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ON SOME PROPERTIES OF TRIANGLE OIG

Yu. N. Maltsev and A. S. Monastyreva

Abstract. Let O be the circumcenter of a triangle ABC, I the incenter and
G the centroid of ABC. In this paper, we study properties of the triangle OIG.
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1. Introduction

Let R and r be the circumradius and the inradius of a triangle ABC, respec-
tively, and let p be the semiperimeter of ABC. Denote the circumcenter of ABC
by O, its incenter by I, the centroid of ABC by G and its orthocenter by H. Let
α = ∠CAB, β = ∠ABC, γ = ∠BCA, a = BC, b = CA, c = AB and let ma be
the length of median AM , where M is the midpoint of BC.

In this paper, we will prove the following results:

(1) If two of the points O, I,G coincide then the triangle ABC is regular.

(2) Let the triangle ABC be not regular. The points O, I, G are collinear iff
4ABC is isosceles (in this case, the point G lies on the segment IO).

(3) Let the triangle ABC be not isosceles. Then the triangle OIG is obtuse-
angled; in this case,

cos∠IGO = − p2 − 10Rr − 7r2

2
√

(p2 + 5r2 − 16Rr)(9R2 + 2r2 + 8Rr − 2p2)
< 0

and ∠IGO > π/2.

(4) Let the triangle ABC be not isosceles. Then the triangle OIG is isosceles iff
p2 = 3R2 + 8Rr − r2 and R ≥ 8

3r.

(5) There is a single rectangular triangle ABC (up to similarity transformation)
such that the triangle IOG is isosceles; moreover, this triangle ABC is similar
to the triangle with sides 3+

√
2+

√
1 + 2

√
2, 3+

√
2−

√
1 + 2

√
2 and 4+2

√
2.

(6) There does not exist a triangle ABC with an angle π/3 such that the triangle
IOG is isosceles.

(7) Let the triangle ABC be not isosceles. Then the area of 4IOG is

S(4IOG) =
1
12

√
4R(R− 2r)3 − (p2 − (2R2 + 10Rr − r2))2.
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In the book [3], it is proved that the triangle ABC is uniquely determined by
parameters p,R, r. These numbers cannot be arbitrary; they have to satisfy the
so-called fundamental inequality

(1) (p2 − 2R2 − 10Rr + r2)2 ≤ 4R(R− 2r)3.

Moreover, arbitrary positive real numbers p,R, r satisfying the inequality (1) are
the semiperimeter, the circumradius and the inradius, respectively, of some triangle
ABC (see [3]). Further, in the book [1], it is shown that IO2 = R2 − 2Rr, OG2 =

R2 − a2 + b2 + c2

9
and IG2 =

9r2 − 3p2 + 2(a2 + b2 + c2)
9

. Since a2 + b2 + c2 =

2(p2 − r2 − 4Rr) (see [3]), we have

OG2 =
9R2 + 2r2 + 8Rr − 2p2

9
, IG2 =

p2 + 5r2 − 16Rr

9
.

2. Auxiliary statements

Before proving the main result, let us consider some auxiliary statements.

Proposition 1. If two of the points O, I, G coincide in a triangle ABC then
this triangle is regular.

Proof. Let O = I in a triangle ABC. Consider the isosceles triangle AOB.
We have that α/2 = β/2, hence α = β. In the same way, we can prove that α = γ.

Now let O = G. Consider again the isosceles triangle AOB. Since the point
of intersection of the medians divides them in ratio 2 : 1, we have 2

3ma = 2
3mb = R.

Hence, ma = mb. Since m2
a =

b2 + c2

2
− a2

4
, and similarly for mb (see [1]), it follows

that
b2 + c2

2
− a2

4
=

a2 + c2

2
− b2

4
, hence a = b. In

the same way, we can show that a = c.
Finally, let I = G. Then the bisectrix AA1 is

a median of the triangle ABC (Fig. 1) and BA1 =

A1C =
a

2
. By [1],

c

b
=

BA1

A1C
=

a/2
a/2

= 1, i.e., b = c.

