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GAUSSIAN INTEGRALS DEPENDING ON A QUANTUM
PARAMETER IN FINITE DIMENSION

Simone Camosso

Abstract. A common theme in mathematics is the evaluation of Gauss inte-
grals. This, coupled with the fact that they are used in different branches of science,
makes the topic always actual and interesting. In these notes we shall analyze a par-
ticular class of Gaussian integrals that depend on the quantum parameter #. Starting
from classical results, we will present an overview on methods, examples and analogies
regarding the practice of solving quantum Gaussian integrals.
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1. Introduction

Let i be a quantum parameter; an important practice in quantum mechanics,
is the evaluation of Gaussian integrals. We will focus our attention on a group of
Gaussian integrals that come from quantum mechanics and quantum field theory
(QFT). A general Gaussian integral in this class depends on a quantum parameter

1

k= % with “A — 0”. In our calculations we shall treat k = £ as a purely formal

parameter. Summarising, we will treat integrals of the following form:

(1) / A (v, w) e wP W) gy,

where A is the “amplitude”, v is generally quadratic and v, w € R™.

This paper is based on previous discussions in [7,8,16] on different Gaussian
integrals of the form (1). A basic text is the work [9] and, for the asymptotic
analysis, we treat only the Laplace method described in [17]. In order to get a
result about a Gaussian integral, sometimes it is necessary to introduce a special
function (a good reference for the properties of special functions is [11]). Instead,
on the techniques used, an exhaustive source is the book of Nahin [12].

Regarding the different examples discussed in these pages, they have been
inspired by the works [1,6,13,14,15] concerning the geometric quantization.

At the beginning of the paper we will review basic facts concerning Gaussian
integrals in 1 and n-dimension. We proceed with different examples coming from
geometric quantization.
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2. The Gaussian integral in 1-dimension

We start with the Gauss integral

2) / e = v

— 00

The result follows taking the square of the left-hand side and using the polar coor-

dinates:
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In his article [2], Conrad gives eleven proofs of the result (2) using different methods.
A quick method consists in using the non elementary formula

™

3) [(s)-T(1—s)=

sin (7s)’

where I'(s) = [ e=%25~1dz (for s < 0). Using (3), we have that
0

(e (L) () ()

A curious reader can read the interesting article [11] where the author treats these
integrals as a “puzzle” to solve.

Another Gaussian integral is the following:

+o0
(4) / e dy = \/?7
— o a

for every a > 0. We can modify the original integral in order to obtain different
versions. For example adding the term —bz we find that

+oo
(5) / A . \/?
oo a

We can prove the formula completing the square —ax?—bxr = — (\/Zw +

b \2, b2
2\/E> tia-
In this case:

+o0 +oo 2 2
2 — b ol
/ e —bx dr = / e (\/E$+2\/5) +Ia dx

— 00 — 00

2 [T _(\/E:H-L)z 6% oo 2 v2 [T
=eda e 2Ve) dr = — e % ds=e%a,[—.
oo Va J_o a
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Alternatives of the Gaussian integral are in the book of Nahin [12], an example
is
e (2n)ly/m
6 on _—a? dr = :
(©) /0 T T

for n > 0, where for n = 0 we refind (2) between 0 and +o00. Another version of
(6) is the following:

/+oo . 7aw2dx: 135(n_1)ﬁ

n=24,...,

re n ntl )
— 00 2aq 2

where a > 0, or this:

+oo efpxz _ efqm2
= EENCI VRN

forg>p>0.

A complex modification of the Gaussian integral (5) is the following:

“+oo 2
_ax— n< s
/ e Y TN Jr = e%a \/>7
— 0o a

where 1 € C and the integral converges uniformly in any compact region. Now, the
integral defines an analytic function that may be evaluated by taking n to be real
and then using analytic continuation. To prove this we use the same trick as for
the integral (5) and the result is true for all n € C. As observed in [7], when n = i

we get that
“+oo . 2
/ efaw27"5w dx = I . 67‘%1,

— 00
2

2, . _€2
%" i3 the Gaussian e~ 4a.

or, in other words, the Fourier transform of e~

Considering the properties of the Fourier transform we can prove the following
result.

