
THE TEACHING OF MATHEMATICS

2022, Vol. XXV, 1, pp. 38–52

ROOT FINDING TECHNIQUES THAT WORK

Aaron Melman

Abstract. Several general techniques are described to incorporate the specific
structure or properties of a nonlinear equation into a method for solving it. This
can mean the construction of a method specifically tailored to the equation, or the
transformation of the equation into an equivalent one for which an existing method is
well-suited. The techniques are illustrated with the help of several case studies taken
from the literature.
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1. Introduction

The numerical solution of a real nonlinear equation is frequently required in
many areas of science and engineering, where it often occurs as an important sub-
problem that needs to be solved repeatedly. There exist many well-known standard
methods to achieve this, typically iterative in nature, such as the well-known se-
cant and Newton methods, and many others that can be found in any introductory
numerical analysis textbook (Newton’s method can even be found in high school
calculus books). It is, in general, not easy to fully automate the solution of nonlinear
equations because of the many problems that may arise, such as, e.g., singularities
or tightly clustered roots, to name but a few. The best situations are those where
the properties of the equation to be solved are well-known, as frequently occurs in
specific applications. However, the inflexibility of standard methods often prevents
efficient use of this information. As a general rule, even though it may sometimes
be easier said than done, every attempt should be made to tailor a method to the
specific equation at hand, rather than using a general purpose method. The result
will be a faster and more accurate method. An alternative approach is to trans-
form the equation into an equivalent one for which an already existing method is
appropriate. Such considerations are unfortunately not commonly emphasized in
textbooks.

We will address these issues first by showing that several standard methods
can be derived from a simple general principle that, unlike these standard methods,
has the flexibility to also generate methods that can take into account a particular
problem’s properties. Secondly, we consider techniques to transform a given equa-
tion into an equivalent one with more useful properties, such as those that guarantee
the convergence of a particular method. Examples of the aforementioned principle
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and techniques can be found scattered throughout the literature, and we will use
several of them as illustrative case studies.

There are two main aspects to a numerical method: its construction and
its subsequent convergence analysis. Global convergence concerns global conditions
under which the method is guaranteed to converge. Newton’s method, for example,
converges from any point to the right of the root of a convex increasing function,
as its iterates are the roots of the tangents, which lie below such a convex function.
Similar conditions can be obtained for other standard methods, although they are
usually more complicated. Local convergence of an iterative method is concerned
with conditions that guarantee convergence from a point that is sufficiently close to
the root and also with the asymptotic rate at which the iterates converge. Denoting
by xk the iterates and by x∗ the root to which they converge, a method is said to
be of order q > 0 if

lim sup
k→+∞

|xk+1 − x∗|
|xk − x∗|q ≤ C < +∞ .

For q = 1, it is required that C < 1. The higher the value of q, the faster the con-
vergence. For example, when they converge to a simple root, i.e., when f ′(x∗) 6= 0,
then Newton’s method [1, Ch. 2], [7, Ch. 3], [18, Ch. 5] is of second order, the
secant method [1, Ch. 2], [7, Ch. 3], [18, Ch. 5] is of order (1+

√
5)/2, and Halley’s

method [16], [17] is of third order. Generally speaking, the more information (such
as function and derivative values) is taken into account to construct the approxi-
mation the method is based on, the higher the order of convergence. An exhaustive
treatment of methods and their convergence order can be found in [19].

2. Adaptive approximation and transformations

Consider the real nonlinear equation f(x) = 0 with x ∈ R. To solve it, we
formulate the following general adaptive approximation principle: approximate f
by another function g that satisfies certain requirements and for which the equa-
tion g(x) = 0 is easy to solve. An approximation to the root of f is then given by
the (appropriate) root of the approximation g. An iterative method follows natu-
rally from this principle by approximating f at a current iterate and generating the
next iterate as a solution of g(x) = 0. There are two choices to make: the function g
and the way in which it approximates f . The approximation function is often (and
naturally) required to mimic the behavior of the function it approximates as much
as possible. However, different requirements are sometimes imposed, e.g., when the
iterates need to be constrained in a certain way, as will be the case in Example 4.