Similarly, a = c and the triangle ABC is regular.
Fig. 1

Assume now that a triangle ABC is not regular. In this case, by Proposition 1,
the points I, O,G are pairwise distinct. Now we study the case when these points
are collinear.

Lemma 1. For any triangle ABC the following inequalities hold:
(1) R ≥ 2r; moreover, R = 2r iff the triangle ABC is regular;
(2) 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2, with equalities iff the triangle ABC is

regular (see [3]).
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Lemma 2. If a triangle ABC is not regular then OI > OG and OI > IG.

Proof. Assume that a triangle ABC is not regular. Since R > 2r (Lemma 1),
we have

OI2 −OG2 = R2 − 2Rr − 9R2 + 2r2 + 8Rr − 2p2

9
=

2
9
(p2 − 13Rr − r2)

≥ 2
9
(16Rr − 5r2 − 13Rr − r2) =

2
3
(R− 2r)r > 0.

Hence, OI > OG. Further,

OI2 − IG2 = R2 − 2Rr − p2 + 5r2 − 16Rr

9
=

9R2 − 2Rr − p2 − 5r2

9

≥ (9R2 − 2Rr − 5r2)− (4R2 + 4Rr + 3r2)
9

=
5R2 − 6Rr − 8r2

9
=

(R− 2r)(5R + 4r)
9

> 0,

because R > 2r. Hence, OI > IG.

Proposition 2. Let a triangle ABC be not regular. Then the points I, O,G
are collinear iff the triangle ABC is isosceles.

Proof. Assume that a triangle ABC is isosceles and, for example, AB = AC.
By Proposition 1, the points I,O, G are pairwise distinct and lie on the altitude
passing through the vertex A.

Conversely, suppose that the points I, O, G are collinear for a nonregular tri-
angle ABC. By Lemma 2, it means that IO = IG + GO. Therefore,

OI2 − IG2 −GO2 = R2 − 2Rr − 9R2 + 2r2 + 8Rr − 2p2 + p2 + 5r2 − 16Rr

9

=
p2 − 7r2 − 10Rr

9
= 2 IG ·GO.

Hence,

(p2 − 7r2 − 10Rr)2 = 4 · 9 IG2 · 9 GO2

= 4(p2 + 5r2 − 16Rr)(9R2 + 2r2 + 8Rr − 2p2),

(p2 − (2R2 + 10Rr − r2))2 = 4R(R− 2r)3,

p2 = (2R2 + 10Rr − r2)± 2(R− 2r)
√

R2 − 2Rr.

We have arrived to the case of equality in the fundamental triangle inequality. By
[3, p. 13], it is proved that the triangle ABC is in this case isosceles.

Remark 1. In [4], it is proved that

(1− cos(α− β))(1− cos(α− γ))(1− cos(β − γ))

=
4R(R− 2r)3 − (p2 − 2R2 − 10Rr + r2)2

8R4
.
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Fig. 2

If 4R(R−2r)3− (p2−2R2−10Rr+ r2)2 = 0 then, for example, cos(α−β) = 1 and
α = β. So, the point G lies inside the segment OI for an isosceles triangle ABC
(Fig. 2).

Proposition 3. If a triangle ABC is not isosceles then the triangle IGO is
obtuse-angled and

cos ∠IGO = − p2 − 10Rr − 7r2

2
√

(p2 + 5r2 − 16Rr)(9R2 + 2r2 + 8Rr − 2p2)
< 0.

Proof. By the cosine theorem, we have

cos∠IGO =
IG2 + OG2 − IO2

2 IG ·OG

=

p2 + 5r2 − 16Rr

9
+

9R2 + 2r2 + 8Rr − 2p2

9
−R2 + 2Rr

2 IG ·OG

= −p2 − 10Rr − 7r2

18 IG ·OG

= − p2 − 10Rr − 7r2

2
√

(p2 + 5r2 − 16Rr)(9R2 + 2r2 + 8Rr − 2p2)
.

