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Abstract. In this paper, trisection of an angle performed by origami is ex-
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correctness conjectures, one based on trigonometry identities for triple angle and
another, based on triangle congruence are formulated. All geometric constraints ap-
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1. Introduction

Geometric construction problems are standard mathematical problems in high
school education. Geometric constructions are mainly done using straightedge1 and
compass (abbr. SC constructions). This method of solving geometric construction
dates back to the times of ancient Greece and is considered a cornerstone of human
intellectual reach. Over the past decades, several tools for automated solving SC
constructions have been developed [10, 11, 15], however this domain still remains
challenging for automation.

Origami (ori – folding, kami – paper) is a traditional Japanese art of paper
folding, used to teach children math, as well as to improve their creativity. It turns
out that it can be used as an alternative tool for performing geometric constructions.
During the centuries, origami found its practical use in the field of solving geometric
constructions and today there exist computer programs and tools that can perform
origami construction and reason about them [7]. Moreover, with origami one can
solve some problems that are proved unsolvable using straightedge and compass,
for example doubling the cube or angle trisection.

The main task of geometric construction problem is to construct (using avail-
able tools) a geometric figure which satisfies given set of constraints [12]. Howev-
er, this is only one part of the solution, since a proof of correctness of obtained
construction is, also, needed. Namely, proving construction correct is of extreme

1By straightedge we consider ruler with no marks.
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importance in the context of mathematical education, since for a student it is es-
sential to understand why a performed construction is correct. One of the most
widely used methods for automatically proving geometric statements are algebraic
methods which work as follows: the properties of a figure are translated into a set
of polynomials over coordinates of points and it should be proved that the polyno-
mials describing the conclusion follow from the polynomials specifying the premises
of the statement. The most successful algebraic methods are Wu’s method [18] and
Gröbner basis method [5]. Most computer algebra systems, such as Mathematica,
Maple, etc. as a part of standard library have a function for calculating Gröbner
basis of an ideal. One such system, that is free and open-source, is Singular [4].

In this paper we will focus on proving correctness of constructions obtained
by origami using Gröbner basis method. We will consider the problem of angle
trisection and prove the correctness of presented construction in two different ways:
using trigonometric identities and the fact that the tangent function is injective on
(0, π/2) and, alternatively, using congruence of triangles.

In Section 2 geometry constructions performed by origami are described, and
the basic principles of Gröbner basis method for theorem proving are given. In
Section 3 the problem of angle trisection is discussed and the construction and the
corresponding correctness conjecture are specified. In Section 4 the implementation
of correctness proof in Singular is described, while in Section 5 the final conclusions
are drawn and plans for future work are given.

2. Background

In this section we describe the basic concepts of geometry constructions per-
formed by origami. We list Huzita’s origami axioms and formulate them first in
logical and then in algebraic form. We also recall Gröbner basis method that can
be used for proving geometric theorems.

2.1. Origami geometry construction

Origami geometry construction usually begins with uncut square piece of pa-
per where only folding is allowed2. Folding is a simple operation which creates fold
lines along the paper. To perform a folding step it is necessary to identify reference
points or lines which will be brought or passed through, thus creating a fold line.
A sequence of such folding steps creates new reference points and/or lines and the
process is repeated until the final model is achieved. Thus, every folding step is a
precisely defined combination of paper elements which include points, edges, fold
lines and their intersections (see Figure 1).

At the beginning of the 1970s, a group of origami researchers began to sys-
tematically enumerate various possible folding combinations and they studied what
relationships between objects can be attained by folding [9]. The first research on
this subject was conducted by Humiaki Huzita; he described the set of six rules of

2For some origami models construction begins with rectangular piece of paper and/or cut-
ting of paper can be allowed.
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Fig. 1. Origami crane model with fold lines. Solid lines represent paper edges,

while dashed lines represent fold lines. Points A, B, C and D are reference points

while N1, N2, M1 and M2 are points of intersection of fold lines.

paper folding using existing points, lines and fold lines. These six rules are well
known as Huzita’s axioms (HA)3.

Every step in origami construction corresponds to application of Huzita’s ax-
iom to existing points and lines. Let us denote the set of points with P and the
set of lines with L. Each of Huzita’s axioms can be specified as a formula in the
language of first-order logic, formulated in prenex normal form:

ψ = Q1x1 · · · Qnxn φ(x1, . . . , xn)

where:

– Qi ∈ {∀, ∃}, i ∈ [1, n],

– xi is a variable, i ∈ [1, n], that takes values from P ∪ L,

– φ(x1, . . . , xn) is a formula with free occurrences of variables x1, . . . , xn. Formu-
la φ can be an atomic formula, a conjunction of atomic formulae, a disjunction
of atomic formulae, or a negation of atomic formula.