As an example, we now show how three well-known methods follow from this
simple principle. To avoid interrupting the exposition, we will implicitly assume
that all expressions are valid, e.g, if a number appears in the denominator, it is
assumed to be nonzero. The first method chooses a line as an appropriate ap-
proximation function g, i.e., g(x) = α + βx, and the approximation conditions as
requiring that g coincide with f to first order, i.e., in function and first derivative
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values, at a given point x̄, so that
{

f(x̄) = g(x̄) = α + βx̄

f ′(x̄) = g′(x̄) = β ,

from which we obtain that g(x) = f(x̄)− x̄f ′(x̄) + f ′(x̄)x. The next iterate is the
root of g, given by x̄ − f(x̄)/f ′(x̄), which is exactly one step of Newton’s famous
method that generates iterates {xk}, k ∈ N, defined by the iteration formula

xk+1 = xk − f(xk)
f ′(xk)

.

Of course, this is not a surprise because the Newton iterate is often explained geo-
metrically as the root of the tangent to f , i.e., the root of the linear approximation
to f at a certain point, which is precisely g.

The second method also picks g(x) = α + βx, but changes the approximation
conditions to the requirement that f and g coincide in function value at x̄ and at
one other (distinct) point ȳ, i.e.,

{
f(x̄) = g(x̄) = α + βx̄

f(ȳ) = g(ȳ) = α + βȳ ,

which means that the function g is found by linear interpolation at x̄ and ȳ. This
set of linear equations is easily solved for α and β, so that the next iterate, obtained
from −α/β, is given by

x̄− f(x̄)(x̄− ȳ)
f(x̄)− f(ȳ)

,

which turns out to be one step of the secant method, namely, a method that can
be viewed as obtained from Newton’s method by approximating the derivative by
a finite difference. Its iteration formula is given by

xk+1 = xk − f(xk)(xk − yk)
f(xk)− f(yk)

.

The third method, Halley’s method, the “method of osculating hyperbolae”,
can also be derived using the same principle we just illustrated (see, e.g., [16]
and [17]). In this case, g(x) = α + β/(x− γ), and the approximation requires that
f and g coincide up to second derivatives at a given point, resulting in the iteration
formula

xk+1 = xk − 2f(xk)f ′(xk)
2(f ′(xk))2 − f(xk)f ′′(xk)

.

Several more existing methods can be derived in this unifying way, but its
main advantage lies in its flexibility. Consider, for example, the equation f(x) = 0,
where f is of the form f(x) = f1(x)+f2(x). Standard methods are typically defined
by an iteration formula rigidly applied to all of f , based on an approximation
function that does not necessarily bear any relation to f . Instead, a more efficient
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method can often be obtained by approximating the functions f1 and f2 each in a
different and more appropriate way.

However, it is not always possible or easy to find a convenient approximation.
In such cases, one might attempt to adapt the problem to a certain method, by
which is meant formulating an equivalent problem for which a certain method
exhibits desired convergence properties. Such an equivalent problem might be
obtained by a transformation of variables x = ϕ(z) for a suitable function ϕ so
that the equivalent problem becomes f(ϕ(z)) = 0. Another possibility is the use
of a nonzero multiplier µ(x) that transforms the problem into µ(x)f(x) = 0, which
has the same solutions as f(x) = 0. Sometimes, a combination of techniques is
called for. In the following section, we take a detailed look at concrete applications
of these techniques.

3. Case studies

We present four examples, taken from the literature, to illustrate the tech-
niques of the previous section for both the construction and analysis of methods
for solving nonlinear equations. In the first example, a method is developed for solv-
ing an equation using adaptive approximation, where an approximation function is
chosen to resemble the function that is being approximated.

