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MIXING PROBLEMS REPRESENTED BY QUASI-DIGRAPHS
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Abstract. A notable class of problems often employed in undergraduate courses on
differential equations is that of mixing problems: those involving a number of brine-filled
tanks equipped with a number of brine-transporting pipes. Closed mixing problems, which
feature neither filler nor drainer pipes, have been studied on a general level, where the
flow networks are represented by digraphs [A. Slav́ık, Mixing problems with many tanks,
American Mathematical Monthly, 120 (2013), 806–821]. In this paper, we extend the study
to open mixing problems, which may feature filler and/or drainer pipes, representing the flow
networks by a generalization of digraphs: quasi-digraphs. We formulate sufficient conditions
under which such a mixing problem can be modeled as a system of linear ordinary differential
equations whose coefficient matrix is the negative of the transpose of the Laplacian of the
associated quasi-digraph. Subsequently, we formulate the analogues for mixing problems
represented by weighted quasi-digraphs, and by cascade-type multilayer weighted quasi-
digraphs. At the end of this paper, we propose suggestions for instructors on how our
materials could be distilled to form a set of taught materials or a mini-project enriching an
undergraduate differential equations course.
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1. Introduction

Undergraduate courses on ordinary differential equations often involve the study
of modest continuous-time mathematical models of real-world problems. A notable
class of such problems is that which involves a number of brine-filled tanks, equipped
with a number of pipes which allow not only tank-to-tank flows but also the filling
and draining of some or all of the tanks. Typically, the task is to determine the
mass of salt in each tank as a function of time, and subsequently the long-time
limits of these masses.

Such problems, referred to as mixing problems, are featured in numerous text-
books on ordinary differential equations. For instance, the well-known book by
Boyce, et al. [5] introduces single-tank mixing problems within a section on linear
equations [5, Sec. 2.3] while employing multi-tank problems as several exercises in
sections on linear systems [5, Sec. 7.1, 7.5]. On the other hand, the book by Ed-
wards and Penney [7], which also introduces single-tank mixing problems within
a section on linear equations [7, Sec. 1.5], employ multi-tank problems more sub-
stantially: not only in exercises but also along the extensive discussions on linear
systems [7, Sec. 5.1, 5.2, 5.4, 5.8]. Finally, the book by Polking, et al. [9] introduces
single-tank mixing problems in a separate section [9, Sec. 2.5] and, as [7], employs a
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Fig. 1. A cascade of n tanks 1, . . . , n, as studied in [11, Sec. 6]

substantial variety of multi-tank problems in the discussions and exercises on linear
systems [9, Sec. 8.5, 9.2, 9.4–9.6, 9.9].

In 2013, Slav́ık [11], after compiling and solving a collection of multi-tank mixing
problems [11, Sec. 2–4], formulated a general multi-tank problem, in which the
existing tank-to-tank flows are specified in the form of a digraph [11, Sec. 5]. The
author proved that, under the three-fold assumptions of constant and equal brine
volumes in all tanks, constant and equal tank-to-tank flow rates, as well as a weakly
connected digraph of flows, the salt masses in all tanks converge to the same long-
term limit: the average of their initial values [11, Cor. 4]. Unfortunately, mixing
problems represented by digraphs are closed, meaning that they involve neither
the filling nor the draining of any of the tanks. Addressing this deficiency, Slav́ık
subsequently considered a prototypical open mixing problem [11, Sec. 6]: a cascade
of tanks (Fig. 1), and proved that, if the flow into the uppermost tank is that
of salt-free water, then the salt masses in all tanks converge to zero for all initial
values. Notice that the diagram in Fig. 1 is not precisely a digraph, since not every
edge in the diagram joins exactly two vertices.

The purpose of the present paper is to advance the study of open mixing prob-
lems. As noted above, such problems are represented by digraph-like diagrams
which allow an edge to be attached only to a single vertex. We shall refer to such
diagrams as quasi-digraphs.

Our discussion is organized as follows. In the upcoming Section 2, we begin by
recalling the standard definitions of a digraph and its Laplacian. We restate Slav́ık’s
sufficient conditions [11, p. 814] under which a mixing problem represented by a
digraph with Laplacian L is modelable by the linear system x′ = −L>x. In the
subsequent Section 3, we define a quasi-digraph, and define its Laplacian in such
a way that, under similar sufficient conditions, a mixing problem represented by a
quasi-digraph with Laplacian L is also modelable by the linear system x′ = −L>x.
In Section 4, we consider mixing problems represented by weighted quasi-digraphs,
again establishing sufficient conditions for the analogous modelability.

In Section 5, we consider mixing problems represented by a specific class of
weighted quasi-digraphs: cascade-type multilayer weighted quasi-digraphs. We
demonstrate that, under the stated sufficient conditions, the Laplacians of such
quasi-digraphs are near-triangular, the diagonal blocks being precisely the Lapla-
cians of the quasi-digraphs occupying the respective layers. In the final Section 6,
we suggest two different ways for incorporating materials on mixing problems —
including those discussed in [11] and in the present paper— into an undergraduate
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differential equations course, i.e., as a part of the course’s taught materials and as
a mini-project.

2. Mixing problems represented by digraphs

As announced in the previous section, we shall first revisit mixing problems
represented by digraphs—whose vertices represent tanks and edges represent tank-
to-tank flows—which have been studied in [11]. Let us begin by recalling the
standard definition of a digraph. Throughout this paper, we shall only deal with
finite digraphs.

Definition 1. [10, p. 103] A digraph on V = {1, . . . , n} is an ordered pair (V, E),
where E is a finite multiset of ordered pairs of elements of V. The elements of V
and of E , respectively, are referred to as the vertices (or nodes) and the edges (or
links) of the digraph.

For example, the ordered pair (V, E), where

(1) V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (4, 1)},
is a digraph, which can be drawn as the diagram in
Fig. 2: each vertex is drawn as a circle, and each
edge (i, j) as an arrow from i to j. Every vertex in
a digraph is characterized by two important quanti-
ties, referred to as the in-degree and out-degree of the
vertex, defined as follows.