Formula φ does not use any functional symbols. Predicates over which φ is formu-
lated are:

– onLine(X, l) – point X is on line l,

– symmetric(X, Y, l) – points X and Y are symmetric with respect to line l,

– equidistant(X, l, m) – point X is equidistant to lines l and m,

– perp(l, m) – lines l and m are perpendicular.

Let us now specify Huzita’s axioms and formulate them in the language of
first-order logic.

3There is also a seventh axiom which was discovered, independently, by Jacques Justin and
Koshiro Hatori [9].
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HA1. Given two points P and Q, one can construct a fold line k that passes
through P and Q (Figure 2).

By this axiom the existence of a line k that contains two points P and Q is
asserted. It can be formulated in prenex normal form in the following way:

∀P, Q ∈ P ∃k ∈ L onLine(P, k) ∧ onLine(Q, k)

P

Q

P

Q

k

(a) Before folding (b) After folding

Fig. 2. Illustration of application of HA1 to points P and Q.

The fold line k through P and Q is constructed.

HA2. Given two points P and Q, one can construct a fold line k that brings
P onto Q (Figure 3).

The second Huzita’s axiom claims the existence of a line k such that points
P and Q are symmetric with respect to line k and it can be specified as follows:

∀P, Q ∈ P ∃k ∈ L symmetric(P,Q, k)

P

Q

P

Q

k

(a) Before folding (b) After folding

Fig. 3. Illustration of application of HA2 to points P and Q.

The fold line k that brings P onto Q is constructed.
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HA3. Given two lines m and n, one can construct a fold line k that superposes
m and n (Figure 4).

By this axiom the existence of a line k such that each point of the line k
is equidistant to lines m and n is claimed. It can be described by the following
formula:

∀m,n ∈ L ∃k ∈ L ∀P ∈ P ¬onLine(P, k) ∨ equidistant(P, m, n)

m

n

m

n
k

(a) Before folding (b) After folding

Fig. 4. Illustration of application of HA3 to lines m and n.

The fold line k that superposes m and n is constructed.

HA4. Given a point P and a line m, one can construct a fold line k that
passes through P and is perpendicular to m (Figure 5).

This axiom can be specified as follows:

∀P ∈ P ∀m ∈ L ∃k ∈ L onLine(P, k) ∧ perp(m, k)

m

P

m

P
k

(a) Before folding (b) After folding

Fig. 5. Illustration of application of HA4 to point P and line m.

The fold line k that passes through P and is perpendicular to m is constructed.
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HA5. Given two points P and Q and a line m, one can construct a fold line
k that passes through Q and that superposes P and m (Figure 6).

In other words the existence of a line k such that there is a point R that is
symmetric to P with respect to line k and m passes through R is asserted.

∀P,Q ∈ P ∀m ∈ L ∃k ∈ L ∃R ∈ P

onLine(Q, k) ∧ symmetric(P, R, k) ∧ onLine(R,m)

m

P
Q

m

P
Q

R

k

(a) Before folding (b) After folding

Fig. 6. Illustration of application of HA5 to points P and Q and line m.

The fold line k that passes through Q and that superposes P and m is constructed.

HA6. Given two points P and Q and two lines m and n, one can construct
a fold line k that superposes P and m, and Q and n, simultaneously (Figure 7).

m
n

P

Q

m
nk

P

Q

R

O

(a) Before folding (b) After folding

Fig. 7. Illustration of application of HA6 to points P and Q and lines m and n.

The fold line k that superposes P and m, and Q and n is constructed.

The last Huzita’s axiom asserts the existence of a line k such that there is a
point R that belongs to m and is symmetric to P with respect to k, and a point O
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that belongs to n and is symmetric to Q with respect to k.

∀P,Q ∈ P ∀m,n ∈ L ∃k ∈ L ∃R, O ∈ P

symmetric(P,R, k) ∧ onLine(R,m) ∧ symmetric(Q,O, k) ∧ onLine(O,n)

Once the origami axioms are formulated as formulae in prenex normal form,
they can be further translated into an algebraic form. For this reason we introduce
a function m on the set P ∪ L that maps point P ∈ P to a pair of its coordinates
(xP , yP ), and line l ∈ L to a triple of its coefficients (a, b, c): these are coefficients
of x, y and free term in implicit line equation ax + by + c = 0. Without loss of
generality it can be assumed that a2 + b2 = 1 [6]4.

