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CHAPTER IV. PRIMES

1. Infinity of the number of primes

In this chapter we return to the question which we have already dealt with in
Chapter I. It was proved there that each natural number can be uniquely repre-
sented as a product of primes. Therefore, when the multiplication is concerned, the
primes are the simplest elements and all the natural numbers can be obtained by
multiplying primes, similarly to the fact that they can be obtained by the operation
of addition starting from the number 1. From this point of view, the interest for
the set of all primes can be easily understood. There are four primes among the
first ten natural numbers: 2, 3, 5, 7. Further primes can be found by dividing each
of the consequent numbers by previously found primes, in order to decide whether
it is a prime itself. In this way we find the following 25 primes among the first one
hundred natural numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

How far does this sequence continue? The question arose already in the antique
times. The answer was given by Euclid:

THEOREM 1. The number of primes is infinite.

We give several proofs of this theorem.
First proof —the one contained in Euclid’s “Elements”. Suppose we have found

n primes: p1, p2, . . . , pn. Consider the number N = p1p2 · · · pn + 1. As we saw
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in §2 of Chapter I, each number has at least one prime divisor. In particular, N
has a prime divisor. But none of the numbers p1, p2, . . . , pn can divide N . To
see this, let pi be a divisor of N . Then N − p1 · · · pn must be divisible by pi, but
since N − p1 · · · pn = 1, this is impossible. It follows that this prime divisor must
be different from each pi, i = 1, . . . , n, which means that after each n primes there
must be at least one additional prime. This proves the theorem.

Second proof. According to the theorem of the section “Set algebra” of Chap-
ter III, the number of numbers which are smaller than the given number N and
relatively prime with it, is given by the formula

(1) N

(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pn

)
,

where p1, . . . , pn are all prime divisors of N . We shall prove the theorem by
contradiction. Suppose that the number of primes is finite and that p1, . . . , pn

are all of them. Set N = p1 · · · pn. Substituting in formula (1) we obtain for each
factor pi(1− 1

pi
) the expression pi−1, and for the whole product (1) the expression

(p1− 1)(p2− 1) · · · (pn− 1). As we know that there exist primes greater than 2 (for
example, 3), the number obtained is greater than 1. Hence, there exists a number
a, smaller than N , relatively prime with N and different from 1. But a has at least
one prime divisor which must be contained among the numbers p1, . . . , pn, and
so a cannot be relatively prime with N . We obtained a contradiction which proves
the theorem.

The infinite sequence of primes is, on the other hand, very sparsely distribut-
ed among natural numbers. For example, there are arbitrary big “gaps” in this
sequence, i.e., one can find (successively further away) any given number of consec-
utive numbers which are not prime. For example, n numbers (n+1)!+2, (n+1)!+3,
. . . , (n + 1)! + n + 1 are obviously not primes—the first one is divisible by 2, the
second by 3, the last by n + 1.

For some time mathematicians have searched for a formula expressing primes.
For example, Euler found an interesting polynomial x2 + x + 41, which, for 40
values of x—from 0 to 39—obtains prime values. However, it is obvious that for
x = 40 its value is a nonprime number 412. It is not hard to conclude that there
cannot exist a polynomial f(x) which takes prime values for all natural values
x = 0, 1, 2, . . . (not even speaking about the possibility that its values are all of
the primes). We shall show this on an example of a polynomial of second degree
ax2 + bx+ c with integer coefficients a, b, c. Suppose that for x = 0 the polynomial
has a prime value c. Then for each x = kc its value ak2c2 + bkc + c is divisible
by c. This value can be equal to c for at most one additional value of k (besides
k = 0), which can be easily checked. Moreover, there does not exist a polynomial
f(x) = ax2+bx+c having prime values for each integer x, starting from some limit.
Indeed, suppose that the values of the polynomial f(x) are prime for each x > m.
Set x = y+m, f(y+m) = g(y); then all the values of the polynomial g(y) are prime
for all integers y > 0, by the assumption, and its coefficients are also integers, since
g(y) = a(y + m)2 + b(y + m) + c. The same reasoning also applies to a polynomial
of an arbitrary degree n: f(x) = a0 +a1x+ · · ·+anxn. If all of its values for integer
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x > 0 are prime, it means that f(0) = a0 = p is prime, too. Then for each integer
k the values f(kp) = p+a1kp+ · · ·+an(kp)n are divisible by p. They can be equal
to p only if p + a1kp + · · · + an(kp)n = p, i.e., a1 + a2kp + · · · + an(kp)n−1 = 0,
and the last equation in k is of the degree n − 1, and according to Theorem 3 of
Chapter II it has at most n − 1 roots. For all other values of k the number f(kp)
is divisible by p and different from p, i.e., it is not a prime.