By Proposition 1 and Lemma 1, p2 > 16Rr − 5r2. It implies that

p2 − 10Rr − 7r2 > (16Rr − 5r2)− (10Rr + 7r2) = 6r(R− 2r) > 0.

Thus, cos ∠IGO < 0 and ∠IGO > π/2.

Proposition 4. Let a triangle ABC be not isosceles. Then the triangle IGO

is isosceles iff p2 = 3R2 + 8Rr − r2 and R ≥ 8
3
r.

Proof. Since ∠IGO > π/2, the triangle IGO is isosceles iff IG = GO, i.e.,

p2 + 5r2 − 16Rr

9
=

9R2 + 2r2 + 8Rr − 2p2

9
.
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The last equality is equivalent to p2 = 3R2+8Rr−r2. Replacing p2 by 3R2+8Rr−r2

in the fundamental inequality (1), we have

(3R2 + 8Rr − r2 − 2R2 − 10Rr + r2)2 ≤ 4R(R− 2r)3,

R2(R− 2r)2 ≤ 4R(R− 2r)3, R ≥ 8
3
r,

because R > 2r.

Corollary 1. There is a single right-angled triangle ABC (up to similarity
transformation) such that the triangle IOG is isosceles; moreover, this triangle
ABC is similar to the triangle with sides 3+

√
2+

√
1 + 2

√
2, 3+

√
2−

√
1 + 2

√
2

and 4 + 2
√

2.

Proof. Assume that a triangle ABC is right-angled (with right angle at C)

and that the respective triangle IOG is isosceles. Then 2R+ r = c+
a + b− c

2
= p.

It follows that p2 = 4R2 + 4Rr + r2 = 3R2 + 8Rr − r2, wherefrom R = (2±√2)r
(see Proposition 4). Since R ≥ 8

3r > 2r, we have R = (2 +
√

2)r. Hence,

c = 2R = (4 + 2
√

2)r, p = 2R + r = (5 + 2
√

2)r,

a + b = 2p− c = (6 + 2
√

2)r, c2 = a2 + b2 = (24 + 16
√

2)r2.

It means that (for a > b) a = (3+
√

2+
√

1 + 2
√

2)r and b = (3+
√

2−
√

1 + 2
√

2)r.

Corollary 2. If the triangle IOG is isosceles then all the angles of triangle
ABC are different from π/3.

Proof. In [3], it is proved that cos α, cos β, cos γ are roots of the equation

(2) 4R2x3 − 4R(R + r)x2 + (p2 + r2 − 4R2)x + (2R + r)2 − p2 = 0.

Let α = π/3. Then cos α = 1/2 is a root of the equality (2), i.e.,

4R2 · 1
8
− 4R(R + r) · 1

4
+ (p2 + r2 − 4R2) · 1

2
+ (2R + r)2 − p2 = 0.

It follows that p = (R + r)
√

3. If the triangle IOG were isosceles, it would follow
that p2 = 3R2 + 8Rr − r2 = 3(R + r)2 by Proposition 4. Hence, R = 2r and
the triangle ABC would be regular (see Lemma 1), a contradiction. Thus, such
triangle ABC does not exist.

The following lemma follows from Heron’s formula.

Lemma 3. Let S = S(4ABC) be the area of a triangle ABC. Then

S2 =
4a2b2 − (a2 + b2 − c2)2

16
.
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3. Main result

Using Lemma 3, we will calculate the area S(4IOG) of the triangle IOG for
a given triangle ABC.

Theorem 1. Let ABC be an arbitrary triangle. Then

S2(4IOG) =
1

144
(
4R(R− 2r)3 − (p2 − 2R2 − 10Rr + r2)2

)
.