Quantifier-free formulae are then mapped using function M to a set of polyno-
mial equations with real coefficients in the following way:

– M(
∧n

i=1 φi) =
⋃n

i=1 M(φi)

– M(
∨n

i=1 φi) = {p1 · . . . · pn = 0}, where pi = 0 ∈ M(φi), 1 ≤ i ≤ n

– M(¬φ) = {∏(p=0)∈M(φ)(pεp − 1) = 0}, where a new variable εp is introduced
for every formula p = 0.

– M(onLine(P, k)) = {axP + byP + c = 0}, where m(P ) = (xP , yP ) and m(k) =
(a, b, c).

– M(perp(k, l)) = {akal + bkbl = 0}, where m(k) = (ak, bk, ck) and m(l) =
(al, bl, cl).

– M(midpoint(R, P, Q)) = {2xR − xP − xQ = 0, 2yR − yP − yQ = 0} where
m(P ) = (xP , yP ), m(Q) = (xQ, yQ), and m(R) = (xR, yR).

– symmetric(P,Q, k) is an abbreviation of formula written in prenex normal
form:

∃l ∈ L onLine(P, l) ∧ onLine(Q, l) ∧ perp(k, l) ∧midpointOnLine(P, Q, k)

where midpointOnLine(P,Q, k) means that the midpoint of a segment PQ is
on the line k.

– M(midpointOnLine(P,Q, k)) = {a(xP + xQ) + b(yP + yQ) + 2c = 0} where
m(P ) = (xP , yP ), m(Q) = (xQ, yQ) and m(k) = (a, b, c).

– M(equidistant(P, k, l)) = {d(P, k) − d(P, l) = 0} where d(Q,n) denotes the
distance between Q and n and is calculated as d(Q, n) = |axQ+byQ+c|√

a2+b2
where

m(Q) = (xQ, yQ) and m(n) = (a, b, c).

Using mapping M each step of origami construction (application of HA) is
easily translated into the corresponding set of polynomials.

4This way we obtain normalized implicit line equation that simplifies further calculations
is Singular. Note that even with this additional constraint, one can specify a single line in two
different ways, however this does not influence further calculation.
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2.2. Gröbner basis method
Gröbner basis of an ideal I = 〈f1, . . . , fk〉 is a set of polynomials G =

{g1, . . . , gl} for which division of an arbitrary polynomial f with the polynomi-
als of G returns 0 if and only if f ∈ I. Every ideal has a Gröbner basis; it can be
constructed using Bucherberger’s algorithm [2]. In the worst case scenario, Gröbner
basis can be doubly exponentially larger than the input set of the polynomials. De-
spite that, in most of the cases it can be obtained in a reasonable time [1]. One
can implement Buchberger’s algorithm from scratch, however there are tools that
already implement Buchberger’s algorithm for calculating Gröbner basis. One such
tool is Singular [4].

Gröbner basis method enables a uniform approach to solving different prob-
lems in mathematics that can be expressed in terms of a system of multivariate
polynomial equations, such as solving system of algebraic equations, integer pro-
gramming problems, proving geometrical theorems, etc.

Let us illustrate Gröbner basis method with a simple example. ”Alice, Bob
and Carol together have 14 coins. If Bob has 4 coins more than Alice and Carol
together, check if Alice and Carol have a total of 5 coins.” If we denote the number
of coins that Alice, Bob, and Carol have with A, B, and C respectively, then the
premises of the problem can be specified as a system of two equations over three
variables – A, B, and C:

A + B + C = 14
B = A + C + 4

Alternatively, the system can be rewritten as a system of two polynomial equations:

f1(A,B, C) = A + B + C − 14 = 0

f2(A,B, C) = A−B + C + 4 = 0

This system has more unknowns than equations, therefore it can’t be solved. How-
ever, it turns out possible to check whether the conclusion A + C = 5 follows from
these two equations, i.e. if the conclusion h(A,B, C) = A + C − 5 = 0 follows from
premises f1(A,B, C) = 0 and f2(A,B, C) = 0. One way to do it is by checking if
the polynomial h belongs to the ideal I generated by the polynomials f1 and f2. It
can be done in the following way: a Gröbner basis G of the ideal I is constructed
and the polynomial h is reduced over G – if and only if it yields 0 the polynomial
h is in the ideal I.

Gröbner basis method is usually used for solving problems which are conside-
red computationally hard.