If we suppose that the values of the polynomial f(x) are prime only for integer
values of x > m, for a certain number m, then we can set x = y+m and f(y+m) =
g(y). The polynomial g(y) = a0 + a1(y + m) + · · · + an(y + m)n is obtained by
expanding all the parentheses by the binomial formula and reducing similar terms.
Therefore its coefficients are again integers, but it obtains prime values for all
integers y > 0, which again is a contradiction.

It can be also proved that for an arbitrary number k no polynomial in k
variables with integer coefficients exists such that all of its values for all natural
values of its variables are primes. Nevertheless, it appears that there is a polynomial
of degree 25 with 26 variables, having the following property: if we select those
values of that polynomial which are obtained for nonnegative integer values of its
variables and which are positive themselves, then the set of such values coincides
with the set of primes. Since 26 is equal to the number of letters of the Latin
alphabet, it is possible to denote the variables by the letters: a, b, . . . , x, y, z.
Then the polynomial is of the form:

F (a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z) =

= (k + 2){1− [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + hz]2−
−[2n + p + q + z − e]2 − [16(k + 1)3(k + 2)(n + 1)2 + 1− f2]2−

−[e3(t + 2)(a + 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2−
−[16r2y4(a2 − 1) + 1− u2]2 − [(a + u2(u2 − a2)− 1)(n + 4dy)2 + 1− (x + cu)2]2−

−[n + l + v − y]2 − [(a− 1)l2 + 1−m2]2 − [ai + k + 1− l − i]2−
−[p + l(a− n− 1) + b(2an + 2a− n2 − 2n− 2)−m]2−
−[q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x]2−

−[z + pl(a− p) + t(2ap− p2 − 1)− pm]2}.
This polynomial has been written here just to impress the reader. Its number of
variables is too big. It can be proved that it takes also negative values −m, where
m is not prime. Hence, it does not give us information about the sequence of primes
either.

Long trials convinced the majority of mathematicians that there is no easy
formula describing the sequence of primes. There exist “explicit formulae” describ-
ing the primes, but they use objects which are even less known than the primes
themselves. That is why mathematicians concentrated on the characteristics of the
sequence of primes “in total” and not “in parts”. We will deal with this kind of
questions in the next sections.
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Problems

1. Prove that there are infinitely many primes of the form 3s + 2.

2. The same for the primes of the form 4s + 3.

3. Prove that each two numbers 22n

+ 1 and 22m

+ 1 are relatively prime.
Deduce once more the infinity of the number of primes. [Hint. Assuming that p is
a common divisor of two such numbers, find the remainders of division of 22m

and
22n

by p.]

4. Let f(x) be a polynomial with integer coefficients. Prove that there exist
infinitely many distinct prime divisors of its values f(1), f(2), . . . . (If you do not
succeed immediately, solve the problem for the polynomials of the first and of the
second degree.)

5. Denote by pn the n-th prime in the natural order. Prove that pn+1 < pn
n+1.

6. Using the notation of Problem 5, prove that pn < 22n

. Deduce the similar
inequality pn 6 22n

+ 1 from the result of Problem 3.

7. Using the notation of Problem 5, prove that pn+1 < p1p2 · · · pn.

2. Euler’s proof of the infinity of the number of primes

We shall give another proof of the infinity of the number of primes, which is
due to Euler, and which clarifies some general properties of this sequence.

Let us start with the “prehistory”, that is, with some simple facts which had
been known before Euler started dealing with questions about primes. The question
is about how big the following sums can be:

1, 1 +
1
2
, 1 +

1
2

+
1
3
, . . . , 1 +

1
2

+ · · ·+ 1
n

, . . .

Using notation from section 3 of Chapter II, these are the sums (Sa)n, where a is
the sequence of the inverses of natural numbers 1, 1

2 , 1
3 , . . . . Since we denoted the

sums of the m-th powers of natural numbers from 1 to n− 1 by Sm(n) (cf. formula
(28) of Chapter II), it is natural to denote our sums by S−1(n).

We have come to a concept which we shall often deal with later, so we consider
it now in more detail. It refers generally to properties of an infinite sequence of
positive numbers s1, s2, . . . , sn, . . . (in our case it appeared as the sequence of
sums of another sequence, but for the moment that is of no importance). One
type of such sequences is called bounded. This means that there exists a number
C (the same for the whole sequence), such that sn < C for all n = 1, 2, 3, . . . . If
the sequence does not have this property, it is called unbounded. This means that
no number C can possess this property, i.e., for each number C there exists an
index n such that sn > C. Finally, it may happen that for each number C there
exists an index n such that sm > C for all m = n, n + 1, . . . . In other words,
for n sufficiently large, the numbers sn become arbitrary large. In that case the
sequence is called unboundedly increasing. For example, the sequence 1, 2, 1, 3, 1,
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4, . . . , where 1 stands on odd places, and natural numbers stand on even places in
succession, is unbounded, but not unboundedly increasing, since one can find the
number 1 arbitrarily far in it.