Fig. 2. The digraph (V, E),
where V and E are given in (1)

Definition 2. [10, p. 103] Consider a digraph on V = {1, . . . , n}. Let i ∈ V.
The in-degree kin

i of i is the number of edges going into i, while the out-degree kout
i

of i is the number of edges going out from i.

Therefore, for the digraph (V, E) in Fig. 2, we have that kin
i = kout

i = 1 for every
i ∈ V.

Let us next recall three key matrices associated to a digraph, i.e., its out-degree
matrix, adjacency matrix, and Laplacian.

Definition 3. [6, p. xxix] Consider a digraph on V = {1, . . . , n}. The out-degree
matrix D of the digraph is the n× n diagonal matrix whose i-th diagonal entry is
kout

i . The adjacency matrix A of the digraph is the n×n matrix whose (i, j)-entry
is the number of edges from i to j. The Laplacian of the digraph is the n×n matrix
L := D−A.

Remark 1. The analogous definition of the in-degree matrix of a digraph is
omitted as it is not used in this paper.
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The out-degree and adjacency matrices of the digraph in Fig. 2 are thus

D =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 and A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ,

so that the digraph’s Laplacian is

(2) L = D−A =




1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1


 .

Let us now consider the mixing problem represented by the digraph in Fig. 2.
Once again, vertices represent tanks, and edges represent tank-to-tank flows. As in
[11, p. 814], we assume that all tanks maintain the same constant brine volume V ,
and that all tank-to-tank brine flows occur at the same constant rate f . Denoting
by xi(t) the mass of salt in tank i at time t > 0, for every i ∈ {1, 2, 3, 4}, one finds
that the problem is modeled by the linear system





x′1(t) =
f

V
x4(t)− f

V
x1(t),

x′2(t) =
f

V
x1(t)− f

V
x2(t),

x′3(t) =
f

V
x2(t)− f

V
x3(t),

x′4(t) =
f

V
x3(t)− f

V
x4(t).

Letting x(t) = (x1(t), x2(t), x3(t), x4(t))
>, one rewrites the system as

x′(t) =




x′1(t)
x′2(t)
x′3(t)
x′4(t)


 =



−f/V 0 0 f/V
f/V −f/V 0 0

0 f/V −f/V 0
0 0 f/V −f/V







x1(t)
x2(t)
x3(t)
x4(t)




= − f

V




1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1




>

x(t) = − f

V
L>x(t),

where L denote the previously computed Laplacian (2) of the digraph in Fig. 2.
The time-rescaling τ = (f/V )t transforms the model into

(3) x′(τ) = −L>x(τ),

which implies that the asymptotic behavior of the solutions of the above mixing
problem can be determined by examining the eigenvalues of the Laplacian L of the
associated digraph [9, Thm. 7.4]. Having this observation in mind, let us now turn
our attention to quasi-digraphs.
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3. Mixing problems represented by quasi-digraphs

As informally introduced, by a quasi-digraph we mean a structure resembling a
digraph, except that some of its edges may be attached only to a single vertex.
We shall refer to such anomalous edges as quasi-edges. By regarding the dangling
endpoints of all quasi-edges as coinciding on a single fictitious vertex, let us formally
define quasi-digraphs as follows.

Definition 4. A quasi-digraph on V = {1, . . . , n} is a digraph (V ∪ {0}, E).
Every edge containing the fictitious vertex 0 is called a quasi-edge of the quasi-
digraph.

Thus, Fig. 1 depicts a quasi-digraph on {1, . . . , n}, with multiset of edges

{(0, 1), (1, 2), (2, 3), . . . , (n− 1, n), (n, 0)},
where (0, 1) and (n, 0) are quasi-edges.

Our next goal is to define the in-degree and out-degree of a vertex in a quasi-
digraph, and subsequently the out-degree matrix, adjacency matrix, and Laplacian
of a quasi-digraph. We shall achieve this in such a way that mixing problems
represented by a quasi-digraph, in which all tanks maintain the same constant
volume and all flows occur at the same constant rate, is also modelable by the
system (3). First, we define the in-degree and out-degree of a vertex in a quasi-
digraph as follows.

Definition 5. Consider a quasi-digraph on V = {1, . . . , n}. Let i ∈ V. The
in-degree kin

i of i is the number of edges (including quasi-edges) going into i, while
the out-degree kout

i of i is the number of edges (including quasi-edges) going out
from i.

Fig. 3. The quasi-digraph in Fig. 1 in the special case n = 4

We could further define the out-degree matrix of the same quasi-digraph as the
n × n diagonal matrix whose i-th diagonal entry is kout

i . However, we shall state
this formally later, for the sake of organization. Meanwhile, let us seek for suitable
definitions of the adjacency matrix and the Laplacian of a quasi-digraph. For this
purpose, consider the mixing problem represented by the quasi-digraph in Fig. 1 in
the special case n = 4 (Fig. 3). In this case, the out-degree matrix is

D =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

As before, let us assume a constant brine volume V in each tank and a constant
brine flow rate f along each edge. Additionally, let us assume that the ingoing quasi-
edge (0, 1) represents the flow of salt-free water. Then, the problem is modeled by
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the linear system 



x′1(t) = − f

V
x1(t),

x′2(t) =
f

V
x1(t)− f

V
x2(t),

x′3(t) =
f

V
x2(t)− f

V
x3(t),

x′4(t) =
f

V
x3(t)− f

V
x4(t),

where, as before, xi(t) denotes the mass of salt in tank i at time t > 0, for every i ∈
{1, 2, 3, 4}. Letting x(t) = (x1(t), x2(t), x3(t), x4(t))

>, we can rewrite the system
as

x′(t) =




x′1(t)
x′2(t)
x′3(t)
x′4(t)


 =



−f/V 0 0 0
f/V −f/V 0 0

0 f/V −f/V 0
0 0 f/V −f/V







x1(t)
x2(t)
x3(t)
x4(t)




= − f

V




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1




>

x(t) = − f

V
L>x(t),

where

L =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


 = D−




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

Here we observe that 


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




is the adjacency matrix of the digraph in Fig. 4, which can be obtained from
the quasi-digraph in Fig. 3 by merely deleting all quasi-edges. This motivates the
following definition.