In domain of geometry, theorems to be proved are usually given as impli-
cations, i.e. one has to prove that the set of premises implies a set of con-
clusions [13, 14]. This can be achieved using Gröbner basis method by formu-
lating the premises of conjecture as a set of multivariate polynomial equations
fi = 0, i ∈ [1, k], as well as the set of conclusions hj = 0, j ∈ [1, l] and proving that
each hj is in ideal I = 〈f1, . . . , fk〉.
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3. Angle trisection problem

SC and origami constructions are similar in many ways. For instance, both
approaches support construction of a line through two points, construction of an
intersection point of two lines, bisecting an angle, etc. Since SC constructions
are much better studied, quite a few solutions of origami constructions have been
inspired by corresponding SC constructions. However, some constructions are easier
and more intuitive to perform using origami than using straightedge and compass.
Let us consider the problem of construction of a midpoint M of a segment PQ (see
Figure 8): using origami it suffices to construct the fold line k that brings P to Q
and M will be the intersection point of k with PQ. However, using straightedge
and compass it is necessary to construct the circle c1 centered at P through Q as
well as the circle c2 centered at Q passing through P , their intersection points C1

and C2, the line k through points C1 and C2, and, finally, the intersection M of k
with PQ.

P
Q

P
Q

M

(a) Initial segment (b) Construction of midpoint using origami

P
Q

k

M

c2

c1
C1

C2

(c) Construction of midpoint using SC

Fig. 8. Comparison of origami construction with SC construction of the midpoint M

of the segment PQ.

Many construction problems were posed and solved using straightedge and
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compass back in time of Euclid’s, however for some of them the solution could not
be reached for a long time. The three such problems are:

– squaring the circle, where one has to construct a square with the same area
as the given circle;

– doubling the cube, where one has to construct a cube with the volume twice
as big as the given cube;

– angle trisection, where one has to divide a given angle into three equal parts.

Many mathematicians, since the time of ancient Greeks, tried to solve them using
straightedge and compass but did not succeed. First known proofs that the cube
cannot be duplicated and that the arbitrary angle cannot be divided into three equal
parts using straightedge and compass were given by Pierre Wantzel [17], while the
unsolvability of problem of squaring the circle using straightedge and compass is
a consequence of Lindemann-Weierstrass theorem [16]. However, it shows possible
to solve the problems of doubling the cube and angle trisection using origami5.

The reason for such behaviour lies in algebraic form of these problems. Name-
ly, by using straightedge and compass one can construct lines and circles; their
implicit equations are ax + by + c = 0 and x2 + y2 − r2 = 0, where a, b, c are line
coefficients and r is the radius of a circle with the center in point (0, 0). Therefore,
using straightedge and compass as the only tools available, one can solve problems
that are reducible to linear or quadratic equations [9]. However, problems of cube
doubling and angle trisection can be reduced to cubic equations6, so, using straight-
edge and compass, one cannot solve any of them. Nevertheless, by using origami
one can solve these problems by applying the operation HA67.

In the rest of this section we will focus on the problem of angle trisection, i.e.
the construction of an angle equal to the third of a given angle. We will first present
the origami steps used to divide an arbitrary acute angle into three equal parts8.
Afterwards, we will describe how to formulate the premises and the conclusion of
the correctness conjecture of this construction in terms of first-order logic formulae.

3.1. Construction

Trisection of an arbitrary acute angle using origami can be achieved in various
ways [9]. One of the construction was proposed by Japanese mathematician Hisashi
Abe (see Figure 9). Abe’s method for angle trisection consists of the following
construction steps:

S1 A piece of square paper is defined by four corner points, denoted by A, B,
C, and D. These four points form lines AB, BC, CD, and AD. A point E
is arbitrarily chosen on edge CD. By constructing the line through points A
and E an acute angle ∠EAB to be trisected is formed (see Figure 9(a)).

5Note that the neusis construction for angle trisection using tools other than straightedge
and compass was already known to the ancient Greeks [3].

6These two problems cannot be reduced to neither linear nor quadratic equations.
7Squaring the circle is proved unsolvable by both straightedge and compass, and by origami.
8Note that trisecting an obtuse angle requires different construction steps.
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A B

CD
E

A B

CD
E

G F

(a) Specifying an angle to trisect, ∠EAB (b) Applying HA2 that brings A onto D

A B

CD
E

G F

I H

A B

CD
E

G F

I H
A1

I1

G1

(c) Applying HA2 that brings A onto G (d) Applying HA6 that brings G onto AE

and A onto IH

Fig. 9. Construction steps for angle trisection using Abe’s method.

S2 Axiom HA2 is applied to points A and D, and B and C, respectively; in this
way points A and B are brought onto points D and C, and the fold line that
bisects segments AD i BC is constructed. Points of intersections of edges AD
and BC with fold line are marked with G and F . It holds that G is a midpoint
of the segment AD and F is a midpoint of the segment BC (see Figure 9(b)).

