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1. Introduction

In order to contribute to the creation of didactical situations that could in-
crease the active involvement of undergraduate students in the course of Number
Theory and at the same time offer them the possibility to develop their own solving
strategies, we study the well-known Frobenius coin problem for two denominators.
Our experience suggests that problems like the one above, which can be reduced
to solving a Diophantine equation and are essentially open-ended problems (in the
sense that may have several paths to resolution), can really initiate the feeling of
engagement in the participants and help them to upgrade their problem-solving
skills [6].

In parallel, the mathematical elaboration aims into guiding the students to
discovering known proofs of the problem themselves, using various approaches, with
encouragement and strategic guidance from the instructor.

2. Motivation and notation

Number Theory is a mathematical tradition with a long history and its own
peculiar and always attractive problems. The peculiarity of the problems of Num-
ber Theory consists in a rather strange character; while these problems appear most
of the time as understandable in their formulation by a high school student, their
solution often requires knowledge of so-called “advanced mathematics” – or at least
of algebra taught in the first years of mathematics departments – and sometimes
may even be unattainable (except in special cases) by the mathematical community.
At the same time, the same problems are usually empirically explorable by simple
arithmetic operations, done from memory or with the help of a simple computer
program. This makes it easier to explore special cases and to refute any incorrect
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conjectures or, conversely, to strengthen the belief in the truth of some carefully for-
mulated claims following the negations, following Lakatos’ heuristic epistemological
model for mathematics [4].

The last possibility constitutes, in our opinion, the main epistemological ad-
vantage of Number Theory over the other branches of elementary mathematics,
in terms of introducing students to the actual proof process. For, as Popper [5]
and Lakatos [4] have demonstrated, in the Philosophy of Science the logic of sci-
entific discovery cannot be separated from the logic of proof or justification. More
specifically, in order to determine whether students are able to solve simple word
problems that require basic knowledge of Number Theory and Algebra, entering
into an elementary proof process, we suggest the following tasks:

Task 1. The well-known Frobenius coin problem for two denominators.
(1) Which is the largest monetary amount that cannot be obtained using only

coins of 3 and 7 units?
(2) Which is the largest monetary amount that cannot be obtained using only

coins of 12 and 25 units?
(3) Taking into consideration the two cases above, can you guess what the largest

monetary amount that cannot be obtained using only coins of a and b units,
where gcd(a, b) = 1, might be?

(4) Prove by mathematical induction (or by any other method you consider ap-
propriate) that the largest monetary amount that cannot be obtained using
only coins of a and b units, where gcd(a, b) = 1, is ab− (a + b).

Task 2. Given the equation

(1) 5x + 8y = d,

with unknowns x, y and parameter d ∈ Z≥0. Find the maximum value of the
parameter d for which Eq. 1 is impossible in Z≥0, i.e., there is no pair of non-
negative integers x, y that verifies it.

Task 3. With the help of dynamic geometry software (e.g. GeoGebra) draw
in an orthonormal coordinate system the (variable) line

ε : 5x + 8y = d,

where the parameter d takes positive integral values less than or equal to 40. Find
the maximum value of the parameter p for which ε does not pass through a point
with coordinates of natural numbers.

The study of the coin problem of two denominators translates into studying
the set

Ca,b = { d ∈ Z≥0 : d = ax + by for some x, y ∈ Z≥0 }
and identifying the largest integer that is not in this set. This integer is known
as the Frobenius number and we denote it by fa,b. Regarding this number, it is
well-known that

(2) fa,b = ab− (a + b).
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For a more comprehensive presentation of the coin problem we refer the interested
reader to the excellent textbook of Alfonśın [2] and the references therein. Also,
we note that the problem of interest can be generalized by admitting an arbitrary
number of denominators in an obvious way. However, the complexity of the result-
ing problem increases, in such a way, that even the computing of fa,b,c (for three
denominators) is extremely complicated and it is widely accepted that a closed
formula for this number is out of reach, see [2]. So, due to the large complexity of
the case of more than two denominators, we will restrict ourselves to the simplest
case of two denominators.

To be more precise, we suggest methods, based on known proofs, whose goal
is to guide students into discovering the existence of fa,b, into computing fa,b and
into characterizing Ca,b, instead of immediately providing a formal proof. Towards
this end, we will use three different approaches, one based on elementary number
theory, one based on geometry and one using a newly discovered inductive method.