Example 1 (Secular Equation - adaptive approximation). This ex-
ample considers the solution of a so-called secular equation [5], which lies at the
heart of the fast and widely used divide and conquer method from [4] to com-
pute the eigenvalues of a symmetric matrix. After some simplification, this secular
equation takes the form f(x) = 0, where

(1) f(x) := 1 +
n∑

j=1

bj

dj − x
,

with bj > 0 for all j and d1 < d2 < · · · < dn−1 < dn. This function has n poles and
n roots, one on each interval (dj , dj+1) for j = 1, . . . , n− 1, and one on (dn,+∞).
The value of n can be very large and the goal is to compute all of the roots quickly
and accurately.

For the sake of this example, we concentrate on the ith root, with 1 ≤ i ≤ n−1,
after the origin is shifted to di, so that from here on we consider the computation
of the unique root of f on the interval (di, di+1) = (0, di+1), shown in Figure 1 as
the lower curve in thicker line.

Figure 1 illustrates a typical (although mild) situation, where a root’s location
is close to one of the singularities, as often happens in practice. A method such as
Newton’s method would generate iterates outside the interval from most starting
points in (0, di+1), and trying to find a starting point to guarantee convergence
might require a larger effort than the actual computation of the root. It is, in
fact, not surprising that Newton’s method would not be appropriate here as it is
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Fig.1. The functions f(x), g(x), and N(x) on (0, di+1).

based on a linear approximation, while the function f is rational. We have made a
comparison to Newton’s method here simply because it is well-known, and similar
reasoning applies to other standard methods.

Method construction. We can expect to obtain a more efficient method by us-
ing an approximation that more closely resembles the function f and distinguishes
between different parts of f . There are several candidates for such an approx-
imation, which were extensively studied in [3], [9], [11] and [12]. Here we will
consider the approximation used in [3]. To do this, we first rewrite the function f
as f = 1 + f1 + f2, with

f1(x) :=
i∑

j=1

bj

dj − x
and f2(x) :=

n∑

j=i+1

bj

dj − x
,

and construct an iterative numerical method by separately approximating f1 and f2

by g1 and g2, respectively, so that, at a given point, g1 agrees with f1 in function
and first derivative values, while g2 does the same for f2. The approximation g
to f is then defined as g := 1 + g1 + g2. One possible choice, as in [3], is to use the
rational functions

g1(x) :=
α

β − x
and g2(x) := γ +

δ

di+1 − x
.

In other words, at a given point x̄, the following conditions must be satisfied:

(2)

{
f1(x̄) = g1(x̄)

f ′1(x̄) = g′1(x̄)
and

{
f2(x̄) = g2(z)

f ′2(x̄) = g′2(x̄) .

The conditions in (2), which require the same computational effort as Newton’s
method (function and derivative values), determine the parameters α, β, γ, and δ,
which, in turn, define the functions g1 and g2. The approximation g is well defined
on the interval (0, di+1) since the approximation conditions yield

β = x̄ +
f1(x̄)
f ′1(x̄)

=
x̄f ′1(x̄) + f1(x̄)

f ′1(x̄)
=

1
f ′1(x̄)

i∑

j=1

bjdj

(dj − x̄)2
< 0 .
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Moreover, α = (β − x̄)2f ′1(x̄) > 0 and δ = (di+1 − x̄)2f ′2(x̄) > 0, so that g′(x) > 0
on the interval, implying that g is strictly increasing (to +∞). It must therefore
have a unique root on (0, di+1) if x̄ is chosen such that f(x̄) = g(x̄) < 0. The next
iterate of a method based on this approximation is the root of g in the interval
(0, di+1), which is obtained as the appropriate solution of a simple quadratic, since

1+
α

β − x
+γ+

δ

di+1 − x
= 0 =⇒ (1+γ)(β−x)(di+1−x)+α(di+1−x)+δ(β−x) = 0 .

The approximation at a point x̄, deliberately chosen to be far from the root, is
shown in Figure 1 in a thinner line just above the function f . For comparison, we
have also shown the tangent N(x) at the same point x̄, which clearly demonstrates
the advantage of a rational approximation.

