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CHAPTER III. SET (continued)

3. Algebra of sets

If the intersection of two subsets M1 ⊂ M and M2 ⊂ M is empty (i.e. M1 ∩
M2 = ∅), then the union M1 ∪M2 consists of elements which belong either to M1

or to M2, and any element of M1∪M2 can belong only to one of the sets M1 or M2.
Hence, M1 ∪M2 = M1 + M2, and so n(M1 ∪M2) = n(M1) + n(M2).

The case when M1 ∩ M2 is not empty can be reduced to the previous one.
Denote by M ′

1 the complement of M1 ∩ M2 with respect to M1, that is to say
the set of those elements of M1 which do not belong to M1 ∩ M2. Then M1 =
(M1 ∩M2) + M ′

1 and

(17) n(M1) = n(M1 ∩M2) + n(M ′
1).

Analogously,

(18) n(M2) = n(M1 ∩M2) + n(M ′
2),

where M ′
2 is the complement of M1 ∩M2 with respect to M2. Adding up (17) and

(18) we obtain

(19) n(M1) + n(M2) = 2n(M1 ∩M2) + n(M ′
1) + n(M ′

2).

But the sets M1 ∩M2, M ′
1 and M ′

2 do not have common elements and their union
is M1 ∪ M2. Therefore M1 ∪ M2 = M1 ∩ M2 + M ′

1 + M ′
2 and so n(M1 ∪ M2) =
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n(M1 ∩ M2) + n(M ′
1) + n(M ′

2). Using this, we can rewrite the equality (19) as:
n(M1) + n(M2) = n(M1 ∩M2) + n(M1 ∪M2), that is to say

(20) n(M1 ∪M2) = n(M1) + n(M2)− n(M1 ∩M2).

This is the relation we wanted. Our further aim is to generalize it and to obtain
the expression for the number of elements of the union of an arbitrary number of
sets n(M1∪· · ·∪Mr), and not only the union of two sets. We shall have to establish
some more or less evident properties of intersections and unions of several sets.

First of all notice that the union M1 ∪M2 ∪ · · · ∪Mr of several subsets M1,
M2, . . . , Mr can be defined by means of unions of only two subsets. For instance,

M1 ∪M2 ∪M3 = (M1 ∪M2) ∪M3,

and also for arbitrary k

M1 ∪M2 ∪ · · · ∪Mk = (M1 ∪M2 ∪ · · · ∪Mk−1) ∪Mk.

The second formula we need has the form

(M1 ∪M2 ∪ · · · ∪Mk) ∩N = (M1 ∩N) ∪ (M2 ∩N) ∪ · · · ∪ (Mk ∩N).

Both formulas are obvious; it is enough to ask oneself: what does it mean that
an element a ∈ M belongs to the left or to the right-hand side? For example, in
the last formula a ∈ (M1 ∪M2 ∪ · · · ∪Mk)∩N means that a ∈ M1 ∪M2 ∪ · · · ∪Mk

and a ∈ N . The second statement is merely that a ∈ N and the first that a ∈ Mi

for some i = 1, . . . , k. But then a ∈ Mi ∩ N for the same i, and this means that
a ∈ (M1 ∩N)∪ (M2 ∩N)∪ · · · ∪ (Mk ∩N). Notice that this property resembles the
distributivity of numbers. Indeed, if we replace the sets M1, M2, . . . , Mk and N
by the numbers a1, a2, . . . , ak and b, if we replace the sign ∪ by + and ∩ by ·, we
obtain the equality (a1 + · · ·+ ak)b = a1b + · · ·+ akb, i.e. the distributivity law for
numbers. There are other properties which show an analogy between the operations
union and intersection of subsets on one side, and addition and multiplication of
numbers on the other (see Problem 1). Investigation of system of subsets of a given
set M with respect to the operations ∪ and ∩ is called the algebra of sets.

We now derive the formula for n(M1 ∪ M2 ∪ M3). Since M1 ∪ M2 ∪ M3 =
(M1 ∪M2) ∪M3, we can apply formula (20) to obtain

n(M1∪M2∪M3) = n((M1∪M2)∪M3) = n(M1∪M2)+n(M3)−n((M1∪M2)∩M3).

We can apply formula (20) to the term n(M1 ∪M2) and since (M1 ∪M2) ∩M3 =
(M1∩M3)∪ (M2∩M3), we can also apply formula (20) to the last term above. We
get

n(M1 ∪M2 ∪M3) = n(M1) + n(M2) + n(M3)

− n(M1 ∩M2)− n(M1 ∩M3)− n(M2 ∩M3)

+ n((M1 ∩M3) ∩ (M2 ∩M3)).
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Clearly, (M1 ∩ M3) ∩ (M2 ∩ M3) = M1 ∩ M2 ∩ M3 and so the last term can be
written as n(M1 ∩M2 ∩M3). We obtain the formula

n(M1 ∪M2 ∪M3) = n(M1) + n(M2) + n(M3)

− n(M1 ∩M2)− n(M1 ∩M3)− n(M2 ∩M3)

+ n(M1 ∩M2 ∩M3).

Now we can guess what should be the form of the formula for n(M1 ∪ · · · ∪Mr).
It must contain the terms n(Mi1 ∩ · · · ∩Mik

) where Mi1 , . . . , Mik
are any k sets

taken among the sets M1, . . . , Mr for all k = 1, 2, . . . , r and if k is even we take
the sign −, while if k is odd we take +. In other words, the sign of the term
n(Mi1 ∩ · · · ∩Mik

) is (−1)k−1.
We shall now prove this formula by induction on r in the same way as we proved

it for r = 3. The induction basis will be formula (20). Write M1 ∪M2 ∪ · · · ∪Mr

in the form (M1 ∪M2 ∪ · · · ∪Mr−1) ∪Mr, and use formula (20):

n(M1 ∪M2 ∪ · · · ∪Mr) = n(M1 ∪M2 ∪ · · · ∪Mr−1) + n(Mr)

− n((M1 ∪M2 ∪ · · · ∪Mr−1) ∩Mr).

By the induction hypothesis, the formula is true for n(M1 ∪ · · · ∪Mr−1) and gives
those terms of n(M1 ∪ · · · ∪Mr) which do not contain Mr. Now we have

(M1 ∪M2 ∪ · · · ∪Mr−1) ∩Mr = (M1 ∩Mr) ∪ (M2 ∩Mr) ∪ · · · ∪ (Mr−1 ∩Mr)

and by the induction hypothesis we can also apply the formula to the expression
n((M1 ∩Mr) ∪ · · · ∪ (Mr−1 ∩Mr)). The intersection

(Mi1 ∩Mr) ∩ · · · ∩ (Mik
∩Mr)

is obviously Mi1∩· · ·∩Mik
∩Mr and so we obtain all the terms of the formula which

contain Mr. Moreover, if the term of the formula for n((M1∩Mr)∪· · ·∪(Mr−1∩Mr))
had the sign (−1)r−1, it has the sign (−1)r in the formula for n(M1 ∪ · · · ∪ Mr)
and it will depend on k + 1 sets Mi1 ∩ · · · ∩Mik

∩Mr.
The formula for n(M1 ∪ · · · ∪Mr) can be written down more conveniently if

we consider the number of elements of the complement M1 ∪ · · · ∪Mr of the set
M1 ∪ · · · ∪ Mr, i.e. the number of elements of the set M which do not belong to
any of the subsets Mi. Since for any subset N ⊂ M we always have M = N + N ,
then n(N) = n(M) − n(N). In our case n(M1 ∪ · · · ∪Mr) will be the sum of the
terms (−1)kn(Mi1 ∩ · · · ∩Mik

), where Mi1 , . . . , Mik
are any k subsets taken from

M1, . . . , Mr. For k = 0 we take the term n(M). In other words,

n(M1 ∪ · · · ∪Mr) = n− n(M1)− · · · − n(Mr)(21)

+ n(M1 ∩M2) + · · ·
+ (−1)rn(M1 ∩ · · · ∩Mr),

where n = n(M).
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This formula consists of expressions n(Mi1 ∩ · · · ∩Mik
) where i1, . . . , ik are

any k elements of the set {1, 2, . . . , n}. We have met such expressions in connection
with Viète’s formula (formula (12)). It is worthwhile to compare these two formulas.
Formula (21) follows from (12) if we put x = 1, ai = −xi in (12) and then replace
everywhere xi1 , . . . , xik

by n(Mi1 ∩ · · · ∩Mik
). Indeed, it is sometimes written in

this “symbolic” way

(22) n(M1 ∪ · · · ∪Mr) = n(1−M1) · · · (1−Mr),

where we suppose that the product on the right-hand side is expanded by Viète’s
formula as if Mi were variables, and then the expression n ·Mi1 · · ·Mik

(which is
meaningless) is replaced by the expression n(Mi1 ∩ · · · ∩Mik

), and n · 1 is replaced
by n = n(M).