Fig. 4. The digraph obtained from the quasi-digraph in Fig. 3 by deleting all quasi-edges

Definition 6. Consider a quasi-digraph on V = {1, . . . , n}. The out-degree
matrix D of the quasi-digraph is the n × n diagonal matrix whose i-th diagonal
entry is kout

i . The adjacency matrix A of the quasi-digraph is the n× n adjacency
matrix of the digraph obtained by deleting all quasi-edges. The Laplacian of the
quasi-digraph is the n× n matrix L := D−A.

Noticing that linear systems of the form x′(t) = −(f/V )L>x(t) can be trans-
formed into x′(τ) = −L>x(τ) via the time-rescaling τ = (f/V )t, that all solutions
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of the latter system converge to its trivial fixed point if all eigenvalues of −L> have
negative real parts [9, Thm. 7.4], and that the eigenvalues of −L> are the negatives
of the eigenvalues of L, we obtain the following theorem.

Theorem 1. Suppose that a mixing problem is represented by a quasi-digraph
with Laplacian L, and satisfies the following assumptions.
• All tanks maintain the same constant brine volume.
• Brine flows along all edges occur at the same constant rate.
• All ingoing quasi-edges represent the flow of salt-free water.
Then the problem is modeled by the system x′(τ) = −L>x(τ). Consequently, if all
eigenvalues of L have positive real parts, then all solutions of the mixing problem
converge to the state where all tanks are salt-free.

Remark 2. Notice that the first two assumptions in Theorem 1 necessarily
imply that every vertex in the quasi-digraph has equal in-degree and out-degree. In
addition, notice that Theorem 1 covers all mixing problems represented by digraphs,
since every digraph is a quasi-digraph having no quasi-edges.

Remark 3. For a mixing problem represented by a quasi-digraph on {1, . . . , n}
with quasi-edges (0, 1), . . . , (0, n) representing the flow of brine with non-negative
constant salt concentrations c1, . . . , cn, under the assumptions of a constant brine
volume V in each tank and a constant brine flow rate along each edge, we have the
system

x′(τ) = −L>x(τ) + V c,

where L denotes the Laplacian of the quasi-digraph, and c = (c1, . . . , cn)>.
Let us next study as an example a specific mixing problem represented by a

quasi-digraph. To determine the asymptotic behavior of its solutions, we shall use
the following theorem by Gershgorin.

Theorem 2. [8, p. 420] Let L be an n× n matrix with (i, j)-entry li,j ∈ C. For
every i ∈ {1, . . . , n}, let

D (li,i, ri) := {z ∈ C : |z − li,i| 6 ri}
be the closed disk centered at li,i with radius

ri :=
n∑

j=1
j 6=i

|li,j | ,

i.e., the sum of the absolute values of the i-th row off-diagonal entries of L. Then
all eigenvalues of L belong to the set D (l1,1, r1) ∪ · · · ∪D (ln,n, rn).

Example 1. Consider the n-vertex version of the digraph in Fig. 2, and attach
to each vertex in it an ingoing quasi-edge and an outgoing quasi-edge. The result
is the quasi-digraph in Fig. 5. Consider the mixing problem represented by this
quasi-digraph which satisfies the three assumptions in Theorem 1.
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Fig. 5. An n-vertex quasi-digraph, obtained from the n-vertex version of the digraph

in Fig. 2 by attaching to each vertex an ingoing quasi-edge and an outgoing quasi-edge.

The out-degree and adjacency matrices of the quasi-digraph are the n×n matrices

D =




2 0 0 0 · · · 0 0
0 2 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 0
0 0 0 0 · · · 0 2




and A =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0




,

so that its Laplacian is the n× n matrix

L = D−A =




2 −1 0 0 · · · 0 0
0 2 −1 0 · · · 0 0
0 0 2 −1 · · · 0 0
0 0 0 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
−1 0 0 0 · · · 0 2




.

The sum of the absolute values of the i-th row off-diagonal entries of L is ri =
|−1| = 1. By Gershgorin’s theorem, it follows that all eigenvalues of L belong to
the set

D(2, 1) ∪ · · · ∪D(2, 1)︸ ︷︷ ︸
n

= D(2, 1),

which implies that all of these eigenvalues have positive real parts. Therefore, all
solutions of the problem converge to the state where all tanks are salt-free. 4

Our examples thus far employ simple digraphs, which feature neither multi-edges
(two or more edges joining the same ordered pair of vertices) nor loops (edges from
a vertex to itself). Clearly, the addition of loops into a digraph representing a
mixing problem leads to no change in the associated system. Let us conclude this
section with an example involving multi-edges.
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Fig. 6. A quasi-digraph featuring multi-edges

Example 2. Consider the mixing problem represented by the quasi-digraph in
Fig. 6. Suppose that the problem satisfies the three assumptions in Theorem 1.
The out-degree and adjacency matrices of the quasi-digraph are

D =




3 0 0
0 6 0
0 0 4


 and A =




0 2 0
0 0 3
0 0 0


 ,

so that its Laplacian is

L = D−A =




3 −2 0
0 6 −3
0 0 4


 .

The eigenvalues of L are 3, 6, and 4, all of which have positive real parts. Thus,
all solutions converge to the state where all tanks are salt-free. 4

4. Mixing problems represented by weighted quasi-digraphs

Notice that the quasi-digraph in Fig. 6 can be represented as a weighted quasi-
digraph in Fig. 7, in which the weight of an edge from vertex i to vertex j is
specified to be the number of multi-edges from vertex i to vertex j in the original
quasi-digraph. On the general level, let us define a weighted quasi-digraph as
follows.