PROPOSITION 2.1. Let m be a positive integer and k be a real positive constant;
then

oo e (=)™ e
/ e r—gka® g ,/27Tk I Pm(g)e—ﬁf ,
o mT3

where Py, (§) = &M + ZBlpmjfm_Qj is a monic polynomial in & of degree m and
parity (—1)™

Proof. By a following property of the Fourier transform,

F (mme—%k:ﬁ) — im%f (e—%kxz) )

. Clpa? . _g .. .
Now the Fourier transform of e~2%*" is equal to \/%e 3% and deriving m times

e~ 3¢ we find the polynomial P, where the principal term has coefficient (_kl")z

We must collect this coefficient in order to find the polynomial P,,. m
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In one dimension we can do much more using special functions as the gamma
function and its inductive property I'(n 4+ 1) = n - I'(n). For example we have the

cubic Gauss integral
tooo 4
e de=T1(=-].
0 3

This can be proved by a simple substitution y = z>:

+oo “+o0
g3 1 Ly 2 1 1 4
de = = VyTsdy=--T(=)=0(=).
/oexs/oeysy?»(:%) <3

This last argument can be generalized for integrals of the form

+oo
m 1
/ e’ dx:F<+m) ,
0 m

where m > 1. We observe that for the case m = 2 the gamma function is I’ (%) =

@ and we recover (2) between 0 and +oc.

Another approach involves the use of the Taylor expansion. In order to explain
the method we consider the following integral:

+oo 2
/ e ¢ — 1ldz.

In this case we can work “formally” and write

—a? 2 1 2 1 2
—e _ _ = 2z _ — -3z .
e —1=—e + 5 e 3 e + ,
where we use the McLaurin expansion of e* ~ 1+ z + ”2—? + ---. Now integrating

each term we have that

too Ry O K (-VF [x
—_e % _ —kx _ -
/ e —1dx—§ i /_Ooe dx—g I .

- k=1 k=1
So we have N
too — a2 X (71)16 T
¢ —1ldx = —.
/m ‘ v ; o\ &

3. The Gaussian integral in n-dimensions
In n dimension we have that

/ el gp — /.

where |[z]|2 = 2% 4 --- +22. The result follows observing that [, e I*I° dz =

n
(fjoo et dt) and using the polar coordinates:

oo

1 oo o N1 s
ﬁ (/ e dt) = ﬁ/(; e’ ,Oni Cn dp

en 1 oo, 1 ¢ n
=2 27 le 8 ds = 2T (7) =1,
> TT"/O s27 e ds = >
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where ¢, = % is the area of the unit sphere. The result has been generalized in
2

[9] for a symmetric positive definite n x n-matrix A:

(7) / e (Az.x) 4. 7”1-7
n Vdet A

where (-,-) is the inner product on R™. This result is the analogue of (4) in one
dimension. Also, we can find in [9], another result for the Fourier transform. We
recall here the theorem.

THEOREM 3.1. (Hoérmander) If A is a non-singular symmetric matriz and
Re A > 0 the Fourier transform of u(x) = e~ 2A%%) is 4 Gaussian function T(€) =
(2m) % (det B)2e~2(B&E) where B = A~ and the square root is well defined. If
A = —iAg where Ay is real, symmetric and non-singular then

In the previous theorem the term sgn A is called the signature of Ag.

The Gaussian integral (7) admits different generalizations, for example we can
consider the problem to evaluate the integral

(8) I:/ xixjef%xT'Af” dz,

with A a real symmetric n X n matrix, 7" denotes the transpose and - the ordinary
product of matrices.

A general procedure in order to solve Gauss integrals as (8) consists to in-

J1
troduce a generating function Z(J) depending by a parameter J = ( : >, where

Z(J) = fan e=32@ - Azta"-J g2 Now we have that In
I 0?Z(J)
005 |,

We will use this version of the Wick’s theorem. It gives a way to compute the
ground-state expectation value of an operator.

THEOREM 3.2. (Wick) Let us consider J the parameter of the generating
gAYy

function Z(J); then the expectation value of the state ez is given by
o" gr.A"tg -1 -1
J;, - 0J;, (62 ) J—o - Z (A )imim (A )ipwlz‘pn ?
where the sum is taken over all pairings: (ip,,ipy);s--- (bpn_1s0p,)s Of 41, ,in.

The factors (Afl)ij are elements of the inverse matriv A~' (physically denotes
the propagator between the space point i and j).
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We will use this theorem in the case when i; =7 and io = j. We observe that
there is another way to write Z(J):

Z(.]) :/ e—%(x—AflJ)TA(z—AflJ)Jr%JTA*lJ.

If we substitute y = x — A~'J we have that

17T -1 1, T (QW)% 17T p—1
Z(J :ezJ A J/ e~ 2Y Ayd _ 62.] A J.
) n Y Vdet A
Reconsidering the integral I we have that
(2#)% aze%JTA_lJ

VdetA  0J;0J;

After calculations:
(2m)F §Pez(A DIt
VdetA  0J;0J; _

m# O[(HA W + H(AT) et AT
Vdet A dJ;

(2my% O [((A1)ia?)ed 4Dt

Vdet A dJ;

J=0

J=0
1 -1 :
(A7) 0"+ 5(AT1) et ) [e2 AT

J=0

= [(A71)i5 + (A7)l - (A7) J] 247D

J=0

We may call Z5 = % so the result is I = Z (Afl)ij. This work can be

generalized and a good reference is [5].