3. Mathematical elaboration

It is clear that we will be working with the linear Diophantine equation

(3) d = ax + by,

where we assume that 0 < a, b and gcd(a, b) = 1. We shall also assume that d ≥ 0,
since we are interested in finding positive integer solutions of Eq. (3) and it is clear
that the case d < 0 is impossible. We will first focus on the number theoretic
approach and then on the geometric one and we note that these approaches are
inspired by the first and third proof of [2, Theorem 2.1.1] respectively. Last but not
least, we will attempt to heuristically communicate a recently discovered inductive
proof [3]. We note that [2] contains four proofs of this theorem. We chose to
only present the first and the third one, as the second seems to contain a mistake1

and the fourth one incorporates analytic concepts whose direct relation with the
problem may not be clear to university freshmen.

In all cases, we assume that the students are aware of the following celebrated
result from Number Theory:

Theorem 3.1. (Bézout’s identity) Let a, b ∈ Z with c = gcd(a, b). There
exist some x′, y′ ∈ Z, such that ax′ + by′ = c.

We note that one such pair (x′, y′) can be identified with the Euclidean al-
gorithm. Also, it is obvious that Theorem 3.1 implies that Eq. (3) is solvable.
In particular, Theorem 3.1 implies that ax′ + by′ = 1 for some x′, y′, hence,
a(dx′) + b(dy′) = d, that is, (x0, y0) = (dx′, dy′) is a solution of Eq. (3).

However, it is neither guaranteed that the numbers x0, y0 are both positive,
nor that the solution is unique. In fact, the students can easily observe, with the

1In particular, it is based on the statement that there exist positive integers x, y, such that
ax + by = 1, which is clearly not true.
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help of easy examples, that the former is sometimes true and the latter is not true
at all. Next, we will identify the full set of solutions. Towards this goal, let (x1, y1)
and (x2, y2) be two solutions of Eq. (3). We observe that:

d = ax1 + by1

d = ax2 + by2

}
⇒ a(x1 − x2) = b(y2 − y1)

gcd(a,b)=1
=⇒ a | y2 − y1 ⇒ y2 = y1 + ka,

for some k ∈ Z. It follows that x2 = x1 − kb, thus, (x2, y2) = (x1 − kb, y1 + ka).
Further, it is not hard to check, that for every k ∈ Z, the pair (x1 − kb, y1 + ka) is
a solution of Eq. (3). We have established the following:

Proposition 3.2. Let a, b ∈ Z, not both zero, with gcd(a, b) = 1. If x0, y0 ∈ Z
are such that ax0 + by0 = d, then the set of solutions of Eq. (3) is the (infinite) set

S = { (x0 − kb, y0 + ka) : k ∈ Z }.

3.1. Number theoretic approach
A couple of key observations that derive from Proposition 3.2 are the following:

(1) It is clear that Eq. (3) admits a non-negative solution, if x is non-negative,
but as small as possible and y turns out to be also non-negative.

(2) If (x, y) is a solution of Eq. (3), then ax + by = d ⇒ x ≡ d · a−1 (mod b),
that is, the smallest non-negative value for x is the number x(d) that satisfies
0 ≤ x(d) < b and x(d) ≡ d · a−1 (mod b). Further, observe that, since d takes
arbitrary values, x(d) can in fact take any value within the described range.
From these observations, we get that the worst case scenario is for (x(d), y(d)) =

(b − 1,−1) to be a solution and this occurs exactly when d = ab − a − b. Eq. (2)
follows.

In addition, we obtain an easy characterization of Ca,b. In particular, given
a, b ∈ Z>0, with gcd(a, b) = 1 and some 0 ≤ d < ab− a− b, we can check whether
d ∈ Ca,b as follows:
(1) Compute x(d) as the unique number such that

0 ≤ x(d) < b and x(d) ≡ d · a−1 (mod b).

(2) Compute y(d) = (d− ax(d))/b.
(3) If y(d) ≥ 0, then d ∈ Ca,b, otherwise d /∈ Ca,b.

3.2. Geometric approach
For this approach, we will be working on the Cartesian plane. On the plane,

the problem in question, translates into whether the line

Ld : d = ax + by

meets the lattice
Λ := {(x, y) : x, y ∈ Z}
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in the first quadrant or in one of the positive semi-axes. Note that Proposition 3.2
ensures that Ld and Λ meet at an infinite number of points (for fixed d), while it is
clear that every point of Λ is contained in some line Ld (for some d). Furthermore,
since a, b, d are all assumed to be non-negative, the line Ld intersects the first
quadrant and the axes at a segment, that is, the number of points in question will
be finite. Also, the line Ld does not pass through the fourth quadrant, thus not
both coordinates of the points of Ld can be negative.