Fig. 7. A weighted quasi-digraph representing the quasi-digraph in Fig. 6

Definition 7. A weighted quasi-digraph is a quasi-digraph equipped with a
weight function, i.e., a positive-valued function over its multiset of edges.

Thus, the weighted quasi-digraph in Fig. 7 is the quasi-digraph on V = {1, 2, 3}
with multiset of edges

E = {(1, 2), (2, 3), (0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0)},
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equipped with the weight function w : E → (0,∞) given by w(1, 0) = w(0, 3) = 1,
w(1, 2) = 2, w(2, 3) = w(0, 1) = w(2, 0) = 3, and w(0, 2) = w(3, 0) = 4. Next, the
in-degree and out-degree of a vertex in a weighted quasi-digraph can be defined as
follows.

Definition 8. Consider a weighted quasi-digraph on V = {1, . . . , n}. Let i ∈ V.
The in-degree kin

i of i is the total weight of all edges (including quasi-edges) going
into i, while the out-degree kout

i of i is the total weight of all edges (including
quasi-edges) going out from i.

For the weighted quasi-digraph in Fig. 7, we have that

kin
1 = 3, kin

2 = 2 + 4 = 6, kin
3 = 3 + 1 = 4,

and that
kout
1 = 1 + 2 = 3, kout

2 = 3 + 3 = 6, kout
3 = 4.

Notice that we have kin
i = kout

i for every i ∈ {1, 2, 3}, since the weighted quasi-
digraph in Fig. 7 represents the quasi-digraph in Fig. 6, which also satisfies kin

i =
kout

i for every i ∈ {1, 2, 3}, as stated in Remark 2. The definitions of the out-degree
matrix, adjacency matrix, and Laplacian of weighted quasi-digraphs are derived
immediately from those of unweighted quasi-digraphs (cf. [6, p. xxix]).

Definition 9. Consider a weighted quasi-digraph on V = {1, . . . , n}. The out-
degree matrix D of the weighted quasi-digraph is the n× n diagonal matrix whose
i-th diagonal entry is kout

i . The adjacency matrix A of the weighted quasi-digraph
is the n× n matrix whose (i, j)-entry is the total weight of all edges from i to j in
the weighted digraph obtained by deleting all existing quasi-edges. The Laplacian
of the weighted quasi-digraph is the n× n matrix L := D−A.

From the above definition of the Laplacian of a weighted quasi-digraph, it follows
that we have the following analogue of Theorem 1 for mixing problems represented
by weighted quasi-digraphs, in which the brine flow along each edge occurs at a
rate which is proportional to the edge’s weight.

Theorem 3. Suppose that a mixing problem is represented by a weighted quasi-
digraph with Laplacian L, and satisfies the following assumptions.
• All tanks maintain the same constant brine volume.
• Brine flows along all edges occur at rates proportional to the weights of the re-

spective edges.
• All ingoing quasi-edges represent the flow of salt-free water.
Then the problem is modeled by the system x′(τ) = −L>x(τ). Consequently, if all
eigenvalues of L have positive real parts, then all solutions of the mixing problem
converge to the state where all tanks are salt-free.

Remark 4. As in the case of unweighted quasi-digraphs (Theorem 1), the first
two assumptions in Theorem 3 necessarily imply that every vertex in the weighted
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quasi-digraph has equal in-degree and out-degree. In addition, notice that the above
theorem also covers mixing problems represented by unweighted quasi-digraphs,
since every unweighted quasi-digraph is a weighted quasi-digraph with unit-weight
edges.

5. Mixing problems represented by cascade-type multilayer
weighted quasi-digraphs

By specifying a partition {L1, . . . ,Lm} of its vertex set V—a set of pairwise-
disjoint non-empty subsets of V whose union is V—every digraph can be viewed
as a multilayer digraph [3, Sec. 5.2], where, for every i ∈ {1, . . . ,m}, the i-th layer
is occupied by the digraph having vertex set Li and edge set containing all edges
joining vertices which are both in Li. Such edges are intralayer edges, meaning
that they join vertices belonging to the same layer. By contrast, the other edges
are interlayer edges, meaning that they
join vertices belonging to two different
layers.

Similarly, by specifying a partition of
its vertex set, every quasi-digraph can
be viewed as a multilayer quasi-di-
graph, and its non-quasi-edges can be
classified as intralayer and interlayer
edges. For instance, the partition {L1,
. . . , Ln} of {1, . . . , n}, where Li = {i}
for every i ∈ {1, . . . , n}, makes Slav́ık’s
quasi-digraph in Fig. 1 an n-layer quasi-
digraph, where every layer is occupied
by a single-vertex quasi-digraph and ev-
ery non-quasi-edge is an interlayer edge
since it emanates from a vertex in Li

and terminates at a vertex in Lj where
i 6= j (Fig. 8). In fact, this n-layer
quasi-digraph possesses a special prop-
erty that every interlayer edge emanates
from a vertex in Li and terminates at a
vertex in Lj where i < j, and it is pre-
cisely this property that makes it fitting
for the tank configuration to be referred
to as a cascade [11, Sec. 6]. Accordingly,
let us define the following.

Fig. 8. The quasi-digraph in Fig. 1,
viewed as a multilayer quasi-digraph

Definition 10. Let D be a (weighted) quasi-digraph on a vertex set V.

• By specifying a partition {L1, . . . ,Lm} of V, whose elements are to be called the
layers of D, one makes D an m-layer (weighted) quasi-digraph, and classifies each
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non-quasi-edge as either an intralayer edge, which joins two vertices from the
same layer, or an interlayer edge, which joins two vertices from different layers.

• By the (weighted) quasi-digraph occupying layer Li we mean the (weighted) quasi-
digraph with vertex set Li obtained by including all (weighted) edges in D whose
components both belong to Li as its non-quasi-edges and all (weighted) edges in
D with exactly one component belonging to Li as its quasi-edges.

