isomorphic copy of Q+ ∪ {0}.
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4. Characterization of the system Q via its operative properties

An ordered semifield with both, additive and multiplicative inverses is stan-
dardly called the ordered field. The postulated properties of the ordered field form
the list that just follows.

(i) (∀a)(∀b) a + b = b + a (v) (∀a)(∀b) ab = ba

(ii) (∀a)(∀b)(∀c) (a + b) + c = a + (b + c) (vi) (∀a)(∀b)(∀c) (ab)c = a(bc)
(iii) (∃0S)(∀a) a + 0S = a (vii) (∃1S)(0S < 1S and (∀a) a · 1S = a)
(iv) (∀a)(∃b) a + b = 0S (viii) (∀a 6= 0S)(∃b) ab = 1S

(ix) (∀a)(∀b)(∀c) a(b + c) = ab + ac

(x) (∀a)(∀b) (a < b ⇐⇒ (∃c > 0S) a + c = b)

(xi) (∀a)(∀b) (a < b or a = b or b < a)

(xii) (∀a)(∀b)(∀c) (xiii) (∀a)(∀b)(∀c > 0S)
(a < b ⇐⇒ a + c < b + c) (a < b ⇐⇒ ac < bc)

List 4

All properties of the ordered semifields (1S)–(3S), (4S)a–(11S)a and (4S)m–
(9S)m are valid, of course, for the ordered field.

The main example of an ordered field is the structure (Q, +, ·, <) of rational
numbers, where

Q = { z : k | z ∈ Z, k ∈ N } ,

with z : k = z′ : k′ ⇐⇒ zk′ = z′k. Characterization of the system of ratio-
nal numbers via its operational properties is a very well-known fact but, for the
sake of completeness we formulate it here as the following statement which is also
accompanied with a proof.

The system of rational numbers (Q, +, ·, <) is the smallest ordered field.

Let (S, +, ·, <) be an arbitrary ordered field and let ϕ : Z → S be the
mapping used in Section 2. Let us define the mapping χ : Q→ S by

χ(z : k) = ϕ(z) · ϕ(k)−1, for z ∈ Z, k ∈ N.
We will prove that χ is an injective mapping, and that it preserves operations “+”
and “·” and relation “<”.

Let (z1 : k1), (z2 : k2) ∈ Q be such that χ(z1 : k1) = χ(z2 : k2). Then
ϕ(z1) ·ϕ(k1)−1 = ϕ(z2) ·ϕ(k2)−1. Or else ϕ(z1) ·ϕ(k2) = ϕ(z2) ·ϕ(k1), what implies
that ϕ(z1k2) = ϕ(z2k1). This means that z1k2 = z2k1 and hence z1 : k1 = z2 : k2.
This proves that χ is an injective mapping.

The following holds for arbitrary elements (z1 : k1), (z2 : k2) in Q:

χ((z1 : k1) + (z2 : k2)) = χ((z1k2 + z2k1) : (k1k2)) = ϕ(z1k2 + z2k1) · ϕ(k1k2)−1

= (ϕ(z1)ϕ(k2) + ϕ(z2)ϕ(k1)) · (ϕ(k1)ϕ(k2))−1

= (ϕ(z1) · ϕ(k1)−1) + (ϕ(z2) · ϕ(k2)−1)

= χ(z1 : k1) + χ(z2 : k2).
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Let (z1 : k1), (z2 : k2) ∈ Q; then:

χ((z1 : k1) · (z2 : k2)) = χ((z1z2) : (k1k2)) = ϕ(z1z2) · ϕ(k1k2)−1

= (ϕ(z1)ϕ(z2)) · (ϕ(k1)ϕ(k2))−1 = (ϕ(z1) · ϕ(k1)−1) · (ϕ(z2) · ϕ(k2)−1)

= χ(z1 : k1) · χ(z2 : k2).

Let z1 : k1 and z2 : k2 be elements of Q satisfying z1 : k1 < z2 : k2.
Then z1k2 < z2k1, implying that ϕ(z1k2) < ϕ(z2k1). It follows that ϕ(z1)ϕ(k2) <
ϕ(z2)ϕ(k1) and finally ϕ(z1) ·ϕ(k1)−1 < ϕ(z2) ·ϕ(k2)−1, i.e., χ(z1 : k1) < χ(z2 : k2).

Thus, we have proved that χ[Q] is an isomorphic copy of Q.
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