Convergence properties. To address the global convergence of the method
just described, we now first show that g dominates f on (0, di+1). Since g1(x) =
α/(β−x) approximates f1(x) to first order at x̄ ∈ (0, di+1), (β−x)/α approximates
1/f1(x) to first order at x̄, i.e., (β − x)/α is the linear approximation to 1/f1 at x̄.
A straightforward calculation yields

(3)
( 1

f1

)′′
=

2(f ′1)
2 − f1f

′′
1

f3
1

=
−2(−f ′1)

2 + (−f1)(−f ′′1 )
(−f1)3

.

The function −f1 is positive on the interval (0, di+1) and it satisfies the conditions
of Lemma 2.3 in [11] for ρ = −1, a parameter in that lemma, which in this case
states that −2(−f ′1)

2 + (−f1)(−f ′′1 ) ≥ 0. It then follows from (3) that 1/f1 is a
convex function on (0, di+1), so that it dominates its linear approximation at any
point in that interval. As a result,

β − x

α
≤ 1

f1(x)
=⇒ α

β − x
≥ f1(x) ,

i.e., g1(x) ≥ f1(x). We also have that g2(x) = γ + δ/(di+1 − x) approximates f2 to
first order at x̄, which means that γ(di+1 − x) + δ is the linear approximation of
(di+1 − x)f2(x). Some algebra yields

(di+1 − x)f2(x) =
( n∑

j=i+1

bj

)
−

n∑

j=i+1

bj(dj − di+1)
dj − x

,

which is a concave function because bj(dj − di+1) ≥ 0 when j ≥ i + 1. This means
that it is dominated by its linear approximation, leading to

γ(di+1 − x) + δ ≥ (di+1 − x)f2(x) =⇒ g2(x) = γ +
δ

di+1 − x
≥ f2(x) .

As a result, we obtain that g(x) ≥ f(x) on (0, di+1). Consequently, if x̄ lies to
the left of the root, then f(x̄) = g(x̄) < 0, implying that the unique root of g,
which necessarily lies to the right of x̄, also lies to the left of the root of f , ensuring
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monotonic convergence. Moreover, it was shown in [11] that the convergence order
is quadratic.

We conclude by deriving a starting point x0 ∈ (0, di+1) satisfying f(x0) < 0.
Such a point can be found by observing that

1 +
i−1∑

j=1

bj

dj − di+1
− bi

x
+

bi+1

di+1 − x
+

n∑

j=i+2

bj

dj − di+1
≥ f(x) ,

so that initial point x0 can be found as the root in (0, di+1) of the strictly increasing
function (

1 +
n∑

j=1
j 6=i,i+1

bj

dj − di+1

)
− bi

x
+

bi+1

di+1 − x
,

which is obtained as the appropriate root of a quadratic.
An additional consideration in the case of a parallel computation of the n

roots of f is that the efficiency of such an implementation is determined by the
root that requires the most time, so that uniform performance of the method is
also important. In practice, the more an approximation resembles the function, the
better this requirement will be fulfilled.

In the following example, the equation from Example 1 is solved in a different
way, namely, by first carrying out a transformation of variables before applying
adaptive approximation with a function having similar properties as the one being
approximated.

Example 2 (Secular Equation – transformation and adaptive ap-
proximation). In Example 1 a method was derived to compute the root of f ,
defined in (1), on the interval (0, di+1) by using rational approximations. Here, the
approach from [11, Section 3.3] is used, which consists of transforming the variable
to obtain an equivalent, but more convenient, equation.