• If every interlayer edge in D emanates from a vertex in Li and terminates at
a vertex in Lj where i < j, then D is called a cascade-type m-layer (weighted)
quasi-digraph.

For example, the weighted quasi-digraph in Fig. 9 is a cascade-type three-layer
weighted quasi-digraph with vertex-set partition {L1,L2,L3}, where

L1 = {1}, L2 = {2, 3}, and L3 = {4, 5, 6}.
The out-degree and adjacency matrices, by Definition 9, are

where

D1 = ( 4 ) , D2 =
(

2 0
0 2

)
, and D3 =




3 0 0
0 6 0
0 0 3




are the out-degree matrices of the quasi-digraphs occupying layers 1, 2, and 3, and

where

A1 = ( 0 ) , A2 =
(

0 1
1 0

)
, and A3 =




0 2 0
2 0 2
0 2 0




are the adjacency matrices of the quasi-digraphs occupying layers 1, 2, and 3. The
Laplacian of the weighted quasi-digraph is thus
(4)
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where

(5) L1 = ( 4 ) , L2 =
(

2 −1
−1 2

)
, and L3 =




3 −2 0
−2 6 −2
0 −2 3




are the Laplacians of the quasi-digraphs occupying layers 1, 2, and 3. Let us refer
to matrices of the form (4) as being near-upper-triangular.

Definition 11. A matrix L ∈ Rn×n is near-upper-triangular if there are matrices
L′i,j and square matrices Li such that

(6)
Next, since for square matrices A and C we have

(see, e.g., [1, p. 111]), the near-upper-triangular matrix (6) possesses the convenient
property that

det (λI− L) = det (λI− L1) det (λI− L2) · · · det (λI− Lm) ,

which implies that the multiset σ(L) of all eigenvalues of L is precisely the union
of the multisets σ (L1), . . . , σ (Lm) of all eigenvalues of L1, . . . , Lm [12, p. 105]:

σ(L) = σ (L1) ] · · · ] σ (Lm) ,

where the additive union operator ] takes the sum—as opposed to the maximum—
of the multiplicities of common elements [4, p. 50]. In summary, we have the
following theorem.

Theorem 4. Suppose that a mixing problem is represented by a cascade-
type weighted m-layer quasi-digraph with Laplacian L, and satisfies the following
assumptions.
• All tanks maintain the same constant brine volume.
• Brine flows along all edges occur at rates proportional to the weights of the re-

spective edges.
• All ingoing quasi-edges represent the flow of salt-free water.
Then the problem is modeled by the system x′(τ) = −L>x(τ), where L is the n×n
near-upper-triangular matrix whose i-th diagonal block is the Laplacian Li of the
quasi-digraph occupying layer i. Consequently, if all eigenvalues of L1, . . . , Lm

have positive real parts, then all solutions of the mixing problem converge to the
state where all tanks are salt-free.
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The eigenvalues of the Laplacians in (5) are given by
σ (L1) = {4}, σ (L2) = {1, 3}, and σ (L3) = {1, 2, 4}.

Since these eigenvalues all have positive real parts, all solutions of the mixing
problem represented by the quasi-digraph in Fig. 9 satisfying the three assumptions
of Theorem 4 converge to the state where all tanks are salt-free.

Fig. 9. A cascade-type three-layer weighted quasi-digraph

Example 3. Let m ∈ N. Consider a cascade-type m-layer quasi-digraph Dm

corresponding to the partition {L1, . . . ,Lm} of its vertex set V =
⋃m

i=1

⋃i
j=1{(i, j)},

where
Li = {(i, j) : j ∈ {1, . . . , i}}

for every i ∈ {1, . . . ,m}. Suppose that in Dm,
• there is only one ingoing quasi-edge attached to the one vertex in L1, and m

outgoing quasi-edges attached to the m vertices in Lm;
• for every i ∈ {1, . . . ,m− 1}, every vertex in Li is joined with an interlayer edge

to every vertex in Li+1;
• for every i ∈ {1, . . . ,m}, every ordered pair of distinct vertices in Li is joined

with an intralayer edge.
Thus, Dm has

(1 + m) +
m−1∑

i=1

i(i + 1) +
m∑

i=1

i(i− 1) =
1
3
(m + 1)

(
2m2 − 2m + 3

)

edges. The quasi-digraph D3 is depicted in Fig. 10.



Mixing problems represented by quasi-digraphs 93

Fig. 10. The quasi-digraph D3 discussed in Example 3

Let us next assign weights to the edges of Dm as follows. First, for every j ∈
{1, . . . ,m}, let the weight of the outgoing quasi-edge attached to the vertex (m, j)
be pj . Next, for every i ∈ {1, . . . ,m − 1}, j ∈ {1, . . . , i}, and k ∈ {1, . . . , i + 1},
let the weight of the interlayer edge ((i, j), (i + 1, k)) be qi,k. Finally, for every
i ∈ {1, . . . , m} and j, k ∈ {1, . . . , i} with j 6= k, let the weight of the intralayer
edge ((i, j), (i, k)) be r.

Consider the mixing problem represented by Dm satisfying the three assumptions
in Theorem 3. Let us show the positivity of the real parts of the eigenvalues of the
Laplacian Li of the quasi-graph occupying Li, for every i ∈ {1, . . . , m}.
• The degree and adjacency matrices of the quasi-graph occupying L1 are the 1×1

matrices
D1 =

( ∑2
j=1 q1,j

)
and A1 = ( 0 ) ,

so that its Laplacian is the 1× 1 matrix

L1 = D1 −A1 =
( ∑2

j=1 q1,j

)
,

whose only eigenvalue is its only entry, whose real part is positive.
• For every i ∈ {2, . . . ,m − 1}, the out-degree and adjacency matrices of the

quasi-graph occupying Li are the i× i matrices

Di =




∑i+1
j=1 q1,j + (i− 1)r 0 · · · 0

0
∑i+1

j=1 q2,j + (i− 1)r · · · 0
...