Formula (22) can serve as a means for remembering formula (21), but in al-
gebra, whenever two relations, concerned with different questions, have the same
form, it is always possible to devise such a definition so that one formula coincides
with the other. We shall show this on the example of formulas (21), (22) and Viète’s
formula (12).

In order to do this we shall have to consider functions on a set M . Undoubtedly,
you must have already met with the concept of a function—in one way or another.
By a function we shall mean any way of corresponding to each element a ∈ M a
certain number. The actual process of corresponding will be denoted by f , and the
number corresponded to the element a by this process will be denoted by f(a). It
is also called the value of the function f at the element a. Although the concept
of a function is defined for arbitrary sets, we shall at the moment be interested
only in the case when the set M is finite. Then a function can be represented by
writing with each element a its corresponding number f(a). For example, here are
two functions f and g, defined on the set of three elements M = {a, b, c} (Fig. 5).

Fig. 5

Therefore, if M = {a1, . . . , an}, then a function on M is the sequence
(f(a1), . . . , f(an)). Functions can be added up and multiplied, these operations
being defined by the values of the functions. In other words, the functions f + g
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Fig. 6

and fg are defined by (f + g)(a) = f(a) + g(a) and (fg)(a) = f(a)g(a) for arbi-
trary a. For example, if f and g are represented by Fig. 5, then f + g and fg are
represented by Fig. 6.

Since the operations with functions are defined by their values, they have
the same properties as the operations with numbers: commutativity, associativity,
distributivity, etc. We can apply any identity, proved for numbers, if we replace
numbers by functions on a given set M . The function fM (a) which to any element
a ∈ M corresponds the number 1 is denoted by 1. Clearly, 1 · f = f for any
function f .

We now connect the notion of a function with the notion of a subset. For any
subset N ⊂ M there exists the function defined as follows: the values of elements
which belong to N are 1, and the values of those which do not belong to N are 0.
This function is called the characteristic function of the subset N and is denoted
by fN . Thus, fN (a) = 1 if a ∈ N and fN (a) = 0 if a ∈ N . Conversely, it is clear
that the function fN (a) defines the set N—it consists of all elements a ∈ M such
that fN (a) = 1. (In this way we obtain a one-to-one correspondence between the
subsets N ⊂ M and those functions which take only two values 0, 1. This is the
same relation which enables us to deduce Theorem 1 from Theorem 2. See Problem
1 from Section 2, where p and q should be replaced by 0 and 1.)

Some properties of subsets are simply expressed in terms of their characteristic
functions. For example, the characteristic function of the whole set M has all values
equal to 1, and hence fM = 1. If N is the complement of N , then fN = 1 − fN :
indeed, if a ∈ N , i.e. fN (a) = 1, then (1−fN )(a) = 0, as it should be. Analogously
for a ∈ N . If N1 and N2 are arbitrary subsets then fN1∩N2 = fN1 · fN2 , since if
a ∈ N1 and a ∈ N2 then fN1fN2(a) = 1 · 1 = 1. If a does not belong to one of the
sets N1 or N2, then one of the factors fN1 or fN2 is 0 and so fN1fN2(a) = 0, and
also fN1∩N2(a) = 0. Clearly, this is also true for several subsets:

(23) if N ′ = N1 ∩ · · · ∩Nr, then fN ′ = fN1 · · · fNr .

We can now rewrite formula (21) in the language of characteristic functions.
First of all, notice that the considered set M1 ∪ · · · ∪Mr is equal to M1 ∩ · · · ∩Mr.
This is evident: an element a does not belong to the set M1 ∪ · · · ∪Mr if it does
not belong to any of Mi, i.e. if it belongs to all Mi. Now using formula (23) we can
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write the characteristic function of the set M1 ∪ · · · ∪Mr in the form

fM1∪···∪Mr
= fM1∩···∩Mr

= fM1
· · · fMr

.

Besides, we know that fMi
= 1− fMi

and we obtain

fM1∪···∪Mr
= (1− fM1)(1− fM2) · · · (1− fMr

).

We can now apply Viète’s formula (13), by setting into it x = 1, ai = fMi
. We

have already explained why this is possible. We obtain

fM1∪···∪Mr
= 1− σ1(fM1 , . . . , fMr ) + σ2(fM1 , . . . , fMr )

− · · ·+ (−1)rσr(fM1 , . . . , fMr ).

Moreover, σk(fM1 , . . . , fMr
) is the sum of all products fMi1

· · · fMik
for all dif-

ferent indices (i1, . . . , ik) taken from (1, . . . , n). We know that fMi1
· · · fMik

=
fMi1∩···∩Mik

and we obtain that

(24) fM1∪···∪Mr
= 1− fM1 − · · · − fMr + fM1∩M2 + · · ·+ (−1)rfM1∩···∩Mr ,

i.e. the sum of all functions fMi1∩···∩Mik
which are taken with the + sign if k is

even and with the − sign if k is odd.
Notice that we have obtained something essentially more than the formula (21):

we found the expression not for the number of elements n(M1 ∪ · · · ∪Mr) of the
subset M1 ∪ · · · ∪Mr, but for its characteristic function which does not determine
only the number of elements of the subset, but the subset itself. In particular,
formula (21) has sense only when the set M is finite, while the relation (24) is true
for a finite number of subsets of an arbitrary set M .

In order to deduce the relation (21) from it, we have to return from functions
back to numbers. It is essential here that M be finite. For any function we define
the number Sf as the sum of all values f(a) of the function f at all elements
a ∈ M : if M = {a1, . . . , an}, then Sf = f(a1) + · · · + f(an). For example, for
the functions f and g from Fig. 5 we have Sf = 2, Sg = 1, Clearly, for any two
functions f , g we have S(f + g) = Sf + Sg. Indeed, the value of f + g at ai is
f(ai) + g(ai). Therefore, S(f + g) = (f(a1) + g(a1)) + · · · + (f(an) + g(an)) =
(f(a1) + · · ·+ f(an)) + (g(a1) + · · ·+ g(an)) = Sf + Sg. If fN is the characteristic
function of the subset N , then fN (a) = 1 is true for the elements a ∈ N , and for
the other elements a it is 0. Hence, SfN = n(N).

If we now find the number Sf for the functions on the left and right-hand side
of (24), using the established properties, we obtain exactly the relation (21).

Consider now two applications of formula (21). The first is a question studied
long time ago by Euler, and it concerns the permutations of a set. We said at the
end of the last Section (Remark 1) that this is the name for the arrangements of
elements of a set M in a given order. The number of permutations is n! if n(M) = n.
At the end of Section 2 we wrote down, as an example, all the six permutations of
the three element set M = {a, b, c}. In the general case we also write down all the
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n! permutations of the set M and denote by (a1, . . . , an) the first one. The question
is: how many permutations do we have in which no element takes the same place
as in the first one? This is precisely Euler’s question. Solve it for the case n = 3
and the six permutations written at the end of Section 2. Verify that only two
permutations satisfy the given condition, namely: (c, a, b) and (b, c, a).

In the general case we shall apply formula (21). Denote by P the set of all
permutations of the elements of the set M = {a1, . . . , an}. We have
n(P) = n!. Consider those permutations in which ai stands at the same place as in
the first permutation, i.e. at the i-th place. Denote the set of all such permutations
by Pi. Then our question becomes: find n(P1 ∪ · · · ∪ Pn). Hence we have the same
situation as we had before for the set P and its subsets P1, . . . , Pn (in formula (21)
the set was denoted by M and its subsets by Mi). In order to apply the formula,
we have to find the numbers n(Pi1 ∩ · · · ∩Pik

). But the set Pi1 ∩ · · · ∩Pik
contains

exactly those permutations in which ai1 , . . . , aik
take the same place as in the

first permutation, namely they are the places i1, . . . , ik, respectively. Such a per-
mutation differs from the first permutation only in the arrangement of elements in
other places. In other words, the number of such permutations is equal to the total
number of permutations of the set {ai1 , . . . , aik

}. Since n({ai1 , . . . , aik}) = n − k,
applying the general formula we get n(Pi1 ∩ · · · ∩ Pik

) = (n − k)!. All the sets
Pi1 ∩ · · · ∩ Pik

for a fixed k give one term in the formula (21), and the number
of such terms is equal to the number of subsets {ai1 , . . . , aik

} ⊂ {a1, . . . , an} for a
given k, that is to say, according to Theorem 3 it is Ck

n. Hence, the contribution of
the terms which correspond to a given value of k is Ck

n(n−k)! and substituting the

value of the binomial coefficient we get
n!

k! (n− k)!
(n− k)! =

n!
k!

and formula (21)
in our case becomes

n(P1 ∪ · · · ∪ Pn) = n!− n!
1!