S3 Axiom HA2 is applied to points A and G, and B and F , respectively; in this
way points A and B are brought onto points G and F , and as a result the fold
line that bisects segments AG and BF is constructed. Points of intersections
of segments AG and BF with fold line are marked with I and H. It holds
that I is a midpoint of the segment AG and H is a midpoint of the segment
BF (see Figure 9(c)).

S4 Axiom HA6 is applied to points G and A and lines AE and IH, and a fold line
that brings G onto AE and A onto IH is constructed. This step creates points
that are symmetric to the points G and A with respect to the fold line, which
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are marked with G1 and A1. Since folding preserves distances between points,
by this folding the point I, which is a midpoint of the segment AG, is brought
to the midpoint of the segment A1G1, marked with I1. By constructing lines
through points A and G1, A and I1, and A and A1 angles ∠EAI1, ∠I1AA1,
and ∠A1AB are formed. It can be shown that each of them is equal to the
third of the starting angle ∠EAB (see Figure 9(d)), by proving that these
three angles are mutually equal.
3.2. Proving construction correct
The proof of correctness of Abe’s method for angle trisection can be performed

manually or automatically. For instance, EOS (E-origami system) [7] automati-
cally translates a sequence of origami construction steps and the goal to be proved
into the set of equations and tries to solve them (using Gröbner basis method or
cylindrical algebraic decomposition). Singular [4], as a computer algebra system for
computations over polynomials, can also be used for proving construction correct.
However, unlike EOS, in Singular a user has to do the translation of construction
steps, obtained by folding, and the goal to be proved into the set of polynomials;
then, a Gröbner basis method can be used. Here, for educational purposes, we will
follow the second approach and discuss in detail the translation of each geometrical
predicate into the corresponding set of polynomials.

In the text that follows, we will present two different approaches to prove
construction correct: via tangent of the angle and via congruence of triangles.

Formulating construction steps using first-order logic formulae. Let
us assume that the starting origami paper is square shaped and that the vertices
of the square are marked with A, B, C, and D, respectively. Each two adjacent
vertices of the square define the line, to which a corresponding side of the square
belongs. The adjacent sides of a square are mutually perpendicular. Each step of
the construction creates a set of constraints and they are as follows:

– The set of constraints corresponding to initial construction step S1 can be
written using previously introduced predicates in the following way:

{onLine(A,AB), onLine(B, AB), onLine(C,CD), onLine(D, CD),

onLine(A,AD), onLine(D,AD), onLine(B, BC), onLine(C,BC),

perp(AB, BC), perp(AB, AD), perp(CD, BC), perp(CD, AD)}
A point E is chosen as an arbitrary point of the side CD and an angle ∠EAB
is formed. The following formulae are added as constraints:

{onLine(E, CD), onLine(A,AE), onLine(E, AE)}
– In construction step S2, the bisector FG of segments AD and BC is construc-

ted and the following formulae are added to the set of constraints:

{onLine(G,AD), onLine(F,BC), onLine(G,GF ), onLine(F, GF ),

midpoint(G, A,D), midpoint(F, B,C), perp(GF, BC), perp(GF, AD)}
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– Similarly, in step S3, the bisector IH of segments AG and BF is constructed
and the following constraints are added:

{onLine(I,AG), onLine(H, BF ), onLine(I, IH), onLine(H, IH),

midpoint(I,A, G), midpoint(H,B, F ), perp(IH, BF ), perp(IH, AG)}
– Finally, after applying the construction step S4, the following formulae are

added to the set of constraints:

{symmetric(A,A1, k), symmetric(G,G1, k), onLine(A1, IH), onLine(G1, AE)}
The union of previously described constraint sets will represent the common

premises of the correctness conjecture for both approaches. It remains to formulate
the rest of the premises, specific for a concrete way of proving correctness, and the
conclusion of the conjecture, that the angle ∠EAB is divided into three equal parts
by lines AA1 and AI1.

As we already said, we prove the correctness of the construction in two differ-
ent ways, by formulating two different correctness conjectures.

Approach via tangent of the angle. One way to prove that by the previous
construction a trisection of the angle ∠EAB is performed is by using trigonometry,
more precisely using tangent function, following the ideas presented in [8].