Method Construction. A relatively natural idea is to try and mitigate the effect
of the singularities at the endpoints of the interval. A transformation that then
suggests itself [11], is to set x = 1/z, which eliminates the singularity at the origin
by sending it to infinity, so that the original interval is mapped to (1/di+1, +∞), and
the problem becomes the computation of the (necessarily) unique root of f(1/z) = 0
on this interval. For convenience, we define F (z) = f(1/z). So far, this is an idea
that seems reasonable, but we still need to show that the resulting transformed
equation F (z) = 0 exhibits properties that make it easier to solve than f(x) = 0.
Straightforward algebra shows that

F (z) = 1 +
n∑

j=1, j 6=i

bj

dj
− biz +

n∑

j=1, j 6=i

bj/d2
j

z − 1/dj
.

All the negative singularities of F lie in the interval (1/di−1, 0) and all its positive
singularities lie in the interval (0, 1/di+1). Its first and second derivatives show that
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that F is strictly decreasing and convex on the interval (1/di+1, +∞), with

lim
z→(1/di+1)+

F (z) = +∞ and lim
z→+∞

F (z) = −∞ .

Because F is convex, it dominates its linear approximation, so that Newton’s
method converges monotonically from any starting point between 1/di+1 and the
root. Figure 2 shows the function F (z) (top curve in thicker line), along with its
tangent N(z) at a particular point. The root of the tangent is the next Newton
iterate from that point.

Fig. 2. The functions F (z), G(z), and N(z) on (1/di+1, +∞).

The transformation of variables x = 1/z has transformed the original equation
into one for which Newton’s method is guaranteed to converge, which was not the
case for the original equation, as we saw in Example 1. However, the equation still
involves a rational function that should preferably be approximated by a rational,
rather than a linear, function. To construct such an approximation, we observe
that the behavior of F on (1/di+1,+∞) is significantly affected by its singularity
at 1/di+1, which indicates that, if possible, the singularity should be included in
the approximation. Writing F as

F (z) = F1(z) +
bi+1/d2

i+1

z − 1/di+1
,

we approximate it at a point x̄ by

G(z) = α + βz +
bi+1/d2

i+1

z − 1/di+1
,

where α + βz is the linear approximation of F1 at x̄. Since β = F ′1(x̄) < 0 for
any x̄ ∈ (1/di+1, +∞), G is strictly decreasing, while it becomes unbounded as
z → (1/di+1)+, implying that it has a unique root on (1/di+1, +∞). The next
iterate of a method based on this approximation is therefore the root of G, which
is found as the appropriate root of the quadratic (z− 1/di+1)(α + βz) + bi+1/d2

i+1.

Convergence properties. Since, like F , F1 is convex, α +βz will be dominated
by F1, and the entire approximation will therefore be dominated by F . As a result,
the convergence of a method based on this approximation will be, like Newton’s
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method, monotonic from any starting point between 1/di+1 and the root of F .
Unlike Newton’s method, it is globally convergent from any point in (1/di+1,+∞):
if the initial iterate lies to the right of the root of F , the second iterate will lie
between 1/di+1 and the root. Moreover, because the approximation resembles F
more closely than a line, we expect such a method to perform better than Newton’s
method, while requiring the same computational effort, namely, the computation
of F (z̄) and F ′(z̄). Figure 2 clearly shows this to be the case, where the nonlinear
approximation (at the same point that was used for the linear approximation)
is the curve just below F (z), drawn in thinner line. Its root is a much better
approximation to the root of F than the one obtained from Newton’s method, which
is the root of the linear approximation (tangent line). The quadratic convergence
of such a method immediately follows from the quadratic convergence of Newton’s
method.

Similar arguments as in Example 1 show that a initial point to the right of
the root of F is obtained as the root of

1 +
n∑

j=1, j 6=i

bj

dj
+

n∑

j=1, j 6=i,i+1

bj/d2
j

1/di+1 − 1/dj
− biz +

bi+1/d2
i+1

z − 1/di+1
,

which dominates F , while a point to the left of the root is obtained as the root of

1 +
n∑

j=1,j 6=i

bj

dj
− biz +

bi+1/d2
i+1

z − 1/di+1
,

which is dominated by F . Both are computed as the appropriate root of a quadratic.
An initial point can then be chosen as the average of these two points. In practice,
the performance of the method in this example is similar to that of the method in
Example 1.