...
. . .

...
0 0 · · · ∑i+1

j=1 qi,j + (i− 1)r



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and

Ai =




0 r · · · r
r 0 · · · r
...

...
. . .

...
r r · · · 0


 ,

so that its Laplacian is the i× i matrix

Li = Di −Ai

=




∑i+1
j=1 q1,j + (i− 1)r −r · · · −r

−r
∑i+1

j=1 q2,j + (i− 1)r · · · −r
...

...
. . .

...
−r −r · · · ∑i+1

j=1 qi,j + (i− 1)r




.

For this matrix Li, the sum of the absolute values of the k-th row off-diagonal
entries is

rk = |−r|+ · · ·+ |−r|︸ ︷︷ ︸
i−1

= (i− 1)r.

By Gershgorin’s theorem, it follows that all eigenvalues of Li belong to the set
i⋃

k=1

D
(i+1∑

j=1

qk,j + (i− 1)r, (i− 1)r
)

,

which readily implies that all of these eigenvalues have positive real parts.
• The degree and adjacency matrices of the quasi-graph occupying Lm are the

m×m matrices

Dm =




p1 + (m− 1)r 0 · · · 0
0 p2 + (m− 1)r · · · 0
...

...
. . .

...
0 0 · · · pm + (m− 1)r




and

Am =




0 r · · · r
r 0 · · · r
...

...
. . .

...
r r · · · 0


 ,

so that its Laplacian is the m×m matrix

Lm = Dm −Am =




p1 + (m− 1)r −r · · · −r
−r p2 + (m− 1)r · · · −r
...

...
. . .

...
−r −r · · · pm + (m− 1)r


 .

For this matrix Lm, the sum of the absolute values of the k-th row off-diagonal
entries is

rk = |−r|+ · · ·+ |−r|︸ ︷︷ ︸
m−1

= (m− 1)r.
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By Gershgorin’s theorem, it follows that all eigenvalues of Lm belong to the set
m⋃

k=1

D(pk + (m− 1)r, (m− 1)r) ,

which readily implies that all of these eigenvalues have positive real parts.

By Theorem 4, it follows that all solutions of the mixing problem converge to
the state where all tanks are salt-free. 4

6. Suggestions for instructors

Let us conclude this paper by providing instructors with suggestions on how
mixing problems could be conveniently inserted as classroom materials, with the
aim of not only introducing such problems as already customary but also to allow
some extensive analysis inspired by those conducted both in [11] and in the present
paper. To this end, let us suggest two approaches for delivering mixing problems
in an undergraduate course on ordinary differential equations: as a part of taught
materials and as a mini-project. In both approaches, for convenience, we assume
that the students have no prior knowledge on mixing problems.

6.1. Mixing problems as a part of taught materials

First let us discuss how mixing problems could be delivered as a part of taught
materials. For this purpose, we assume the availability of a 150-minute teaching
duration, ideally organized into two sessions, one of 50 and the other of 100 minutes.

To ensure the sufficiency of students’ theoretical background, the first, shorter
session should be scheduled only after the materials on linear differential equations
have been delivered. Since we treat students as having no previous familiarity with
mixing problems, this session should begin with a gentle exposition of a standard
starter: a single-tank mixing problem with a filler pipe and a drainer pipe, where
the brine volume in the tank is kept constant. We thus recommend the following
problem.

Problem 1. Consider a tank, call it Tank 1, which initially holds 10 liters of
brine containing 20 grams of salt. Suppose that pure water flows into Tank 1 at
the rate of 5 liters per minute and the well-mixed brine in Tank 1 flows out at the
same rate. See Fig. 11.

(a) Construct a mathematical model governing the evolution of the mass x1(t) of
salt remaining in Tank 1 at time t > 0.

(b) Solve the model to obtain an expression for x1(t) in terms of t, and justify
mathematically that x1(t)

t→∞−→ 0.

Certainly, the desired mathematical model is the initial value problem

(7) x′1(t) = −1
2
x1(t), x1(0) = 20,

whose solution is given by x1(t) = 20 e−t/2 t→∞−→ 0.
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Fig. 11. The tank configuration in Problem 1 Fig. 12. The tank configuration in Problem 2

The use of the name Tank 1 for the sole tank involved in the above problem,
and of the notation x1(t) as opposed to merely x(t), are intended to set the scene
for the subsequent part of the discussion, namely, the following two-tank problem,
posed as a natural extension of the above problem. 4

Problem 2. Consider two tanks: Tank 1 and Tank 2. As before, Tank 1 initially
holds 10 liters of brine containing 20 grams of salt, and pure water flows into Tank
1 at the rate of 5 liters per minute. Tank 2 initially holds 10 liters of pure water,
the well-mixed brine in Tank 1 flows into Tank 2 at the rate of 5 liters per minute,
and the well-mixed brine in Tank 2 flows out at the same rate. See Fig. 12.

(a) Construct a mathematical model governing the evolution of the masses x1(t)
and x2(t) of salt remaining in Tank 1 and Tank 2 at time t > 0.

(b) Solve the model to obtain expressions for x1(t) and x2(t) in terms of t, and
justify mathematically that x1(t), x2(t)

t→∞−→ 0.

The students should be led to see that the required mathematical model comprises
a set of two initial value problems, one of them being precisely (7), the other being

(8) x′2(t) =
1
2
x1(t)− 1

2
x2(t), x2(0) = 0.