Some additional observations that will help the students into understanding
the problem more deeply are the following:
(1) For fixed a and b, the various lines Ld (where d ∈ Z≥0) form an infinite family

of parallel lines.
(2) As d grows, the line segment, where this line intersects with the first quadrant

and the axis, also grows in length. This means that, intuitively, for higher
values of d, the corresponding line should contain more desired points. Al-
though this argument is not entirely strict (nor true) it still point towards the
existence of fa,b.

(3) As a and b grow larger, the line segment, where Ld intersects with the first
quadrant and the axis, shrinks in length. This means, intuitively, that it
should be more difficult to have common points with Λ. As a result the
number fa,b (if it exists) should probably be an increasing function of both a
and b.
As a verification of these observations, it may be helpful to demonstrate these

facts with explicit examples, or rather encourage students to experiment on their
own and make their own conjectures, with the help of a computer program such as
GeoGebra. For example, see Figures 1 and 2.

Fig. 1. GeoGebra’s visualization of 3x + 7y = d for 1 ≤ d ≤ 40.

Next, we proceed with the existence of fa,b. Following Proposition 3.2, if
(x0, y0) is a solution of Eq. (3), then d ∈ Ca,b if, for some k, the point (x0−kb, y0+ka)
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Fig. 2. GeoGebra’s visualization of 5x + 8y = d for 1 ≤ d ≤ 40.

is in the first quadrant, or on some axis. Since this point cannot lie in the fourth
quadrant, this is equivalent with

(x0 − kb)(y0 + ka) ≥ 0, i.e., − ab
(
k +

y0

a

) (
k − x0

b

)
≥ 0,

for some k ∈ Z. The latter immediately yields an easy characterization of Ca,b.
In particular, d ∈ Ca,b if and only if there exists some integer k in the interval
[−y0/a, x0/b] (or the interval [x0/b,−y0/a] if −y0/a > x0/b), where (x0, y0) is a
solution of Eq. (3). Further, we observe that this condition is always satisfied when∣∣∣y0

a
+

x0

b

∣∣∣ ≥ 1,

which is, because of ax0 + by0 = d, equivalent to d ≥ ab. We have, so far, obtained
a characterization of Ca,b and the facts that fa,b exists and that fa,b < ab. Having
obtained these, we are left with the computation of fa,b.

Towards this end, it may be useful to employ computers as a mean to visualize
the problem, using various appropriate choices of a and b, taking all d ≤ ab, since
the case d > ab is settled, see Figures 1 and 2. In particular, the instructor is
advised to proceed to the following key observations:
(1) The line Lab does not have common points with Λ in the first quadrant, but

one with each axis, namely A(0, a) and B(b, 0). This is fairly easy to also
explain theoretically.

(2) The lines right below Lab appear to have exactly one point in common with
Λ in the first quadrant.

(3) The first line that coincides with Λ only in the second and the third quadrant
seems to always be Lab−a−b. In addition, among the points that this line
shares with Λ are C(b−1,−1) and D(−1, a−1). These facts are, again, fairly
easy to theoretically explain.
The above observations, not only suggest Eq. (2), but also suggest that the

following classic geometric result could prove useful.
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Theorem 3.3. (Pick’s theorem) Suppose that a polygon has its vertices in Λ.
If I is the number of points of Λ interior to the polygon and B is the number of
points of Λ on its boundary and A is the area of the polygon, then

(4) A = I +
B
2
− 1.

The teacher is advised to bring Theorem 3.3 to the students’ attention at this
point. It is natural to apply it to the parallelogram ABCD, then, using the notation
of the statement of the theorem, it is easily deduced that B = 4 and A = a+b, thus
Eq. (4) implies I = a + b − 1, in other words, the number of points of Λ that are
interior to ABCD coincide with the number of lines Ld (for ab − a − b < d < ab)
that run through ABCD. Additionally, note that all these points lie within the first
quadrant and that the point (x, y) belongs to the line Lax+by (with ab+ by ∈ Z≥0).
Next, assume that the line Ld, with ab − (a + b) < d < ab, contains two interior
lattice points of ABCD, say (x1, y1) and (x2, y2). Then

d = ax1 + by1

d = ax2 + by2

}
⇒ a(x1 − x2) = b(y2 − y1)

gcd(a,b)=1
=⇒ b | x1 − x2 and a | y2 − y1,

However, given that 0 < x1, x2 < b and 0 < y1, y2 < a the above is possible
only if (x1, y1) = (x2, y2), a contradiction. It follows that every line Ld, with
ab − (a + b) < d < ab, contains at most one internal lattice point of ABCD. All
the above facts, combined with the pigeonhole principle, imply that there is an
one-to-one correspondence between internal lattice points of ABCD and the lines
Ld, with ab− (a + b) < d < ab. Eq. (2) follows.