+
n!
2!
− · · ·+ (−1)n n!

n!

= n!
(

1− 1
1!

+
1
2!

+ · · ·+ (−1)n

n!

)
.

This is the formula founded by Euler. He was actually interested in the ratio
of the founded number with the number of all permutations n!. This ratio is

1 − 1
1!

+
1
2!

+ · · · + (−1)n

n!
, which, as n increases, can be shown to approach a

fixed number, namely 1/e, where e is the basis of natural logarithms (for those who
already know what that is). The number 1/e is irrational and approximately equal
to 0,36787 . . . .

The second application of formula (21) is related to the properties of positive
integers. Let n be a positive integer, and let p1, . . . , pr be its prime divisors,
different from each other. How many positive integers exist which are not greater
than n and which are not divisible by any of the numbers pi? This is again an
application of formula (21). Denote by M the set of positive integers 1, 2, . . . , n
and by Mi its subset whose elements are divisible by pi. Clearly, our problem is
equivalent to the evaluation of n(M1 ∪ · · · ∪Mr). Let us find the values of the
terms n(Mi1 ∩ · · · ∩Mik

) in formula (21). The set Mi1 ∩ · · · ∩Mik
consists of all
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positive integers t 6 n which are divisible by prime numbers pi1 , pi2 , . . . , pik
. This

is equivalent to the fact that t is divisible by their product pi1pi2 . . . pik
. Let m

be a divisor of n. How many are there positive integers t 6 n which are divisible
by m? Such numbers have the form t = mu, where u is a positive integer and
the condition t 6 n is equivalent to u 6 n/m. Hence, u may take the values 1,
2, . . . , n/m and the number of such numbers is n/m. If m = pi1 · · · pik

this gives
that n(Mi1 ∩ · · · ∩Mik) =

n

pi1 · · · pik

and formula (21) becomes

n(M1 ∪ · · · ∪Mr) = n− n

p1
− · · · − n

pr
+

n

p1p2
+ · · ·+ (−1)r n

p1 · · · pr
.

The right-hand side can be written in the form

n

(
1− 1

p1
− 1

p2
− · · ·+ 1

p1p2
+ · · ·+ (−1)r 1

p1 · · · pr

)
.

The expression in brackets can be transformed by Viète’s formula (applied simply
to numbers), if we set x = 1, αi = −1/pi. By (13) this expression will be

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Therefore, for the number of positive integers not greater than n and not divisible
by p1, p2, . . . , pr we obtain

(25) n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

We often meet the case when p1, . . . , pr are all the prime divisors of n. In this case
t is not divisible by any of pi’s if and only if it is relatively prime to n: if it had
a common factor d with n, then this factor would have a prime divisor pi which
would divide both t and n. Therefore, formula (25) gives the number of all positive
integers not greater than n and relatively prime to n, if we take p1, . . . , pr to be
all prime divisors of n. The expression (25) was found in this form by Euler, it is
denoted by ϕ(n), and is called Euler’s function. For example, for n = 675 = 33 · 52

we have n(1− 1
3 )(1− 1

5 ) = 32 · 5(3− 1)(5− 1) = 360 numbers which are not greater
than 675 and which are relatively prime to 675.

Suppose now that p1, . . . , pr need not necessarily divide n. What is the number
of positive integers t 6 n which are not divisible by p1, . . . , pr? We can repeat
the previous reasoning, but with one alternation. We have to find the number
of positive integers t 6 n divisible by pi1 · · · pir . Let m be an arbitrary positive
integer. How many are there positive integers t 6 n which are divisible by m?
Again put t = mu with the condition mu 6 n. Hence, we have to take all numbers
u = 1, 2, . . . , such that mu 6 n. Let u be the last of them. Then r = n−mu < m,
for in the opposite case such a number would also be mu + m = n(u + 1). But
then n = mu + r where 0 6 r < m—which is the formula for the division with
remainder of n by m (see Theorem 4 of Chapter I). Hence the number u is equal
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to the quotient in the above division and it shall be denoted by [n/m]. Therefore,
the number of positive integers not greater than n and divisible by m is [n/m]. We
can now literally repeat the preceding argument and apply the formula (21). For
the number of positive integers not greater than n and not divisible by p1, . . . , pr

we obtain the expression

(26) n−
[

n

p1

]
−

[
n

p2

]
− · · ·+

[
n

p1p2

]
+ · · ·+ (−1)r

[
n

p1 · · · pr

]
.

It is not as explicit as the expression (25) but we can write it in the form of (25), as
an approximation. Recall the formula for the division with a remainder: n = mu+r,
where 0 6 r < m and u = [n/m]. Dividing this by m we obtain

n

m
= u +

r

m
and

since 0 6 r < m, we get
n

m
− 1 <

[ n

m

]
6 n

m
. In other words, we can replace [n/m]

by n/m with an error less than 1. Make this replacement in all the terms of (26).
What is the total error? Each term of (26) corresponds to a subset {i1, . . . , ik}
of the set {1, . . . , r}. According to Theorem 2, the number of such subsets is 2r.
Hence this is the number of terms in (26). Since each replacement produces an error
less than 1, the total error will be less than 2r. That is to say that the expression
(26) differs from

(27) n− n

p1
− n

p2
− · · ·+ n

p1p2
+ · · ·+ (−1)r n

p1 · · · pr

by less than 2r. We have met with the last expression before, and we know that it
is equal to

n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
.

In this way we obtain that for the number N of positive integers not greater than n
and not divisible by given prime numbers p1, . . . , pr the following inequality holds

(28)
∣∣∣∣N − n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)∣∣∣∣ < 2r.

For example, if we have three prime numbers p, q, r then N is equal to

n

(
1− 1

p

)(
1− 1

q

)(
1− 1

r

)
with an error less than 8.

Problems

1. Verify the relations M1 ∩ · · · ∩Mk = (M1 ∩ · · · ∩Mk−1) ∩Mk and (M1 ∩
· · · ∩Mk)∪N = (M1 ∪N)∩ · · · ∩ (Mk ∪N). The second of these is again analogous
to the distribution law for numbers (a1 + · · ·+ ak)b = a1b + · · ·+ akb, but now the
role of multiplication is taken by ∪ and the role of addition by ∩.

2. Verify that for each relation between subsets involving the operations ∪
and ∩, there exists another relation in which these two operations change places.
In order to do this, prove that M1 ∪M2 = M1 ∩M2 and M1 ∩M2 = M1 ∪M2.

3. How many times does the function sin ax take the value 0 on the segment
from 0 to 2πb, where 0 < a < b and a, b are positive integers?
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4. For positive integers a1, . . . , am the expression max(a1, . . . , am) denotes the
greatest and min(a1, . . . , am) the smallest one of them. Let N = max(a1, . . . , an).
For the set M = {1, . . . , N} define Mi as the subset consisting of those j’s for
which aj < ai. Applying formula (21), find the relation between max(a1, . . . , an)
and min(ai1 , . . . , aim) where {ai1 , . . . , aim} is a subset of {a1, . . . , an}.

5. Apply formula (21) for the case when Mi = {αi}. By evaluating directly
all the terms which appear in it, obtain the relation

n− C1
n(n− 1) + C2

n(n− 2) + · · ·+ (−1)n−1Cn−1
n · 1 = 0.

6. Let M be a finite set and let h be an arbitrary function on M . For a subset
N ⊂ M define the number Sh(N) as the sum of all values h(a), for all a ∈ N .
Prove the formula analogous to (21) where n(M) is replaced everywhere by h(N).
Hint: multiply the relation (24) by the function h.

7. Find the sum of all positive integers not exceeding n and relatively prime
to n. Hint: apply the result of Problem 6 with h(k) = k.

8. The same question for the sum of squares of these numbers.
9. Prove that in the right-hand side of inequality (28) we may replace 2r by

2r−1.