We conclude with the observation that the method we obtained can easily
be improved by including more terms of F in the approximation function G. For
example, we could define

G(z) = α + βz +
bi+1/d2

i+1

z − 1/di+1
+

bi+2/d2
i+2

z − 1/di+2
+

bi+3/d2
i+3

z − 1/di+3
+

bi+4/d2
i+4

z − 1/di+4
,

and compute its root with a method like the one just obtained. Such an approach
could be advantageous for large values of n, as is often the case in practice.

In the next example a nonzero multiplier is used to transform the equation
into one for which Newton’s method exhibits global convergence.

Example 3 (Knapsack – multiplier). The equation we consider in this
example is obtained in the course of solving the nonlinear continuous knapsack
problem from [13]. In the original and simplest form of the (discrete and linear)
knapsack problem, a knapsack of limited volume is filled with items that have
different volumes and values, with the goal of maximizing the total value of the
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items in the knapsack. It has been generalized to nonlinear continuous problems
with many applications bearing no relation to knapsacks (see [6]), as in our case
here, where the problem originated in the scheduling of the servicing of chemical
processing units.

Before we state the equation to be solved, we define h(x) = 1− (1+1/x)e−1/x

on (0, +∞) and its inverse function ϕ(x) = h−1(x), defined on (0, 1). We note
that ϕ is well-defined since h′(x) = −x−3e−1/x < 0 for x > 0. Figure 3 shows the
functions h and ϕ. The function ϕ will play a crucial rule, and to gain a better
understanding of its properties, we make the following observations. Set y = ϕ(x)
to obtain

y = ϕ(x) =⇒ h(y) = x =⇒ h′(y)y′ = 1 =⇒ y′ = −y3e1/y ,

from which it follows that y′′ = −y(3y − 1)e1/yy′ = y4(3y − 1)e2/y. These calcula-
tions show that ϕ is a strictly decreasing function with a single inflection point at
h(1/3). Moreover,

lim
x→0+

ϕ(x) = +∞ and lim
x→1−

ϕ′(x) = −∞ .

The function ϕ does not have an explicit functional expression: to compute y =
ϕ(x), one needs to compute the solution y of the nonlinear equation h(y) = x,
which will be briefly addressed further on.

Fig. 3. The functions h(x) and ϕ(x).

We are now ready to state the problem to be solved, which is to compute
the root of the function f , originating from the dual formulation of the problem,
defined by

f(x) :=
n∑

j=1

αjϕ(βjx)−K ,

where αj , βj ,K > 0, on the interval (0, γ), with γ := minj{1/βj}. Because it is a
positive linear combination of scaled versions of ϕ, the properties of f are similar
to those of ϕ : it is a strictly decreasing function, which becomes unbounded as
x → 0+, and has an unbounded derivative when x → γ−. It is the curve in thicker
line in both graphs of Figure 4. In what follows, we assume that K > limx→γ− f(x),
implying that f has a unique root on (0, γ).
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Fig. 4. The functions f(x) and L(x)f(x).

Convexifying multiplier. The function f exhibits several difficulties: it does
not have an explicit functional expression, and it does not have a simple shape, as
it is neither convex nor concave over (0, γ). The graph on the left in Figure 4 shows
a mild situation, whereas, on the right, the root lies very close to γ, as inevitably
happens in practice. In the latter case, a standard method (including Newton’s
method) can easily produce iterates that fall outside the interval, unless a starting
point is available that already lies very close to the root. There does not seem
to be an obvious appropriate approximation function that one could use, nor is a
transformation of variables of much help. The best course of action may therefore
be to try and use a multiplier to obtain a function with the same root, but with
properties that make it easy to apply a standard method. In other words, we will
adapt the problem to a method, rather than constructing a specific method for the
problem. An easy choice for such a standard method would be Newton’s method,
which is simple, asymptotically fast, and guarantees convergence for convex and
concave functions. The problem then becomes to find a nonzero multiplier L(x)
such that the function L(x)f(x) is either convex or concave. In [13] it is shown
that Lf is convex on (0, γ) if L satisfies a specific differential inequality. The
simplest such multiplier is L(x) = 1 − γ−1x. We will not reproduce its derivation
as it is rather technical and irrelevant for our purposes, but we will verify that
(1 − γ−1x)f(x) is indeed convex on (0, γ). To do this, we set y = ϕ(βjx), where
1 ≤ j ≤ n, so that h(y) = 1− (1 + 1/y)e−1/y = βjx, from which it follows that