4. Gaussian integrals depending on a quantum parameter

In this section we study a particular kind of Gaussian integrals deriving from
quantum mechanics. The general form of these integrals is the following:

/ e~ #9(v,w) dv,

where the function g is usually quadratic in its variables and (v,w) € R*". Here
we are interested in particular forms of g.
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ProrosITION 4.1. We have the following cases:
1) if g = g1(v,w) = w(v,w) — §|lv —w|* then

/ e~ ma(vw) gy, — (27Tﬁ)% efﬁ”ww;

2) if g =g2(v,w,u) = —w(v,w+u) — %H’U”Z then
/ e~ R0 ) gy — (93 e e lwrul?,
3) if g =g3(v,w,u) = w(v,w) + w(w,u) — %Hv —w||? - %Hw — u||? then

/ e~ 793 (VW) gy — (Wh)%ef%gl(”’“),
n

for all v,w,u € R™.
Proof. We start with the first Gaussian integral and we have that

/ et (vw) gy :/ o Ew(vw)— g o—wl? g,
/ e~i9(10) %) =4181° 4 _ (i) e wl®,

where 3 = ﬁ(v — w) is a new variable used in the integration.

For the second case we proceed in a similar way:
) L 1 2
e—%gz(u,w,u) dv = e%u(v,w-l—u)—ﬁuvﬂ dv
n n
-1 (va—o—u)—l’ |2 —i (JL w+u)_;|
— e rIWY 2 dv = e W\ R 5
n n

/ (78552 ) =181 g3 _ (9r) 3 e lwtul®

}2 dv

v
Vh

v

Vh

:h?

where we have used 3 = ﬁv as a new variable.
In the last case we consider the function gs(v, w,u) = w (v,w) — £[lv — wl|* +

w(w,u) — £|lw — u||? where v, w,u € R".

/ o tos(vwm) g / o Elw(w.w) e(w,w)] g [lo—wl*+Hw—ul?] g,
We set v —w =t, so
/ e—%gg(v,w,u) dw = e—%w(v,u)/ ef%[w(t,'ufu)]fﬁ“|t”2+||y—u7t‘|2] dt.

A second variable *5* —t = z permits to write

/ ef%gg(v,wmdw:ef%ww,u)/ .
n n

%+2”2] dz.

— oz u—v)- g5 |

v—1 2
v—u
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After calculations we find that
/ =t 93w ) gy — o= k(o) llo—ull? / o tlwzu—v)-2 217 g,

Now the last integral is an ordinary Gaussian integral of simple estimation:

i

/ e~ H93(vwu) goy (7r71)%e*ﬁ“’(”’“)*ﬁ””*“H2 = (7h)2e wo1(vw)  w
n

A variation of the exponent is the function gs4(v,w) = w(v, Jw) — £|v||* —

1(1 + 2icot ¥)||w||?. This function appears in [13] as the function 2 (vg, €vy).

PROPOSITION 4.2. If ¥ € [0, 7], v,w € R™, then

/ e~ 79 (00) gy dy = 2% (hm)" sin’® 9ei(3-)%
R2n

Proof. In this case we have that

/ o= £ 950 g duy — / ot Tw)— e [v]? = 2 (1+2i cotDlIwl® g, g
R2n R2n
R (2m)"
Vdet (2 + 2icot 9) I,
where I, is the identity matrix. Observing that 2+ 2i cot ) = -2 [—isind + cos V]

= (h27)* / e~ 2 (ZH2icotNwll® gy —

sin 9
we have that
k3 hn 2 n n n S n
/ e~ 791 00) dyy oy = & = (hm)"22 sin? (19)61(5779)5. [
=

PROPOSITION 4.3. If g5(u,v,w) = 1(|lw — v||* + [|v — u||?) and v,w,u € R™,
then

w—u immn

/ ergs(uvw) g (27rﬁ)% exill =TI e,

Proof. We have
/ e#(uw—v||2+uv—uu2)dv:/ o (Il w—w) =t 2107 gy

where we used the substitution v — v = t. A second substitution ¢ = (w;u) —z
gives the integral
/ (e = S / (e aer)
n n
) wu) |12 ) . w_uw) |12 )
_ k|2 / e lZ? g — i oo || 2| / et 14l gy
n n
. _ 2 .
= (27rh)% eﬁHwH e T

where the last substitution was ﬁz =gq.m
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