4. The language of probability

The theory of probability, like any other branch of mathematics, has its basic
concepts which are not defined—like points or numbers. The first such a concept
is the event. In this Section we shall consider the case when the number of events
is finite. Usually, an event is the result of the occurrences of some simpler events
which are said to be elementary. For instance, when we throw dice there are 6
possible elementary events: the appearance of number 1, number 2, number 3,
number 4, number 5, number 6 on the top face. The event that we obtain an even
number consists of three elementary events: either we obtain 2, or 4, or 6. The set
of elementary events is simply a set (in this Section a finite set) whose elements have
special names (elementary events). An event is a subset of the set of elementary
events. The second basic concept is probability : it is a real number assigned to
each elementary event. Therefore, if M = {a1, . . . , an} is the set of elementary
events, then to define a probability means assigning to each element ai ∈ M a real
number pi, which is called the probability of the event ai. Probabilities should
satisfy two conditions: they should be nonnegative and the sum of probabilities of
all elementary events should be equal to 1:

(29) pi > 0, p1 + · · ·+ pn = 1.

In other words, probability is a function p(a) on the set of elementary events M
with real values, satisfying the conditions p(a) > 0 for all a ∈ M and the sum
of all the numbers p(a) for a ∈ M is 1. These conditions play the role of axioms
of probability. If N is an arbitrary event (recall that an event is a subset of the
set M) then its probability is the sum of the numbers p(a) for all a ∈ N . This
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probability is denoted by p(N). In the special case when N = M , the corresponding
event is said to be certain. The condition (29) shows that the probability of the
certain event is 1. The condition p(M) = 1 is not as essential as the condition
p(M) > 0. The arbitrary case can be reduced to the case p(M) = 1, by dividing all
the probabilities by p(M). We simply choose the probability of the certain event to
be the unit of measuring other probabilities. We emphasize that the object studied
by the theory of probability is the set (in our case finite) of elementary events with
prescribed probabilities. This set and the probabilities are chosen according to the
specific conditions of the considered problem. Afterwards, when they are defined,
we can evaluate probabilities of other events. That is why the specialists in the
theory of probability say that their task is to find probabilities of certain events
using probabilities of other events.

If the two events are given—and we recall that they are simply two subsets
N1 and N2 of the set M—then their union N1 ∪N2 and intersection N1 ∩N2 are
also events. From the definition it follows that p(N1 ∪N2) 6 p(N1) + p(N2). The
strict inequality may take place since in the sum p(N1) + p(N2) the term p(a) will
appear twice if a ∈ N1 ∩N2. In fact we have

p(N1 ∪N2) = p(N1) + p(N2)− p(N1 ∩N2).

We came across this relation earlier (see Problem 6 of Section 3). In particular, if
N1∩N2 = ∅, i.e. if N1 and N2 do not intersect, then the events N1 and N2 are said
to be mutually exclusive. In that case p(N1 ∪N2) = p(N1) + p(N2). A particular
case is when N1 = N is an arbitrary subset and N2 = N is its complement. We
obtain that p(N) + p(N) = 1 or p(N) = 1 − p(N). The event N is said to be
opposite to N .

The basic object: the set M and the given function on M satisfying the axioms
of probability (29) is called a probability scheme. It is denoted by (M ; p).

An important case of defining probability schemes is when all the elements of
the set M have the same probability, i.e. when all the numbers pi are equal. From
the condition (29) it follows that all pi’s are equal to 1/n. If N ⊂ M is an arbitrary
event then p(N) = n(N)/n. For example, this is the case when we throw dice,
if the dice is considered to be homogeneous. In this case, all 6 elementary events
which correspond to the possible appearances of the numbers 1, 2, . . . , 6 on the
top face have the same probability 1/6, and the event that an even number appears
on the top face has probability 3 · 1/6 = 1/2.

If the dice is not homogeneous, we have no reason to give all elementary events
equal probabilities. In this case we may define the probabilities experimentally,
by throwing dice many times and noting the result. If after a large number n
of throwing the number i appears ki times, then the probability of the elementary
event—the appearance of the number i—is taken to be ki/n. Clearly, the conditions
(29) will be satisfied. The number n depends on the accuracy we wish to attain.
This gives another probability scheme (M ; p).

Analogous to the case of dice throwing is the popular problem of drawing balls
from a bag. Suppose that the bag contains n identical balls and that we draw out
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one of them without looking. The drawing out of a ball is an elementary event.
The phrase “identical balls” mathematically means that the probabilities of these
events are equal. Hence, they are equal to 1/n. Suppose now that in the bag we
have balls of different colours: a black, and b white balls, where a + b = n. Then
the event “a white ball is drawn from the bag” is a subset N ⊂ M . Since n(N) = b,
we have p(N) = b/n—this is the probability that a white ball is drawn out.

Somewhat more involved is the dice problem, if dice is thrown twice. In this
case an elementary event will be given by two numbers (a, b), where 1 6 a 6 6,
1 6 b 6 6 which show that in the first throwing we get a, and in the second b.
The number of elementary events is 36. This can be represented by the Table 3,
where on the horizontal we write all the possible outcomes of the first throwing,
and on the vertical the outcomes of the second. For example, to the elementary
event that the first throwing gives 5 and the second 4 corresponds the cell marked
with an asterisk. The event that the first throwing gives 5 again has the probability
1/6. But it is no longer elementary: it is comprised of six elementary events which
correspond to the cells of the vertical column above the number 5. They correspond
to the appearance of any number i, 1 6 i 6 6 on the top face of the dice in the
second throwing, if 5 appeared in the first. Since the first throwing has no effect
on the second, and the dice is supposed to be homogeneous, we conclude that all
the six elementary events have equal probabilities, and since the probability of the
event which they make is 1/6, then the probability of each one of them must be
1/36. Hence, we see that the probability of any elementary event is 1/36.

Table 3 Table 4

Consider the event Nk: “the sum of the numbers obtained at the first and the
second throwing is equal to k” (“the score is k”). For each pair (a, b) write in the
corresponding cell the sum a + b (Table 4). We see that 12 appears in one cell and
so n(N12) = 1 and also n(N11) = 2, n(N10) = 3, n(N9) = 4, n(N8) = 5, n(N7) = 6,
n(N6) = 5, n(N5) = 4, n(N4) = 3, n(N3) = 2, n(N2) = 1. The greatest value
has n(N7), and since p(Nk) = n(Nk)/36, we see that p(N7) has the greatest value
among all p(Nk)’s. In other words, the event that the score 7 will be obtained in
two throwing is the most probable.

And what is the answer in the case of n throwing? Here the elementary events
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are given by sequences of n numbers (a1, . . . , an) where each one can take the values
1, . . . , 6. The same reasoning as before shows that their probabilities are 1/6n.
The event Nk: “the total score after n throwing is k” consists of those sequences
which satisfy a1 + · · · + an = k. Hence, we have to find which number k has the
greatest number of representations of the form

(30) k = a1 + · · ·+ an, 1 6 ai 6 6.

In order to do this, consider the polynomial F (x) = (x + x2 + · · · + x6)n.
Expanding it, we take from the i-th bracket the term xai and as the result we
obtain the term xa1+···+an . There are several terms of this form, and we collect
them together. Therefore, the number of various representations (30) is equal to
the coefficient of xk in the polynomial F (x), and our problem reduces to finding
which term has the greatest coefficient. Since F (x) = xnG(x), where G(x) =
(1 + x + · · ·+ x5)n, the coefficient of xk in F (x) is equal to the coefficient of xk−n

in G(x), and it is enough to find the term with the greatest coefficient in G(x).
Polynomial G(x) has two properties from which the answer to the above ques-

tion follows.
An arbitrary polynomial f(x) = c0 + c1x+ · · ·+ cnxn is said to be reciprocal if

its terms, equidistant from its ends, have equal coefficients, i.e. if ck = cn−k. If the
coefficients ci are represented by points with coordinates (i, ci) in the plane, this
property means that these points will be arranged symmetrically with respect to
the middle: the line x = n/2. On Fig. 7a) we represent the case when n is even,
and on Fig. 7b) the case when n is odd.

a) b)
Fig. 7

The polynomial xnf
( 1

x

)
has the same coefficients as the polynomial f(x),

but in the reversed order. Indeed, if f(x) = a0 + a1x + · · · + anxn, then

f
( 1

x

)
= a0+a1

1
x

+· · ·+an
1
xn

and xnf
( 1

x

)
= a0x

n+a1x
n−1+· · ·+an. Therefore,

the fact that f(x) is a reciprocal polynomial, means that xnf
( 1

x

)
= f(x). This

implies that the product of two reciprocal polynomials is also reciprocal. Indeed, if
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f(x) and g(x) are reciprocal polynomials of degree n and m, then xnf
( 1

x

)
= f(x),

xmg
( 1

x

)
= g(x). Multiplying these equalities we get xnf

( 1
x

)
xmg

( 1
x

)
= f(x)g(x),

i.e. xn+mf
( 1

x

)
g
( 1

x

)
= f(x)g(x), which means that the polynomial f(x)g(x) is re-

ciprocal. By induction we conclude that the product of any number of reciprocal
polynomials is also reciprocal. Finally, since the polynomial 1 + x + · · · + x5 is
reciprocal, so is the polynomial G(x) = (1 + x + · · ·+ x5)n.