(4) e1/y =
y + 1

y(1− βjx)
.

We now use the expressions for ϕ′ and ϕ′′ that were previously derived, the expres-
sion for e1/y from (4), and the fact that γ−1 = maxj{βj}, to obtain that

(
(1− γ−1x)ϕ(βjx)

)′′ = −2γ−1βjϕ
′(βjx) + β2

j (1− γ−1x)ϕ′′(βjx)
(5)

= 2γ−1βjy
3e1/y + β2

j (1− γ−1x)y4(3y − 1)e2/y

= βjy
3e1/y

(
2γ−1 + βj(1− γ−1x)y(3y − 1)e1/y

)

= βjy
3e1/y

(
2γ−1 +

βj(1− γ−1x)
1− βjx

(3y − 1)(y + 1)
)
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= βjy
3e1/y

(βj(1− γ−1x)
1− βjx

(3y2 + 2y) + 2γ−1 −
(1− γ−1x

1− βjx

)
βj

)

≥ βjy
3e1/y

(βj(1− γ−1x)
1− βjx

(3y2 + 2y) + γ−1
)

> 0 .

Since

(1− γ−1x)f(x) =
n∑

j=1

αj(1− γ−1x)ϕ(βjx)−K(1− γ−1x)

and (1− γ−1x)′′ = 0, we conclude with the help of (5) that Lf is convex on (0, γ).
Figure 4 shows the function (1− γ−1x)f(x) in thinner line.

Convergence properties. The convexity of Lf implies that if Newton’s method
is started from any point to the left of its root, then the iterates will converge
monotonically to that root. Moreover, it is not hard to show that the root is
simple, so that Newton’s method converges quadratically.

A starting point to the left of the root of f can be found using the fact that,
for x > 0, γ−1x ≥ βjx, so that ϕ(γ−1x) ≤ ϕ(βjx), which in turn implies that

(6)
n∑

j=1

αjϕ(βjx)−K ≥
n∑

j=1

αjϕ(γ−1x)−K .

The function in the right-hand side of (6) is strictly decreasing, becomes unbounded
at the origin, and is negative as x → 1−. It must therefore have a unique root
in (0, 1) and, since (6) shows that it is dominated by f , that root must lie to the
left of the root of f . A starting point x0 is therefore given by

x0 = γ h

(
K∑n

j=1 αj

)
.

Although it is not the focus of this example, we conclude by briefly men-
tioning the function value computation of ϕ. From y = ϕ(x), we obtain h(y) =
1− 1(1 + 1/y)e−1/y = x, so that y is the solution of a nonlinear equation on (0, 1).
Setting y = 1/z transforms this equation into 1− (1 + z)e−z − x = 0, for which it
was shown in [13] that Halley’s method converges from any point in (0, 1).

In the following example, a transformation of variables is used to facilitate
adaptive approximation. In this case, the approximation function is chosen to
satisfy constraints on the iterates, rather than to resemble the function it approxi-
mates.