Let us recall that the function f(x) = tan x is injective on (0, π/2). Therefore,
it follows that if for x, y ∈ (0, π/2) holds tan x = tan y, then x = y holds also. Since
all three angles ∠G1AI1,∠I1AA1, and ∠A1AB are acute, it suffices to show that
the following equalities hold:

tan (∠G1AI1) = tan (∠I1AA1) = tan (∠A1AB)
However, Singular does not support using trigonometric functions. Still, the

value of the tangent function of the acute angle in right triangle can be expressed
as a ratio of the length of its opposite cathetus and adjacent cathetus, which can
be translated further into polynomial expressions over point coordinates. The only
problem is that at this point the angles we are interested in do not belong to any
right angle triangle (see Figure 9(d)).

A B

CD
E

G F

I H
A1

I1

G1

ApGp Ip

Fig. 10. Projecting points G1, I1, and A1 onto segment AB.
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In order to create corresponding right triangles, points G1, I1 and A1 are pro-
jected onto the edge AB; that way points Gp, Ip and Ap are created (see Figure 10).
Triangles 4G1AGp, 4I1AIp, and 4A1AAp are right triangles with right angles at
vertices Gp, Ip, and Ap, respectively.

Let us denote the angle ∠A1AAp as α; the value tan α can be calculated on
the basis of the triangle 4A1AAp using the following formula:

(1) tan α =
|A1Ap|
|AAp| .

However, the other two angles to which the conjecture applies are not the angles of
the newly created right angle triangles. Nevertheless, it is possible to look at the
problem from another perspective: instead of proving that the angles ∠I1AA1 and
∠A1AAp are equal, we can prove that the angle ∠I1AIp is twice the angle ∠A1AAp,
i.e. that ∠I1AIp = 2α. Similarly, it suffices to prove that ∠G1AGp is three times
the angle ∠A1AAp or, equivalently, that ∠G1AGp = 3α.

From 4I1AIp and 4G1AGp follow:

(2) tan (∠I1AIp) =
|I1Ip|
|AIp| , tan (∠G1AGp) =

|G1Gp|
|AGp| .

In order to express equations over trigonometry functions as polynomial equations,
we use the following trigonometric identities:

(3) tan(2α) =
2 tan α

1− tan2 α
, tan(3α) =

3 tan α− tan3 α

1− 3 tan2 α
.

Namely, we represent tan α appearing in Equations (1) and (3) as a variable t and
express constraints over it as a polynomial. By combining Equations (1), (2), and
(3) we get:

|A1Ap|
|AAp| = tan (∠A1AAp) = tan α,

|I1Ip|
|AIp| = tan (∠I1AIp) = tan(2α) =

2 tan α

1− tan2 α
,

|G1Gp|
|AGp| = tan (∠G1AGp) = tan(3α) =

3 tan α− tan3 α

1− 3 tan2 α
.

Simplifying the previous equations and using variable t instead of tan α we get the
following polynomial equations:

|AAp|t− |A1Ap| = 0,

|I1Ip|t2 + 2|AIp|t− |I1Ip| = 0,(4)

|AGp|t3 − 3 · |G1Gp|t2 − 3|AGp|t + |G1Gp| = 0.

The first of equations in (4) defines a variable t and therefore is included into
the set of premises of the correctness conjecture, while the last two equations are
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statements we tend to prove and therefore correspond to the conclusions of cor-
rectness conjecture. Notice that the last equation involves third degree polynomial
in t and, as we already said, such equation is not solvable using straightedge and
compass, but is solvable using origami.

Approach via congruence of triangles. Another way of proving the cor-
rectness of considered construction is by proving the congruence of corresponding
triangles.

Two triangles are congruent if and only if their corresponding sides are equal
(lengthwise) and their corresponding angles are equal. Usually, it suffices to show
that three corresponding elements of two triangles are equal to deduce their congru-
ence, such as the three sides, the three angles or a combination of sides and angles.
For the purpose of this paper we will use the following two congruence postulates:

– Side–Angle–Side (SAS) which states that if two pairs of sides and included
angle are equal then the triangles are congruent,

– Side–Side–Angle (SSA) which states that if two pairs of sides and non–
included angle are equal then the triangles are congruent.
Let us first denote point Ap the orthogonal projection of the point A1 onto

the segment AB. We will try to deduce that 4G1AI1
∼= 4AA1I1

∼= 4A1AAp from
where it would follow that the corresponding angles ∠G1AI1, ∠I1AA1,∠A1AAp are
equal to each other and therefore equal to the third of ∠EAB (see Figure 11).

A B

CD
E

G F

I H
A1

I1

G1

Ap

Fig. 11. Right angle triangles 4G1AI1, 4AA1I1, 4A1AAp

defined by constructed points.