The polynomial f(x) = c0 + c1x + · · · + cnxn is called unimodal if for some
m 6 n the following inequalities hold: c0 6 c1 6 . . . 6 cm > cm+1 > . . . > cn. That
is to say, the coefficients ci at first do not decrease, and from a certain moment
they do not increase. If they are again represented by the points (i, ci) then they
will have “one hump” (Fig. 8).

Fig. 8

For example, polynomial (1 + x)n is reciprocal: this follows from the property
Cm

n = Cn−m
n of binomial coefficients (see Section 3 of Chapter II). It is also uni-

modal: this follows from the property of binomial coefficients proved in Section 3
of Chapter II.

It can be proved that if the polynomials f(x) and g(x) have nonnegative co-
efficients, if they are reciprocal and unimodal, then f(x)g(x) is unimodal. The
proof is quite elementary, but a little involved. From this theorem it follows that
the polynomial G(x) is unimodal. However, you can easily prove yourself this spe-
cial case (Problem 3). Now, it is easy to determine the term with the greatest
coefficient in a reciprocal unimodal polynomial. Namely, if the term ckxk has the
greatest coefficient, since the polynomial is reciprocal we have cn−k = ck and there
is the symmetric term ckxn−k. We can take that k 6 n/2 and n − k > n/2.
Since the polynomial is unimodal, none of the terms cix

i where k 6 i 6 n− k can
have smaller coefficient, for otherwise there would be two “humps” on the graph.
Hence, the greatest coefficient must be the middle coefficient cn/2 if n is even or
two “equally middle” coefficients cn−1

2

= cn+1
2

if n is odd (though there may be

other coefficients equal to them). In particular, we see that if n is even, then in

G(x) the term x
5n
2 has the greatest coefficient, and if n is odd then there are two
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terms of G(x), x
5n−1

2 and x
5n+1

2 with equal greatest coefficients.

In the polynomial F (x) this term is multiplied by xn and has degree
5n

2
+ n =

7n

2
if n is even. If n is odd, there are two terms with equal coefficients with degree

5n− 1
2

+ n =
7n− 1

2
and

5n + 1
2

+ n =
7n + 1

2
. Therefore, if dice is thrown n

times the most probable score is
7n

2
if n is even, and if n is odd there are two scores

which are both most probable:
7n− 1

2
and

7n + 1
2

.

Consider one more problem of the same type. A certain quantity of m physical
particles are registered by n instruments, so that each particle can be registered
by any instrument, and the registration of a particle by all instruments are taken
to be equally probable. What is the probability that all instruments register at
least one particle? An elementary event here is the registration of a particle by an
instrument. Let the instruments be denoted by the elements a of the set M . We
have n(M) = n. Numerate the particles by 1, 2, . . . , m. Then an elementary event
is the sequence (a1, . . . , am) where ai ∈ M and this sequence indicates that the i-th
particle is registered by the instrument ai. In other words, the set of elementary
events is Mm in the sense of the definition given in Section 1. The condition of
the problem states that all elementary events have equal probabilities. Since by
Theorem 1, n(Mm) = nm, the probability of each elementary event is 1/nm. We
are interested in the subset N ⊂ Mm which contains the sequences (a1, . . . , am) in
which all the elements of M appear. For example, if M = {a, b, c}, m = 4, then
(a, b, c, a) ∈ N , but the sequence (a, b, a, b) does not belong to N , since it does not
contain c. Our problem is to find n(N).

Denote by Ma the subset of Mm which consists of the sequences (a1, . . . , am)
in which none of the ai’s is equal to a. Then clearly N =

⋃
Ma, i.e. N is the

complement of the union of all sets Ma for all a ∈ M . Therefore, n(N) = n(Mm)−
n(

⋃
Ma) and the values of the numbers n(

⋃
Ma) are given by formula (21). Let us

find the number n(Ma1 ∩Ma2 ∩ · · · ∩Mar ), where a1, . . . , ar are different elements
of the set M . Hence, we are dealing with the sequences (c1, . . . , cm) in which none
of the ci’s equals any of a1, . . . , ar. In other words, ci are arbitrary elements of the
set {a1, . . . , ar}, where {a1, . . . , ar} is the complement of {a1, . . . , ar} with respect
to M . The set of all such sequences is the set ({a1, . . . , ar})m and the number of
elements of this set is, by Theorem 1, (n({a1, . . . , ar}))m. Since n({a1, . . . , ar}) = r,
n(M) = n, we have n({a1, . . . , ar}) = n−r and n(Ma1∩Ma2∩· · ·∩Mar ) = (n−r)m.
Hence, each term n(Mi1 ∩Mi2 ∩ · · · ∩Mir ) in formula (21) in our case is (n− r)m.
The number of terms for a given r is equal to Cr

n, as we know. Therefore, formula
(21) gives

n(
⋃

Ma) = C1
n(n− 1)m − C2

n(n− 2)m + · · ·+ (−1)nCn−1
n · 1m.

For N =
⋃

Ma we obtain

n(N) = n(Mm)− n(
⋃

Ma) = nm − C1
n(n− 1)m + · · ·+ (−1)n−1Cn−1

n · 1m.
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The requested probability is

(31)
n(N)
nm

= 1− C1
n

(
n− 1

n

)m

+ · · ·+ (−1)n−1Cn−1
n

(
1
n

)m

.

In all the previous examples elementary events had equal probabilities 1/n,
where n is the number of elementary events. As a result, the evaluation of prob-
abilities of other events reduced to the counting of the number of subsets—i.e.
to a problem of combinatorics. We shall now consider examples which are more
characteristic for the theory of probability.

Let (M,p) and (N, q) be two probability schemes. Suppose that they are de-
fined by many times repeated experiments—different experiment for each scheme.
The experiment used to define the probability scheme (M,p) will be called experi-
ment A, and the one used for the scheme (N, q) will be called experiment B. Con-
sider now the experiment consisting of consecutive experiments A and B, and let
us try to use it to define a new probability scheme. A similar situation was encoun-
tered in connection with consecutive throwing dice (see Table 3). Let n(M) = m,
M = {a1, . . . , am}, p(ai) = pi, n(N) = n, N = {b1, . . . , bn}, p(bi) = qi. Then the
new experiment defines the following elementary events: in the first experiment we
have the event a ∈ M and in the second b ∈ N . Hence, new elementary events
correspond to the pairs (a, b), where a ∈ M , b ∈ N , or to elements of the set
X = M × N . What probabilities can be assigned to these elements? They can
be reasonably defined if we introduce one more supposition. We shall take that
the experiments A and B, used to define probability schemes (M,p) and (N, q) are
independent. This means that the result of the second experiment (i.e. B) does
not depend on the outcome of the first experiment (i.e. A). Using this condition
it is possible to define the probabilities p(a, b) of the events (a, b). Our reasoning
will closely follow the one applied in connection with throwing dice two times (see
Table 3).

As in that case (and as we did in Section 1), we represent the elements of the
set in the form of the rectangular table

Table 5

The event that the event ai takes place in the first experiment has, by condition,
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probability pi. It is not an elementary event, since it consists of elementary events
(ai, b1), (ai, b2), . . . , (ai, bn), displayed in the i-th column of Table 5. As we agreed
the probabilities of these events should not depend on the experiment A, but should
be like the probabilities of b1, . . . , bn in the scheme (N, q). But here we arrive at a
contradiction: the sum of probabilities of the events (ai, b1), (ai, b2), . . . , (ai, bn) is
equal to pi, and the sum of the probabilities of the events b1, . . . , bn is 1. In other
words, the i-th column is itself a probability scheme, which must be “the same”
as the scheme (N, q). But in this scheme the condition (29) is not fulfilled. We
therefore have to make the following “correction”: we divide the probabilities of
all elementary events by the probability of the events pi. We therefore obtain the

probability scheme with probabilities
p((ai, bj))

pi
. Since it should coincide with the

probability scheme (N, q), we arrive at the equality
p((ai, bj))

pi
= qj , i.e. p((ai, bj)) =

piqj . Hence, we have, by definition

(32) p(ai, bj) = piqj .