Here, in the absence of a prior introduction to systems of differential equations,
there is an opportunity to mention that the two equations in (7) and (8) constitute
such a system, and hence to announce that some forthcoming chapters will be
dedicated to the discussion of such systems. Meanwhile, substituting the solution
x1(t) = 20 e−t/2 of (7) into (8) yields the initial value problem

x′2(t) +
1
2
x2(t) = 10e−t/2, x2(0) = 0,

whose solution can be obtained using the standard method of integrating factor:

x2(t) = 10t e−t/2 t→∞−→ 0,

where we have applied L’Hôpital’s rule.
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Fig. 13. The tank configuration to be addressed following Problem 2

The final part of the discussion should address, possibly only briefly, the three-
tank case (Fig. 13), which adds to (7) and (8) the initial value problem

x′3(t) =
1
2
x2(t)− 1

2
x3(t), x3(0) = 0,

whose solution, obtainable as above, is given by x3(t) = 5
2 t2e−t/2 t→∞−→ 0, and

subsequently the general n-tank case (cf. [7, p. 55]), governed by the n equations

x′1(t) = −1
2
x1(t) and x′i+1(t) +

1
2
xi+1(t) =

1
2
xi(t) for every i ∈ {1, . . . , n− 1},

and the initial conditions

x1(0) = 20, x2(0) = 0, . . . , xn(0) = 0.

It can be shown that the solution in the latter case is given by

xi(t) =
20ti−1e−t/2

(i− 1)! 2i−1

t→∞−→ 0 for every i ∈ {1, . . . , n},

the proof of which could either be omitted or announced as a challenging math-
ematical induction homework for interested students. Nevertheless, at this point
students should be informed that this n-tank problem will be revisited in the sec-
ond session, after they are equipped with a theorem which could be applied to
guarantee that xi(t)

t→∞−→ 0 without deriving an expression of xi(t) in terms of t. 4
Let us now discuss materials to be delivered in the second session. As these

materials rely on systems of differential equations, it is advisable to schedule the
session only after those which discuss systems of differential equations.

We suggest beginning the session by illustrating the constructions of systems
of differential equations which model several modest multi-tank problems. The
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following closed two-tank and three-tank problems, inspired by [9, pp. 358–359]
and [7, pp. 335], could serve as starters.

Problem 3. Consider two tanks: Tank 1 and Tank 2, each containing 10 liters
of brine, equipped with two brine-transporting pipes: a pipe from Tank 1 to Tank 2
and a pipe from Tank 2 to Tank 1, through each of which well-mixed brine flows at
the rate of 5 liters per minute (Fig. 14). Construct a system of differential equations
governing the evolution of the masses x1(t) and x2(t) of salt remaining in Tank 1
and Tank 2 at time t > 0.

Fig. 14. The tank configuration in Problem 3

Problem 4. Consider three tanks: Tank 1, Tank 2, and Tank 3, each containing
10 liters of brine, equipped with three brine-transporting pipes: a pipe from Tank
1 to Tank 2, a pipe from Tank 2 to Tank 3, and a pipe from Tank 3 to Tank 1,
through each of which well-mixed brine flows at the rate of 5 liters per minute
(Fig. 15). Construct a system of differential equations governing the evolution of
the masses x1(t), x2(t), x3(t) of salt remaining in Tank 1, Tank 2, and Tank 3 at
time t > 0.

Fig. 15. The tank configuration in Problem 4

The discussion should aim to demonstrate that the above two problems are mod-
eled by the systems of differential equations

(9)
(

x′1(t)
x′2(t)

)
=

(−1/2 1/2
1/2 −1/2

)(
x1(t)
x2(t)

)

and

(10)




x′1(t)
x′2(t)
x′3(t)


 =



−1/2 0 1/2
1/2 −1/2 0
0 1/2 −1/2







x1(t)
x2(t)
x3(t)


 ,

respectively. A brief introduction to digraphs can then follow, covering at least
Definitions 1, 2, and 3 in the present paper, before leading students to see that
the systems (9) and (10), being represented by the digraphs in Fig. 16 and Fig. 17,
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Fig. 16. The digraph representing Fig. 17. The digraph representing

the system (9) of Problem 3 the system (10) of Problem 4

can be rewritten in the form x′(t) = −(1/2)L>x(t), and subsequently in the time-
rescaled form x′(τ) = −L>x(τ), where L denotes the corresponding digraph’s
Laplacian, as demonstrated in the final paragraph of Section 2. 4

Next, we recommend continuing the model-constructing discussions, to cover
cases involving filler and drainer pipes. For this purpose, one could merely modify
Problems 3 and 4 by adding a filler pipe and a drainer pipe to each of the existing
tanks.

Problem 5. Modify Problem 3 by adding
to each tank a filler pipe through which pure
water flows in at the rate of 5 liters per minute,
and a drainer pipe through which well-mixed
brine flows out at the same rate (Fig. 18).
Construct a system of differential equations
governing the evolution of the masses x1(t)
and x2(t) of salt remaining in Tank 1 and Tank
2 at time t > 0.

Fig. 18. The tank configuration in Problem 5

Problem 6. Modify Problem 4 by adding to each tank a filler pipe through
which pure water flows in at the rate of 5 liters per minute, and a drainer pipe
through which well-mixed brine flows out at the same rate (Fig. 19). Construct a
system of differential equations governing the evolution of the masses x1(t), x2(t),
x3(t) of salt remaining in Tank 1, Tank 2, and Tank 3 at time t > 0.

Fig. 19. The tank configuration in Problem 6

Once the students understand that the modification transforms the systems (9)
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and (10) to

(11)
(

x′1(t)
x′2(t)

)
=

( −1 1/2
1/2 −1

)(
x1(t)
x2(t)

)

and

(12)




x′1(t)
x′2(t)
x′3(t)


 =



−1 0 1/2
1/2 −1 0
0 1/2 −1







x1(t)
x2(t)
x3(t)


 ,

they are ready for a brief introduction to quasi-digraphs. Paralleling the case of
digraphs, the discussion should cover at least Definitions 4, 5, and 6, and should
lead students to see that the systems (11) and (12), being represented by the quasi-
digraphs in Fig. 20 and Fig. 21, can be rewritten in the analogous form involving the
corresponding quasi-digraph’s Laplacian. Finally, Gershgorin’s theorem could be
stated without a proof, and applied to the systems (11) and (12), demonstrating its
powerfulness in ensuring the solutions’ convergence to the trivial fixed point without
the need of solving the systems analytically or even calculating the eigenvalues of
their coefficient matrices. 4

Fig. 20. The quasi-digraph representing Fig. 21. The quasi-digraph representing

the system (11) of Problem 5 the system (12) of Problem 6

To conclude the second session, we recommend revisiting, as previously promised,
the n-tank mixing problem considered at the end of the first session, computing the
associated quasi-digraph’s Laplacian and applying Gershgorin’s theorem to estab-
lish the solution’s convergence to the trivial fixed point. If time constraints arise,
this task could instead be assigned as a homework, along with, e.g., our Example 1.