Proof. Only the case when the triangle ABC is not isosceles has to be treated.

Let IO = c1, IG = a1, OG = b1. Then c2
1 = R2−2Rr, a2

1 =
p2 + 5r2 − 16Rr

9
,

b2
1 =

9R2 + 2r2 + 8Rr − 2p2

9
. By Lemma 3, we have

S2(4IGO) =
(

4
81

(p2 + 5r2 − 16Rr)(9R2 + 2r2 + 8Rr − 2p2)

−
(p2 + 5r2 − 16Rr

9
+

9R2 + 2r2 + 8Rr − 2p2

9
−R2 + 2Rr

)2
)
· 1
16

=
1

16 · 81
(
4(p2 + 5r2 − 16Rr)(9R2 + 2r2 + 8Rr − 2p2)− (−p2 + 10Rr + 7r2)2

)

=
1

16 · 81
(
4[(9R2 + 2r2 + 8Rr)(5r2 − 16Rr)

+ p2(9R2 + 2r2 + 8Rr + (−10r2 + 32Rr))− 2p4]

− p4 − (10Rr + 7r2)2 + 2p2(10Rr + 7r2)
)

=
1

16 · 81
(− 9p4 + p2(20Rr + 14r2 + 36R2 − 32r2 + 160Rr)

+ 4(45R2r2 − 144R3r + 10r4 − 32Rr3 + 40Rr3 − 128R2r2)

− 100R2r2 − 49r4 − 140Rr3
)

=
1

16 · 81
(− 9p4 + p2(36R2 − 18r2 + 180Rr)

+ (−576R3r − 432R2r2 − 9r4 − 108Rr3)
)

=
1

16 · 81
(− p4 + p2(4R2 − 2r2 + 20Rr) + (−64R3r − 48R2r2 − r4 − 12Rr3)

)

=
1

144
(
4R(R− 2r)3 − (p2 − (2R2 + 10Rr − r2))2

)
.

Corollary 3. Let ABC be an arbitrary triangle. Then

(p2 − 2R2 − 10Rr + r2)2 ≤ 4R(R− 2r)3

(the fundamental inequality for a triangle).
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Corollary 4. For any triangle ABC the following holds

S(4IOG) =
2
3
R2 sin

( |α− β|
2

)
sin

( |β − γ|
2

)
sin

( |γ − α|
2

)
.

Proof. Let a triangle ABC be isosceles and α = β. Then sin
( |α− β|

2

)
= 0,

i.e., by Proposition 2, both left-hand and right-hand sides of our equality are equal
to zero.

Now, let a triangle ABC be not isosceles. By Remark 1 and Theorem 1,

S2(4IOG) =
1

144
(
4R(R− 2r)3 − (p2 − 2R2 − 10Rr + r2)2

)

=
8R4

144
(1− cos(α− β))(1− cos(β − γ))(1− cos(γ − α))

=
4
9
R4 sin2

( |α− β|
2

)
sin2

( |β − γ|
2

)
sin2

( |γ − α|
2

)
,

and the desired formula follows.
In [2, Chapter 1], it is noted that Corollary 5.1◦ was proved by R. Sondat and

E. Lemoine in 1891.

Corollary 5. Let ABC be an arbitrary triangle. Then

1◦ S(4OIH) = 2R2 sin
( |α− β|

2

)
sin

( |β − γ|
2

)
sin

( |γ − α|
2

)
,

2◦ S(4GIH) =
4
3
R2 sin

( |α− β|
2

)
sin

( |β − γ|
2

)
sin

( |γ − α|
2

)
.

Proof. It is known that the points H,G, O lie on the same (Euler) line
(see [1])). Moreover, HO = 3 OG and HG = 2 OG. Hence, S(4IOH) =
3 S(4IOG), S(4IGH) = 2 S(4IOG) and the results follow from Corollary 4.
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