In this way we obtain the new probability scheme: the sum of probabilities of
elementary events which appear in the i-th column of Table 5 is equal to piq1 +
· · ·+piqn = pi(q1 + · · ·+qn) = pi, and the sum of the probabilities of all elementary
events is p1 + · · ·+ pm = 1. Hence, the condition (29) is fulfilled.

This new probability scheme (X, r) is called the product of probability schemes
(M,p) and (N, q). We can write it as follows: if the given schemes are (M, p) and
(N, q), then X = M × N and p((a, b)) = p(a)q(b). The product of probability
schemes corresponds to the intuitive idea of the probability scheme defined by two
consecutive experiments, independent from each other. The above reasoning was
necessary to explain the motivation for the given definition. Formally, the definition
is given by the simple equality (32).

Now for several probability schemes (M1, p1), . . . , (Mr, pr) we define the prod-
uct by induction

(33) M1 × · · · ×Mr = (M1 × · · · ×Mr−1)×Mr,

where M1 × · · · × Mr−1 is taken to be known, and the product of two schemes
M1 × · · · ×Mr−1 and Mr is defined above. Let us decipher this definition. As a
set, M1 × · · · ×Mr is the product of sets M1, M2, . . . , Mr, defined in Section 1.
Hence, it consists of arbitrary sequences (a1, . . . , ar) where ai can be any element
of Mi. The probability of the elementary event (a1, . . . , ar) is

(34) p((a1, . . . , ar)) = p1(a1)p2(a2) · · · pr(ar).

This can also be verified by induction on r. Indeed, according to definitions (33)
and (32), we have p((a1, . . . , ar)) = p(((a1, . . . , ar−1), ar)) = p((a1, . . . , ar−1))p(ar)
and by induction hypothesis p((a1, . . . , ar−1)) = p1(a1)p2(a2) · · · pr−1(ar−1) and
this implies (34). This equality can be described as follows: in the sequence
(a1, . . . , ar) replace each element by its probability and multiply the obtained num-
bers. This is the probability of the sequence.
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We now apply the general construction to the special case of the probability
scheme In where i = {a, b} is the probability scheme consisting of two elementary
events with probabilities p(a) = p, p(b) = q, with necessary conditions p > 0,
q > 0, p + q = 1. We have already defined In as a set in Section 1. It consists
of all possible “words” of the type (a, a, b, b, b, a, b, . . . ) in the “alphabet” of two
letters: a and b. Hence, they will be the elementary events. Their probabilities are
defined, according to the above reasoning, as follows: if the letter a appears in the
“word” k times and the letter b appears n−k times, then its probability is pkqn−k.
Such a probability scheme is called Bernoulli’s scheme. As we saw, it gives the
probabilities of the events a and b in n times repeated experiment, when in each
one the event a has probability p and the event b has probability q. Besides, we
suppose that the outcome of an experiment does not affect the outcomes of later
experiments.

For example, for n = 3 we have 8 elementary events (a, a, a), (a, a, b), (a, b, a),
(a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b). Their respective probabilities are p3,
p2q, p2q, pq2, p2q, pq2, pq2, q3. Notice that here the letter p does not denote
the probability, but a fixed number, where 0 < p < 1. The probability of the
elementary event which corresponds to the sequence having k letters a and n − k
letters b is pkqn−k. These notations are too standard to be changed, but we have
to pay attention to what the letter p denotes.

Let us find the probability of the event Ak which consists of a series of n
experiments in which the event a occurs k times. These events consist of elementary
events given by “words” (b, a, b, b, b, a, a, . . . ) in which a appears in exactly k places.
The remaining n − k places are occupied by b. By the general formula, such an
elementary event has probability pkqn−k. Now how many elementary events make
up the event Ak? This is the number of ways in which k elements can be chosen
among n indices 1, 2, . . . , n, i.e. the number of subsets with k elements of a set of
n elements. According to Theorem 3, this is the binomial coefficient Ck

n. Therefore
for the probability of the event Ak we obtain

(35) p(Ak) = Ck
npkqn−k =

n!
k! (n− k)!

pkqn−k.

Using this we can find the most probable number of occurrences of the event a.
It is the value of k for which the expression in (35) has the greatest value. Write
down the expressions (35):

1 · qn, npqn−1,
n(n− 1)

2
p2qn−2, . . . , 1 · pn

and consider the ratio of two neighbouring terms:

p(Ak+1)
p(Ak)

=
n!

(k + 1)! (n− k − 1)!
pk+1qn−k−1

/
n!

k! (n− k)!
pkqn−k =

(n− k)p
(k + 1)q

(after the cancellations, which you can easily check).
If this ratio is greater than 1, then the (k+1)-st number is greater than the k-th;

if it is 1, then the two numbers are equal, and if it is less than 1, then the (k +1)-st
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number is less than the k-th. The ratio will be greater than 1 if
(n− k)p
(k + 1)q

> 1, i.e.

(n−k)p > (k+1)q or np > k(p+q)+q. Having in mind that p+q = 1, we can write
this inequality in the form np > k +1− p, i.e. (n+1)p− 1 > k. If k > (n+1)p− 1,
then the ratio p(Ak+1)/p(Ak) is smaller than 1. Finally, if k = (n + 1)p − 1, then
p(Ak+1) = p(Ak). Therefore, as k takes values less than (n + 1)p− 1, as we move
from the k-th number to the (k +1)-st, we obtain greater numbers. We distinguish
between two cases.

a) The number (n+1)p−1 is not an integer. Then the greatest number p(Am)
is obtained for the greatest integer m which does not exceed (n + 1)p. Moreover,
m 6= (n+1)p− 1 and for greater values of k such number p(Ak) is smaller than the
preceding one. Therefore, there is one most probable number of occurrences of the
event a—that is the greatest integer m which does not exceed (n + 1)p− 1.

b) The number (n + 1)p− 1 is an integer. Then the number p(Ak) increases if
k < m = (n + 1)p− 1. Further, p(Am+1) = p(Am) and for k > m + 1 the numbers
p(Ak) decrease. Hence, the numbers p(Ak) increase until they reach a maximum,
then we have one or two numbers equal to this maximum, and then they decrease.
In other words, they have “one hump” as in Fig. 8. This means that the polynomial

generated by them, namely qn+npn−1qt+
n(n− 1)

2
pn−2q2t2+· · ·+pntn is unimodal.

Using the binomial formula, we can write this polynomial in the form (q + pt)n.
How can one detect that it is unimodal when it is written in such a simple form?
I do not know that such a method exists.

In the simplest case, when p = q =
1
2
, we obtain that if (n + 1)

1
2
− 1 is not

an integer, i.e. if n is even, then (n + 1)
1
2
− 1 =

n

2
− 1

2
and m =

n

2
. Therefore,

there is one most probable number of occurrences of the event a—this is m =
n

2
.

This means that it is most likely that both events a and b occur n times. It is
not surprising, since such an answer is suggested by symmetry. If n is odd, then

m = (n+1)
1
2
−1 =

n− 1
2

is an integer, and there are two most probable occurrences

of the event a:
n− 1

2
(in which case b occurs

n + 1
2

times) and
n + 1

2
(in which

case b occurs
n− 1

2
times) and this is also quite natural. But for all other values

of p we obtain the answer which would be difficult to predict. Here is a problem
from a textbook on probability.

After many years of observations it was concluded that the probability that it
will rain on the July 1st is 4/17. Find the most probable number of rainy July 1st’s
in the next 50 years. We have n = 50, p = 4/17, m = (n+1)p−1 = 11. Hence, the
most probable numbers of rainy July 1st’s are 11 and 12 (with equal probabilities).

The values of probabilities Ck
npk(1− p)n−k, k = 0, 1, . . . , n have many impor-

tant properties. On Fig. 9, taken from a course of the theory of probability, these
values are represented for the cases p = 1/3, n = 4, 9, 16, 36 and 100.
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Fig. 9

You see that as n increases, they are not arranged chaotically, but rather they
approach a smooth curve. In order to see this better, modify each figure as follows:
move the greatest number to the y-axis, decrease the distance between the points
on the x-axis (this change of scale was done in Fig. 9) and finally decrease all the
numbers proportionally with respect to the greatest number. After this, it turns
out that as n increases our points more and more closely approach a certain curve—

namely, the graph of the function y =
1√
2π

cx2
, where π is the ordinary ratio of

the perimeter and the diameter of a circle and c (for those who know that e is the
basis of natural logarithms) is equal to 1/

√
e.