Example 4 (Pellet – transformation and adaptive approximation).
In this example, we consider Pellet’s theorem [10, Th. (2,8)] for a polynomial p(z) =∑n

j=0 ajz
j . It states that if, for some ` with 1 ≤ ` ≤ n − 1, a` 6= 0, the real

polynomial q(z) := |an|zn + · · · + |a`+1|z`+1 − |a`|z` + |a`−1|z`−1 + · · · + |a0| has
two distinct positive roots, namely, the Pellet `-radii ρ1 and ρ2, with ρ1 < ρ2, then
p has exactly ` zeros in the closed disk |z| ≤ ρ1, and no zeros in the open annulus
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ρ1 < |z| < ρ2. In other words, the theorem can sometimes detect gaps between the
moduli of zeros. It is a direct consequence of Rouché’s theorem [8, Theorem 1.6].
The theorem has been generalized to matrix polynomials [2], [14], leading to a real
polynomial of the same kind as q. The graph of q has a form that is very similar to
the lower curve on the left in Figure 5 in thicker line. It is of overriding importance
for the equation q(x) = 0 to be solved by a method whose iterates converge to the
solutions from the inside of the interval [ρ1, ρ2], because, in such a case, one has
the option to stop iterating at any moment and still have correct bounds. If, on
the other hand, the iterates converge from outside the interval, none of the iterates
provide correct bounds until they have fully converged.

Fig. 5. The functions f(x) and F (z) with their respective approximations g(x) and G(z).

An efficient method to compute the Pellet radii from inside the interval was
derived in [15], and consists of two phases. In the first phase the polynomial q is
approximated by a trinomial with roots inside the interval, an application of us-
ing an adaptive approximation that resembles the function it approximates, while
in the second phase, this trinomial is solved using adaptive approximation, where
the approximation function is constructed to ensure that the iterates are proper-
ly constrained. Here we concentrate on the second phase, as it provides a good
and uncomplicated example of adaptive approximation designed to satisfy specific
requirements on the iterates.

The trinomial equation we need to solve is given by f(x) := axn−bxk +c = 0,
where a, b, c > 0, n ≥ 3, and 1 ≤ k ≤ n− 1, under the assumption that f has two
positive roots r1 and r2 with r1 < r2. The goal is to find an approximation to f
that dominates it so that the approximation has roots in the interval [r1, r2]. To
facilitate this, we use the transformation of variables z = xk, which transforms f
into F (z) = f(z1/k) = azn/k − bz + c. The function F is convex, so that using a
linear approximation is not appropriate as it would be dominated by F . On the
other hand, z−n/k is also convex, so that it dominates its linear approximation.
Consequently, the reciprocal of this linear approximation then approximates zn/k

to first order, and it dominates zn/k, which is precisely what we need, as will soon
become clear. This is the general idea that we now consider in more detail.

Method construction. The first order approximation of zn/k at z = z̄ by R(z) =
α/(β−z) is obtained by setting R(z̄) = z̄n/k and R′(z̄) = (n/k)z̄n/k−1. A straight-
forward calculation shows that α = (k/n)z̄1+n/k > 0 and β = (1 + k/n)z̄ > z̄ > 0.
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Since R(z) approximates zn/k to first order, 1/R(z), which is linear, approximates
z−n/k to first order. Since z−n/k is convex, this means that

1
R(z)

=
β − z

α
≤ z−n/k =⇒ R(z) =

α

β − z
≥ zn/k .

As a result, we have obtained, with G(z) = aR(z) − bz + c, that G(z) ≥ F (z).
If F (z̄) = G(z̄) < 0, then the approximation necessarily has roots in the interval
[rk

1 , rk
2 ], since G(0) > 0 and G(z) → +∞ as z → β. There are two such roots as

they are the solution of a quadratic equation, and they become the next iterates.
Figure 5 shows the trinomial f(x) and its approximation g(x) = G(xk), as well as
F (z) and its approximation G(z).

Convergence properties. A method based on the approximation G, starting
from a point with negative function value, iterates with the smaller or larger root
of G, to converge monotonically to rk

1 or rk
2 , respectively, from within the interval.

It is a direct consequence of the domination of F by G. The order of convergence
is quadratic [15].

A starting point z0 is most conveniently computed as the minimum argument
of F , obtained from

F ′(z) =
n

k
azn/k−1 − b = 0 =⇒ z0 =

( kb

na

) k
n−k

.
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