6.2. Mixing problems as a mini-project

In the case of a limited teaching duration, instruc-
tors could consider incorporating mixing problems on-
ly as a group or individual mini-project. Let us pre-
sent our design of a mini-project on mixing problems,
to be assigned only after the completion of discussions
on systems of differential equations.

Miniproject

1. Consider a tank which initially holds V liters of
brine containing X grams of salt.

Fig. 22. The tank configuration
in our mini-project’s first problem
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Suppose that pure water flows into the tank at the rate of f liters per minute,
and that the well-mixed brine in the tank flows out at the same rate. See Fig. 22.
Let x(t) be the mass of salt remaining in the tank at time t > 0.

(a) Derive the initial value problem

x′(t) = − f

V
x(t), x(0) = X.

(b) Show that x(t) = Xe−(f/V )t, and compute limt→∞ x1(t).
2. Consider three tanks: Tank 1, Tank 2, and Tank 3. Tank 1 initially holds V

liters of brine containing X grams of salt, and pure water flows into Tank 1 at
the rate of f liters per minute. Tank 2 initially holds V liters of pure water,
and the well-mixed brine in Tank 1 flows into Tank 2 at the rate of f liters per
minute. Tank 3 initially holds V liters of pure water, the well-mixed brine in
Tank 2 flows into Tank 3 at the rate of f liters per minute, and the well-mixed
brine in Tank 3 flows out at the same rate. See Fig. 13. For every i ∈ {1, 2, 3},
let xi(t) be the mass of salt remaining in Tank i at time t > 0.

(a) Derive the system of differential equations




x′1(t) = − f

V
x1(t),

x′2(t) =
f

V
x1(t)− f

V
x2(t),

x′3(t) =
f

V
x2(t)− f

V
x3(t).

(b) By the first question of this mini-project, the solution of the system’s first
equation satisfying the initial condition x1(0) = X is given by

x1(t) = Xe−(f/V )t.

Substitute this into the system’s second equation, and show that the solution
of the resulting equation satisfying the initial condition x2(0) = 0 is given by

x2(t) =
f

V
Xt e−(f/V )t.

Then, substitute this into the system’s third equation, and show that the
solution of the resulting equation satisfying the initial condition x3(0) = 0 is
given by

x3(t) =
f2

2V 2
Xt2e−(f/V )t.

Finally, compute limt→∞ xi(t) for every i ∈ {1, 2, 3}.
(c) Letting x(t) = (x1(t), x2(t), x3(t))

>, determine the 3 × 3 matrix M for which
the above system can be written as

x′(t) = Mx(t).

(d) Define the 3 × 3 matrix L whose (i, j)-entry is the negative of the number of
pipes transporting brine from tank i to tank j if i 6= j, and the number of
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pipes transporting brine out of tank i = j otherwise. Write down the matrix
L, and show that

M = − f

V
L>.

(e) Show that the time-rescaling τ = (f/V )t transforms the system in (c) into

x′(τ) = −L>x(τ).

According to a theorem by Gershgorin, all eigenvalues of an n × n complex
matrix L = (li,j) belong to the set

D (l1,1, r1) ∪ · · · ∪D(ln,n, rn) ,

where, for every i ∈ {1, . . . , n},
D (li,i, ri) := {z ∈ C : |z − li,i| 6 ri}

denotes the closed disk centred at li,i with radius ri :=
n∑

j=1
j 6=i

|li,j |.

(f) Use Gershgorin’s theorem to specify a subset of C containing all eigenvalues
of the matrix L written down in part (d).

(g) What does your answer of part (f) imply with regards to the value of
limτ→∞ xi(τ) for every i ∈ {1, 2, 3}? Does this agree with your answer of
part (b)?

3. Consider three tanks: Tank 1, Tank 2, and Tank 3, each containing V liters of
brine, equipped with three brine-transporting pipes: a pipe from Tank 1 to Tank
2, a pipe from Tank 2 to Tank 3, and a pipe from Tank 3 to Tank 1, through each
of which well-mixed brine flows at the rate of f liters per minute. In addition,
attached to each tank is a filler pipe through which pure water flows in at the
rate of f liters per minute, and a drainer pipe through which well-mixed brine
flows out at the same rate. See Fig. 19. For every i ∈ {1, 2, 3}, let xi(t) be the
mass of salt remaining in Tank i at time t > 0.

(a) Letting x(t) = (x1(t), x2(t), x3(t))
>, derive a system of differential equations

x′(t) = Mx(t).

for some 3× 3 matrix M to be specified.
(b) Define the 3 × 3 matrix L whose (i, j)-entry is the negative of the number of

pipes transporting brine from tank i to tank j if i 6= j, and the number of
pipes transporting brine out of tank i = j otherwise. Write down the matrix
L, and show that

M = − f

V
L>.

(c) Show that the time-rescaling τ = (f/V )t transforms the system in (a) into

x′(τ) = −L>x(τ).

(d) Use Gershgorin’s theorem to specify a subset of C containing all eigenvalues
of the matrix L written down in part (b).
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(e) What does your answer of part (d) imply with regards to the value of
limτ→∞ xi(τ) for every i ∈ {1, 2, 3}?
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