This assertion, called Laplace’s theorem, gives, in essence, a more subtle prop-
erty of binomial coefficients. But in order to prove this theorem we would have
to explain the phrase “approaches more and more closely”, i.e. we would have to
introduce the concept of the limit, and we shall not go into this.

Problems

1. In an arbitrary probability scheme (M, p) consider k events: M1 ⊂ M , . . . ,
Mk ⊂ M . Express the probability p(M1 ∪M2 ∪ · · · ∪Mk) of the event M1 ∪M2 ∪
· · ·∪Mk in terms of the probabilities p(Mi1∩· · ·∩Mir ) of the events Mi1∩· · ·∩Mir .

2. Prove that if the polynomial f(x) is reciprocal and unimodal, then the
polynomial f(x)(1 + x) also has these two properties.
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3. Prove that if the polynomial f(x) is reciprocal and unimodal, then so is
the polynomial f(x)(1 + x + x2 + x3 + x4 + x5). Deduce then that the polynomial
(1 + x + x2 + x3 + x4 + x5)n is unimodal.

4. Verify that the answer to the problem of m particles and n instruments is
n!
nn

if n = m. What relation between binomial coefficients is obtained if the formula

(32) is applied in this case?
5. There are n identical balls in a bag, m white and n −m black balls. We

draw out at random r balls. What is the probability that we draw k white and
r − k black balls? Hint: “at random” means that the probabilities of any draws of
r balls are equal.

6. Prove that if the probability p in Bernoulli’s scheme is an irrational number,
then there exists exactly one most probable number of occurrences of the event a.

7. The ratio of the most probable number of occurrences of an event a in
Bernoulli’s scheme and the number n is called the most probable section. Prove that,
as the number n increases indefinitely, then the most probable section approaches
more and more closely the probability p of the event a.

APPENDIX

Inequalities of Chebyshev

We shall again consider a question regarding Bernoulli’s scheme which was
treated at the end of Section 4. As we said there, Bernoulli’s scheme practically
arises in the situation when we have several times repeated experiment which can
have only two outcomes. For example, suppose that we have an asymmetric (non-
homogeneous) coin. The question we pose is: if this coin is spun onto the ground
will the top face be “head” or “tail”? In order to arrive at an answer, we make
a large series of spins—say, 1000—and if “head” appears k times, we say that the
probability of its appearance is p = k/1000. After that we can apply our definition
of Bernoulli’s scheme (In, p) and we can find other probabilities within that scheme,
e.g. formula (35). But is our abstraction satisfactory? Does it represent sufficiently
accurately the reality with which we started: a long series of independent spins?
In our abstraction—Bernoulli’s scheme—we cannot ask: how many times will the
event a occur in the scheme In? Since we only operate with the language of proba-
bility, we can only pose questions regarding certain probabilities. But the concept
of probability is connected with reality by our conviction that an event which has a
very small probability practically does not occur. In other words, if the probability
of a certain event is sufficiently small, we can in practice proceed as if we knew
that it will not occur. Of course, the sense of the words “sufficiently small” has to
be made precise in each concrete situation. According to this, we can fix a certain
number ε > 0 and consider the following event Aε: in our Bernoulli’s scheme (In, p)

the event a occurred k times where
∣∣∣∣
k

n
− p

∣∣∣∣ > ε. That is to say, the occurrence of

the event Aε means that the “frequency” k/n of occurrences of the event a differs
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from the supposed probability by more than ε. It is natural to expect that for a
fixed ε the probability p(Aε) of the event Aε will become smaller and smaller as n
increases indefinitely. It would mean that the difference between the “frequency”
k/n and the probability p for large n can be ignored. Jacob Bernoulli considered
this problem already at the beginning of the 18th century, and he realized that
finding the probability p(Aε) is a purely mathematical problem connected with the
properties of binomial coefficients. He proved that the probability p(Aε) indeed
becomes sufficiently small as n increases. In the 19th century Chebyshev proved
not only this particular Bernoulli’s statement, but he also found a simple explicit
inequality for the probability p(Aε). We shall expose here his theorem. This is the
first time in our text that we come across the work of a Russian mathematician.
P. L. Chebyshev lived in the period from 1821 till 1894, and was the founder of the
Petersburg mathematical school.

Let us write now in the form of an algebraic formula the expression we are
investigating. In Section 4 we considered Bernoulli’s scheme (In, p) and we found
the probability of the event Ak which takes place if in the series of experiments the
event a, for which p(a) = p occurs k times (formula (35)):

(1) p(Ak) = Ck
npkqn−k.

We now have a given number ε and we are interested in the event Aε which takes

place if an event Ak with index k occurs where k satisfies the inequality
∣∣∣∣
k

n
− p

∣∣∣∣ > ε.

We want to find the probability p(Aε) of the event Aε. Recall that an event (in
particular, Ak or Aε) is a subset of the set In. It is clear that the subsets Ak

with different indices do not intersect and that Aε is the union of all subsets Ak

for those k’s for which
∣∣∣∣
k

n
− p

∣∣∣∣ > ε. Therefore, the probability p(Aε) is the sum

of probabilities p(Ak) with such indices k. Since p(Ak) is given by (1), this means
that we have obtained an explicit, although a bit complicated, expression for the
probability p(Aε) of the event Aε. It is more convenient to write the condition∣∣∣∣
k

n
− p

∣∣∣∣ > ε, which defines our indices k in the equivalent form

(2) |k − np| > εn.

In this way we arrive at the sum
(3)

Sε − the sum of all expressions Ck
npkqn−k for all k, 1 6 k 6 n, satisfying (2).

We see that the probability p(Aε) of the event Aε is equal to Sε.
Now we can formulate Chebyshev’s theorem.

CHEBYSHEV’S THEOREM. For the probability p(Aε) of the event Aε that the
number of occurrences of k events a in Bernoulli’s scheme (In, p), satisfying the

condition
∣∣∣∣
k

n
− p

∣∣∣∣ > ε, the following inequality holds

(4) p(Aε) <
pq

ε2n
.
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The inequality (4) is sometimes written in the form

p

(∣∣∣∣
k

n
− p

∣∣∣∣ > ε

)
<

pq

ε2n
.

It is clear that for given p (q = 1−p) and ε, the right-hand side of the inequality
(4) decreases as n increases, which is what we wanted to prove. This particular
result is called Bernoulli’s theorem.

As we saw, the probability p(Aε) is equal to the Sε, defined by (3), and so
inequality (4) is equivalent to the inequality

Sε <
pq

ε2n
.

The proof of Chebyshev’s theorem is based upon explicit evaluation of certain
sums which we formulate in the form of a lemma.

LEMMA For the probabilities p(Ak), defined by the relation (1), we have

p(A0) + p(A1) + p(A2) + · · ·+ p(An) = 1(5)

p(A1) + 2p(A2) + 3p(A3) + · · ·+ np(An) = np(6)

p(A1) + 22p(A2) + 32p(A3) + · · ·+ n2p(An) = n2p2 + npq.(7)

Proof. Denote the left-hand sides of the equalities (5), (6) and (7) by σ0, σ1 and
σ2, respectively. We have already seen in Section 4 that, according to the binomial
formula, the probabilities p(Ak) are the coefficients of the polynomial (pt + q)n.
That is to say, if we put

(8) p(A0) + p(A1)t + · · ·+ p(An)tn = f(t),

then

(9) f(t) = (pt + q)n.

Setting t = 1 into (8) and (9), and using the fact that p + q = 1, we obtain σ0 = 1,
i.e. equality (5).

Consider the derivative f ′(t) of the polynomial f(t). From the formula (9),
using the rule (19) of Section 2 of Chapter II we obtain that

(10) f ′(t) = np(pt + q)n−1

since (pt + q)′ = p, by formula (15) of Chapter II. On the other hand, applying
formula (15) of Chapter II for f ′(t) to the polynomial f(t) given by (8), we obtain

(11) f ′(t) = p(A1) + 2p(A2)t + 3p(A3)t2 + · · ·+ np(An)tn−1.