3.3. Inductive approach
Last, but not least, an inductive approach could be a welcome addition. For

a formal presentation of the proof that we outline here, we refer the reader to the
authors’ recent work [3]. In this approach, the students can be encouraged to write
a computer script that could, given appropriate a and b, check whether d ∈ Ca,b for
d within a reasonable range, or perform this experiment by hand. For example, see
Tables 1 and 2, that we compiled using GeoGebra software. This should lead to
a safe conjecture of the number fa,b for this particular choice of a and b.

After repeating the aforementioned procedure for a respectable number of
choices for a and b, the students may be able to notice a pattern, perhaps with
some hints from the teacher/instructor with questions of the form:

– Does fa,b appear to be larger or smaller than ab?
– Does fa,b appear to be larger or smaller than ab− a?
– Does fa,b appear to be larger or smaller than ab− 2a?
– . . .

Eventually, the students should recognize the pattern and guess Eq. 2. Then,
proving this equation can be an intriguing exercise. It is suggested to first ob-
serve that Proposition 3.2 implies the existence of two “minimal” pairs (x1, y1) and
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x y d 3x + 7y = d Notes
– – 1 – Impossible
– – 2 – Impossible
1 0 3 3 · 1 + 7 · 0 = 3 –
– – 4 – Impossible
– – 5 – Impossible
2 0 6 3 · 2 + 7 · 0 = 6 –
0 1 7 3 · 0 + 7 · 1 = 7 –
– – 8 – Impossible
3 0 9 3 · 3 + 7 · 0 = 9 –
1 1 10 3 · 1 + 7 · 1 = 10 –
– – 11 – Impossible
4 0 12 3 · 4 + 7 · 0 = 12 –
2 1 13 3 · 2 + 7 · 1 = 13 –
0 2 14 3 · 0 + 7 · 2 = 14 –
5 0 15 3 · 5 + 7 · 0 = 15 –
3 1 16 3 · 3 + 7 · 1 = 16 –
1 2 17 3 · 1 + 7 · 2 = 17 –
6 0 18 3 · 6 + 7 · 0 = 18 –
4 1 19 3 · 4 + 7 · 1 = 19 –
2 2 20 3 · 2 + 7 · 2 = 20 –
7 0 21 3 · 7 + 7 · 0 = 21 –
0 3 21 3 · 0 + 7 · 3 = 21 –
5 1 22 3 · 5 + 7 · 1 = 22 –
3 2 23 3 · 3 + 7 · 2 = 23 –
1 3 24 3 · 1 + 7 · 3 = 24 –
8 0 24 3 · 8 + 7 · 0 = 24 –
6 1 25 3 · 6 + 7 · 1 = 25 –
4 2 26 3 · 4 + 7 · 2 = 26 –
2 3 27 3 · 2 + 7 · 3 = 27 –
9 0 27 3 · 9 + 7 · 0 = 27 –
7 1 28 3 · 7 + 7 · 1 = 28 –
0 4 28 3 · 0 + 7 · 4 = 28 –
5 2 29 3 · 5 + 7 · 2 = 29 –
3 3 30 3 · 3 + 7 · 3 = 30 –
10 0 30 3 · 10 + 7 · 0 = 30 –

Table 1. Non-negative solutions of 3x + 7y = d, for 1 ≤ d ≤ 30.

(x2, y2), with x1, y2 > 0 and y1, x2 < 0 and ax1 + by1 = ax2 + by2 = 1. These
expressions of 1 are special, so we will call them minimal unit expressions.