However, proving the congruence of triangles in Singular is not straightfor-
ward. Namely, Singular does not support the congruence functions, and therefore
we have to define the conjecture as equality of certain triangle elements. By doing
so, we can conclude that the certain triangles are congruent and, therefore, that
their corresponding sides and angles are equal.

Let us first consider the triangles 4G1AI1 and 4AA1I1. To conclude that
these two triangles are congruent we will use the SAS congruence postulate. Since
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these two triangles have the common side AI1 it is sufficient to prove the following:

(5) AI1 ⊥ G1A1, |G1I1| = |I1A1|.
Line A1I is a perpendicular bisector of the segment AG. Since the distances are
preserved by folding, as well as the angles, it follows that the line AI1 is a perpen-
dicular bisector of the segment A1G1 and, therefore, Equation (5) should hold.

Similarly, to deduce that 4AA1I1 and 4A1AAp are congruent we will use
the SSA congruence postulate. Since these two triangles share the side AA1 it is
sufficient to prove the following:

(6) |I1A1| = |A1Ap|, A1Ap ⊥ AAp.

As we have already said, folding preserves distances between points. Therefore
points A1 and I1 are at the same distance as points A and I. Moreover, points A1

and Ap are the at the same distance as A and I since A1 is on the line IH and Ap

is is the orthogonal projection of A1 onto BC.
From the congruence of these two pairs of triangles follows that their corre-

sponding angles are equal, that is:

∠G1AI1 = ∠I1AA1 = ∠A1AAp = ∠EAB/3.

The conditions given by Equations (5) and (6) are easily formulated as a corre-
sponding formulae over point coordinates in Singular.

4. Implementation

So far we have described the origami construction as a sequence of first-order
formulae specifying the premises and the conclusion of the conjecture being proved.
In order to use Gröbner basis method to prove the conjecture, these formulae are
translated into the set of algebraic equations following the approach described in
Section 2.1.

First we need to place the elements of the starting configuration into the
coordinate plane. Notice that the properties of geometric figures such as lines and
angles do not change under the effect of translation and rotation in the Euclidean
plane. So when introducing Cartesian coordinates, we can assign the given points
some suitable coordinates, which simplify the following calculations. We can place
the lower-left corner of the paper into the origin, and assume that the size of the
paper is equal to a. In such setting, the corner-points of the paper have coordinates
A = (0, 0), B = (a, 0), C = (a, a) and D = (0, a), where a ∈ R. We are only
considering non-degenerated case where a 6= 09.

Proving correctness using Gröbner basis method requires a great deal of sym-
bolic manipulations and for this purpose we use the computer algebra tool Singular.
All calculations over polynomials are done in the ring of real numbers over degree

9The condition a 6= 0 can be expressed as polynomial using formula: M(¬(a = 0)) = {aε−1 =
0}, where ε is a new variable.
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lexicographical ordered variables. Variables over which the polynomials are formu-
lated correspond to the coordinates of points, coefficients of lines, and tangent of
the trisected angle.

After specifying a variable ring, every constraint from the set of premises,
formulated as a polynomial, is declared as a variable of a type poly. An ideal
Idl over these polynomials is generated and a Gröbner basis GRB of ideal Idl is
calculated. For this purpose function groebner is used. Then each of the polyno-
mials corresponding to the conclusion of the conjecture is reduced with respect to
the Gröbner basis GRB using function reduce. If the return value is 0, then the
conclusion belongs to the ideal Idl, thus proving the correctness conjecture.

The predicates introduced in Section 2.1 are translated into the set of Singu-
lar procedures and they are collected within a Singular library origami.lib (see
Figure 12), which is then included in the main program (see Figure 13).

1 / / returns a vector of point coordinates

2 proc makePoint ( l i st x) {

3 return ( [x(1) , x(2) ]) ;

4 }

5

6 / / returns a vector of l i ne coef f i ci ent s

7 proc onL ine( l i st l ) {

8 return ( [ l (1) , l (2) , l (3) ]) ;

9 }

10

11 / / checks i f a point P l i es on a l i ne l

12 proc onL ine( vector P , vector l ) {

13 poly f = l [1]
�
P [1] + l [2]

�
P [2] + l [3];

14 return ( f ) ;

15 }

Fig. 12. Fragment of the library origami.lib.

1 LIB �origami . l i b � ;

2 r i ng r = real , ( ab ( 1. . 3) , a ( 1. . 2) , b ( 1. . 2) ) , Dp;

3

4 vector A = makePoint ( a ( 1. . 2) ) ;

5 vector B = makePoint (b ( 1. . 2) ) ;

6 vector AB = makeL ine( ab ( 1. . 3) ) ;

7

8 poly f1 = onL ine(A , AB) ; / / AB contains A

9 poly f2 = onL ine(B, AB) ; / / AB contains B

Fig. 13. Using Singular functions defined in library origami.lib.