Formulas (10) and (11) together lead to:

(12) p(A1) + 2p(A2)t + 3p(A3)t2 + · · ·+ np(An)tn−1 = np(pt + q)n−1.
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Set t = 1 into both sides of (12). Since p + q = 1, we obtain the equality (6).
Now multiply both sides of (12) by t. We find

(13) p(A1)t + 2p(A2)t2 + 3p(A3)t3 + · · ·+ np(An)tn = np(pt + q)n−1t.

Let us find the derivatives of both sides of (13). The derivative of the left-hand
side is found by means of formula (15) of Chapter II. We obtain the polynomial

p(A1) + 22p(A2)t + · · ·+ n2p(An)tn−1.

The derivative of the right-hand side can be evaluated by the rule d) for the deriva-
tive of a product from Section 2, Chapter II. Write the right-hand side of (13) in the
form of a product: (np(tp+ q)n−1) · t. By rule d) the derivative of this expression is
(np(tp+q)n−1)′ ·t+(np(tp+q)n−1)·t′. By formula (15) of Chapter II, we have t′ = 1;
by rule c) of Section 2 of Chapter II we have (np(tp + q)n−1)′ = np((tp + q)n−1)′

and by formula (19) of Chapter II we have ((tp+q)n−1)′ = (n−1)(tp+q)n−2p since
(tp + q)′ = p, by formula (15) of Chapter II. Therefore, equating the derivatives of
the left and right-hand sides of (13) we obtain

(14) p(A1)+22p(A2)t+ · · ·+n2p(An)tn−1 = np(pt+q)n−1+n(n−1)p2(tp+q)n−2.

Set t = 1 into (14). On the left we get σ2. On the right (in view of p + q = 1) we
get np + n(n− 1)p2 = n2p2 + np(1− p) = n2p2 + npq (since 1− p = q).

We can now turn to the proof of Chebyshev’s theorem. Chebyshev’s device
was to write inequality (2), which defines the necessary indices, in the form

∣∣∣∣
k − np

εn

∣∣∣∣ > 1,

i.e. (
k − np

εn

)2

> 1,

and then to multiply each term p(Ak) in the sum Sε by
(k − pn

εn

)2
, which is greater

than 1, and therefore increases the sum. After that he considered the total sum

Sε of all terms
(k − pn

εn

)2
p(Ak), k = 0, 1, . . . , n, and not only those for indices k

which satisfy (2). It is clear that the sum Sε differs from the sum Sε by a certain
number of positive terms, and so it must be greater than Sε.

Hence, Sε < Sε. Now, by quite elementary transformations (using the Lemma)
we can evaluate the sum Sε exactly, and thus we obtain the wanted inequality for
the sum Sε.

Therefore, we have to find the sum Sε of all terms
(k − pn

εn

)2
p(Ak) for k =

0, 1, . . . , n. Their common denominator (εn)2 can be taken out and the expressions
(k − pn)2 can be expanded: (k − pn)2 = k2 − 2npk + p2n2. Every term in the sum
Sε (after (εn)2 has been taken out) gives three terms. The sum of the first terms
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is σ2 on the left of (7). The sum of the second terms, after the common factor
−2pn has been taken out, is the sum σ1 defined by (6). Finally, the sum of the
third terms, after p2n2 has been taken out is σ0, defined by (5). Adding up all the
obtained equalities, we find the expression for the sum Sε:

Sε =
1

ε2n2
(σ2 − 2pnσ1 + p2n2σ0).

Substituting the values obtained for σ2, σ1 and σ0 in the Lemma, we find

(15) Sε =
1

ε2n2
(n2p2 + npq − 2p2n2 + p2n2) =

pq

ε2n
.

As we saw, Sε < Sε and therefore Sε <
pq

ε2n
and the proof of Chebyshev’s inequality

is finished.
Let us briefly analyse the method which lies in the essence of this proof. The

sum Sε which we want to estimate has a perfectly simple form. The difficulty lies
in the fact that the sum is formed by terms which are chosen according to a rather
strange criterion (the indices k have to satisfy (2)). The first thing that comes to
mind is to ignore these conditions and to take the sum of all terms. This sum is
easily evaluated: according to the Lemma, it is equal to 1. But it is too large and
does not lead to the equality we want. Chebyshev’s device was to introduce the

additional factor
(k − np

εn

)2
and only after that to consider the sum of all terms,

ignoring the restriction (2). In this process the terms which appear in the sum Sε

are increased, but those which do not are decreased so much that the total sum
Sε becomes sufficiently small (namely, for the terms which do not appear in Sε we

have
(k − np

εn

)2
< 1).

We have met here with a phenomenon which is very often present in mathemat-
ics. Namely, important and interesting inequalities usually follow from an identity
after an obvious estimate. This obvious estimate in our case is the inequality
Sε 6 Sε and the identity is the relation (15) which gives the explicit expression for
the sum Sε. This is how inequalities of fundamental importance in mathematics
are proved. But sometimes they are proved in a different way—this might indicate
that there is an underlying identity which we do not yet know.

Return once more to the formulation of Chebyshev’s theorem. As we already
explained, we are considering the event that in Bernoulli’s scheme In the event a
occurs k times, where either k > np + nε, or k < np − nε; in other words, we
do not consider the event that in Bernoulli’s scheme the event a occurs k times
where np− nε 6 k 6 np + nε. We found that the first event has small probability
(for large n), not exceeding pq/ε2n. This means that the second event has greater
probability, not less than 1 − (pq/ε2n). For example, consider a series of large
number of repetitions of one experiment under constant conditions. Suppose that
one experiment can have only two outcomes—a and b, where the probability of a
is p. This situation (if the number of experiments is n) is described, as we saw, by
Bernoulli’s scheme (In, p). The experiment may be, for instance testing a large set



40 I. R. Shafarevich

of objects (animals, technical details, etc) for a given property, knowing that p-th
part of the set has this property. The scheme In describes the possible results of
the testing. According to Chebyshev’s theorem, in the series of n experiments the
number of occurrences of the outcome a will be between np− nε and np + nε with

a probability greater than 1− p(1− p)
ε2n

. Here, ε can be any number which we can

choose as we like. For example, let p =
3
4
. Choosing ε =

1
100

, we see that in the
series of n experiments the number k of occurrences of the event a will satisfy the

inequality
3
4

n− n

100
6 k 6 3

4
n +

n

100
with the probability not less than

1−
3
4 · 1

4(
1

100

)2
n

.

Since
3
42

<
2
10

, this probability is not less than

1−
2
10(

1
100

)2
n

= 1− 2000
n

.

For n = 200 000, this probability will be not less than 0,99. The number of oc-
currences of the event a after 200 000 experiments which have this large proba-

bility will be between 148 000 and 152 000 (since
3
4

n = 150 000, n · 1
100

= 2000,
np− nε = 148 000, np + nε = 152 000).

Conversely, using Chebyshev’s theorem we can estimate the number of experi-
ments to be made in order to obtain the probability p accurately enough. Suppose
that we want to determine it with accuracy up to 1/10 and that the probability it
is equal to the obtained number is not less than 0,99. According to Chebyshev’s
theorem we have to put ε = 1/10 and to use the inequality

pq(
1
10

)2 · n
< 0,01.

Notice that q = 1−p, and for any p such that 0 6 p 6 1, we have pq = p(1−p) 6 1/4.
This follows from the fact that the geometric mean is not greater than the arithmetic
mean of the numbers p, q, which is 1/2. Therefore, it is enough that n should satisfy
the inequality

1
4(

1
10

)2 · n
< 0,01

which implies n > 2500.

Problems

1. In the set of some objects, 95% of them have a certain property. Prove that
among 200 000 objects, the number of those which have this property is between
189 000 and 191 000 with probability not less than 0,99.
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2. Modify Problem 1 so that the portion of objects which have a certain
property is not known. What is the probability that after testing 100 objects we
can determine it with accuracy up to 0,1?

3. For any positive integer r 6 n find the sum of all terms

k(k − 1) · · · (k − r + 1)p(Ak)

for k = 1, . . . , n.
4. For r 6 4 evaluate the sums σr consisting of terms krp(Ak) for all k =

0, 1, 2, 3, 4. Do this in two different ways: a) by the reasoning of the proof of the
Lemma, and b) by expressing the sums σr in terms of sums evaluated in Problem 3
for r = 1, 2, 3, 4.

5. Try to improve the inequality (4) in Chebyshev’s theorem, applying the

factor
(k − np

nε

)4

instead of
(k − np

nε

)2

. The improvement will be that n2 will
appear in the denominator of the right-hand side of the inequality instead of n.
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