The idea is that, given an expression

(5) d = ax0 + by0,

with x0, y0 ≥ 0, a promising strategy, in order to obtain a nice expression for d + 1
would be adding a minimal unit expression to Eq. (5), as these expressions seem
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x y d 5x + 8y = d Notes
– – 1 – Impossible
– – 2 – Impossible
– – 3 – Impossible
– – 4 – Impossible
1 0 5 5 · 1 + 8 · 0 = 5 –
– – 6 – Impossible
– – 7 – Impossible
0 1 8 5 · 0 + 8 · 1 = 8 –
– – 9 – Impossible
2 0 10 5 · 2 + 8 · 0 = 10 –
– – 11 – Impossible
– – 12 – Impossible
1 1 13 5 · 1 + 8 · 1 = 13 –
– – 14 – Impossible
3 0 15 5 · 3 + 8 · 0 = 15 –
0 2 16 5 · 0 + 8 · 2 = 16 –
– – 17 – Impossible
2 1 18 5 · 2 + 8 · 1 = 18 –
– – 19 – Impossible
4 0 20 5 · 4 + 8 · 0 = 20 –
1 2 21 5 · 1 + 8 · 2 = 21 –
– – 22 – Impossible
3 1 23 5 · 3 + 8 · 1 = 23 –
0 3 24 5 · 0 + 8 · 3 = 24 –
5 0 25 5 · 5 + 8 · 0 = 25 –
2 2 26 5 · 2 + 8 · 2 = 26 –
– – 27 – Impossible
4 1 28 5 · 4 + 8 · 1 = 28 –
1 3 29 5 · 1 + 8 · 3 = 29 –
6 0 30 5 · 6 + 8 · 0 = 30 –
3 2 31 5 · 3 + 8 · 2 = 31 –
0 4 32 5 · 0 + 8 · 4 = 32 –
5 1 33 5 · 5 + 8 · 1 = 33 –
2 3 34 5 · 2 + 8 · 3 = 34 –
7 0 35 5 · 7 + 8 · 0 = 35 –
4 2 36 5 · 4 + 8 · 2 = 36 –
1 4 37 5 · 1 + 8 · 4 = 37 –
6 1 38 5 · 6 + 8 · 1 = 38 –
3 3 39 5 · 3 + 8 · 3 = 39 –
8 0 40 5 · 8 + 8 · 0 = 40 –
0 5 40 5 · 0 + 8 · 5 = 40 –

Table 2. Non-negative solutions of 5x + 8y = d, for 1 ≤ d ≤ 40.
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to be those that will cause the “least” damage to the non-negativity of x0, y0. In
other words, at least one of these expressions should preserve their precious non-
negativity, of course, given that d is large enough.

With this overall strategy in mind, the instructor can proceed to the technical
part. It is advised to split it into four parts at this point:

(1) Show that ab− a− b /∈ Ca,b.

(2) Show that ab−a−b+1 ∈ Ca,b, by adding the suitable minimal unit expression
to ab− a− b = a(b− 1) + b(−1). Notice that, since y1 < 0, the only option is,
in fact, to add the second minimal unit expression, that is,

ab− a− b + 1 = a(b− 1 + x2) + b(−1 + y2).

The students should, after studying Proposition 3.2, be in position to under-
stand why both factors of a and b above are non-negative.

(3) Show that one of the expressions

ab− a− b + 2 = a(b− 1 + x2 + xi) + b(−1 + y2 + yi),

for i = 1, 2, has non-negative coefficients for both a and b. This should provide
some insight into how the induction step works.

(4) Show, using induction, that if

k = a(x0 + xi) + b(y0 + yi),

where i = 1 or 2 and both coefficients of a and b are non-negative, then

k + 1 = a(x0 + xi + xj) + b(y0 + yi + yj)

is such that both coefficients of a and b are non-negative, for j = 1 or j = 2,
for any k ≥ ab− a− b + 2. The induction should be on k and the first step is
already proven above.

The above steps imply Eq. (2).

4. Further work

Should the students show enough interest on the Frobenius coin problem and
one of the aforementioned approaches, the instructor can try to harden the problem
further, by asking the students the following question:

For fixed, relatively prime, a, b ∈ Z>0 and d ∈ Ca,b, how many pairs
(x, y) ∈ Z2

≥0 are there such that d = ax + by?

Equivalently, in how many ways can we obtain d momentary units with coins
of values a and b (with the usual restrictions on a and b)? A closer observation
to the aforementioned approaches, should provide the students enough insight to
tackle this extension of the Frobenius coin problem and even solve it!
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5. Conclusive remarks

Basic Number Theory, that is the theoretical preoccupation with the proper-
ties of integers and the equivalence classes of modulo, has been practically elimi-
nated from secondary education (at least in Greek education system) and does not
seem to attract the interest of researchers in Mathematics Education, while at the
same time the relevant knowledge is used only as a prerequisite for mathematical
competitions and Mathematics Olympiads. For example, the third problem in the
24th International Mathematical Olympiad, see [1], asked to deal with a variation
of the Frobenius coin problem of three denominators.

As much of the teaching research seems to have been aimed, in recent years,
at new ways of formalizing and evaluating cognitive concepts, one explanation for
this lack of interest could be that Number Theory is not easily formalized, as it
moves simultaneously in the logic of discovery and that of proof, and its reasoning
is largely based on common sense, which is not easily standardized. However,
taking into consideration our recent experience [6], we believe that students are
inclined to think intuitively, discover patterns, and give reasons on problems in
basic Number Theory, such as those suggested above. A future study based on
a teaching intervention utilizing tasks such as those presented in Section 2, could
explore this possibility in detail.
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