4.1. Proof via the tangent of the angle
The first approach to proving correctness conjecture, via the trigonometry

transformations, requires proving the last two statements given by Equation (4).



76 D. Milojković, V. Marinković

Points G1, I1 and A1 were projected on edge AB, therefore projection points
Gp, Ip and Ap have the following coordinates Gp = (xG1 , 0), Ip = (xI1 , 0) and
Ap = (xA1 , 0). Line segments appearing in these equations are either horizontal
or vertical, therefore their lengths are: |AAp| = xA1 , |A1Ap| = yA1 , |AIp| = xI1 ,
|I1Ip| = yI1 , |AGp| = xG1 , |G1Gp| = yG1 . The tangent of an angle ∠A1AAp is de-
noted by variable t and defined as a ratio of the length of its opposite and adjacent
catheti in triangle 4A1AAp.

1 r i ng r = real , ( a1( 1. . 2) , i 1 ( 1. . 2) , g1( 1. . 2) , t ) , Dp;
2

3 poly f = a1[1]
�
t � a1 [2];

4 poly g1 = i1 [2]
�
t �2 + 2

�
i 1 [1]

�
t � i 1 [2];

5 poly g2 = g1[1]
�
t �3 � 3

�
g1[2]

�
t �2 � 3

�
g1[1]

�
t + g1 [2];

Fig. 14. Formulation of constraints over tangents in Singular.

In the third line of the Figure 14 a tangent of angle ∠A1AAp of the triangle
4A1AAp is defined. Polynomial f will be added to the set of premises of the
correctness conjecture. In the fourth and fifth line the conclusions of the conjecture
to be proved are defined.

4.2. Proof via the congruence of triangles
The second approach to proving correctness conjecture, via the congruence of

triangles, requires proving statements given by Equations (5) and (6). Recall that
these statements are obtained by applying postulate SAS on triangles 4G1AI1

and 4AA1I1 and postulate SSA on triangles 4AA1I1 and 4A1AAp.

1 LIB �origami . l i b � ;

2 r i ng r = real , ( dg1i1 , di1a1 , dai1 , g1a1( 1. . 3) , ai1 ( 1. . 3) ) , Dp;

3

4 proc SAS( def da1 , def da2 , vector m, vector n ,

5 def db1, def db2, i deal GRB){

6 poly g1 = reduce( da1 � da2 , GRB) ;

7 poly g2 = reduce( perp(m, n) , GRB) ;

8 poly g3 = reduce(db1 � db2, GRB) ;

9 return ( g1 == 0 && g2 == 0 && g3 == 0) ;

10 }

11 vector G1A1 = makeL ine( g1a1( 1. . 3) ) ;

12 vector A I1 = makeL ine( ai1 ( 1. . 3) ) ;

13 / / Groebner basi s (GRB) i s al ready cal cul ated

14 SAS( dg1i1 , di1a1 , AI1, G1I1 , dai1 , dai1 , GRB) ;

Fig. 15. Formulation of constraints corresponding to triangle congruence in Singular.

In Figure 15, an application of SAS postulate to triangles 4G1AI1 and
4AA1I1 is presented. Note that in this case side A1A as the joint side of these
triangles is trivially equal to itself. Function for checking if the two triangles are
congruent according to SSA postulate is implemented in a similar way.
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Developed library and complete proofs of correctness in Singular can be found
on: https://github.com/Dara123M/origamiSingular.

5. Conclusion and further work

In this paper we have illustrated the way origami constructions are performed,
with the example of angle trisection problem. Additionally, the correctness of
performed construction is proved using computer algebra tool Singular.

The angle trisection is chosen as an example problem as it is one of the famous
construction problems, but also easy to be solved using origami. Therefore we find
it a good choice for students to start learning constructions by origami. Other
construction problems can be solved and proved correct using this method in a
similar way.

We tried to approach this problem from educational perspective, but also
to keep high level of mathematical rigor. Namely, the correctness of solution to
construction problem is not guaranteed by construction and there is a need to
independently prove its correctness.

The simplicity of origami constructions is what gives it its charm. We be-
lieve that origami is worth considering as an alternative learning method, not only
for teaching math, but also to improve other skills, such as creativity, deduction,
thoroughness, etc. We hope that this paper will inspire other math teacher to try
origami constructions in class and make their classes a bit different than the one
we are used to.
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78 D. Milojković, V. Marinković
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