If a sequence a = a1, a2, . . . , an, . . . of positive numbers is given, and s = Sa,
then sn+1 > sn (since sn+1 = sn+an+1, an+1 > 0), and, generally, sm > sn for m >
n. Therefore, such a sequence will be unboundedly increasing if it is unbounded. For
example, if all ai = 1, then sn = n and the sequence s1, s2, . . . is unbounded. But
in other cases it may be bounded. An example can be visualised on Fig. 1, where we
first divide the segment between 0 and
1 in half and set a1 = 1

2 , then divide
again the segment between 0 and 1

2 in
half and set a2 = 1

4 , etc. In this way,
an = 1

2n . The result of adding such
numbers is represented on Fig. 1 and it
is obvious that the sums Sn stay inside
our initial segment, i.e., Sn < 1.

Fig. 1

It is easy to check the last assertion by calculation. If an = 1
2n , then

(Sa)n =
1
2

+
1
4

+ · · ·+ 1
2n

=
1
2

(
1 +

1
2

+ · · ·+ 1
2n−1

)
,

and by formula (12) of Chapter I

(Sa)n =
1
2

1
2n − 1
1
2 − 1

= 1− 1
2n

,

so that (Sa)n < 1 for each n.
We shall show now that in the case of the sequence 1, 1

2 , 1
3 , . . . the first case

appears: although the terms of the sequence decrease, they do not decrease fast
enough, and their sums (i.e., S−1(n)) increase unboundedly.

LEMMA 1. The sum S−1(n) is, for n sufficiently large, greater than an arbi-
trary given number.

Let the number k be given. We assert that for some n (and so also for all
greater integers) S−1(n) > k. Take n such that n− 1 = 2m for some m. Divide the
sum

S−1(n) = 1+
(

1
2

)
+

(
1
3

+
1
4

)
+

(
1
5

+
1
6

+
1
7

+
1
8

)
+· · ·+

(
1

2m−1 + 1
+ · · ·+ 1

2m

)

in parts as it is shown: in groups contained between two consecutive powers of two.
Each parenthesis has the form 1

2k−1+1
+ · · · + 1

2k , and the number of parentheses
is equal to m. In each parenthesis we replace each summand by the smallest one
entering that parenthesis, that is by the last one. Since the number of summands in
such a parenthesis is equal to 2k−2k−1 = 2k−1, we obtain that the k-th parenthesis
is greater than 2k−1

2k = 1
2 . As a result, we obtain that S−1(n) > 1 + m

2 . This
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inequality is valid for each n if n − 1 = 2m. It remains to put 1 + m
2 = k, i.e.,

m = 2k − 1 and n = 22k−1 + 1. Then S−1(n) > k.
Now we come to Euler’s proof. His idea is connected with the method of

computing the sums of powers of the divisors of a natural number, which was
described in section 3 of Chapter I (cf. formula (13) in Chapter I). Denote the
sum of k-th powers of all divisors (including 1 and n) of a natural number n by
σk(n). According to formula (13) of Chapter I, for the number n having canonical
factorisation n = pα1

1 · · · pαr
r ,

(2) σk(n) =
p

k(α1+1)
1 − 1

pk
1 − 1

p
k(α2+1)
2 − 1

pk
2 − 1

· · · p
k(αr+1)
r − 1

pk
r − 1

.

Formula (2) had been known since the antique times, but it was implicitly
assumed that the number k in it was positive. Finally, Euler got interested in it
and he posed the question—what would happen if k was integer, but negative?
The answer is, of course, that there is no difference, the derivation of formula (2)
is completely formal and the same for negative as well as for positive values of k.
In particular, it is valid for k = −1. The sum of (−1)-st powers (i.e., the inverses)
of the divisors of a given number n will be denoted, as before, by σ−1(n). Formula
(2) gives

σ−1(n) =
1− 1

pα1+1
1

1− 1
p1

· . . . ·
1− 1

pαr+1
r

1− 1
pr

(we interchanged the order of summands in numerators and denominators in each
of the fraction). From here (since all the expressions in numerators are less than 1),

(3) σ−1(n) <
1(

1− 1
p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

) .

Let us now replace n in this formula by n! (p1, . . . , pr are now prime divisors
of n!). The numbers 1, 2, . . . , n are all contained among the divisors of n!. There-
fore, the sum σ−1(n!) definitely contains summands 1, 1

2 , 1
3 , . . . , 1

n , whose sum is
equal to S−1(n+1). According to Lemma 1, already the sum S−1(n+1) is greater
than any given number k for n sufficiently large. Since other summands in the sum
σ−1(n!) are positive, the same conclusion is valid for it. If the number of primes
were finite and p1, . . . , pr were the whole list of them, we would obtain that

1(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pr

) > k,

where k is an arbitrary number. This is, of course, a contradiction.
The value of the above proof is not that the assumption of finiteness of the

number of primes has led to a contradiction, but that it, when the infinity of that
number has already been proved, gives some quantitative characteristics of the
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sequence of primes. Namely, reformulating the result obtained, we can now say
that if p1, p2, . . . , pn, . . . is the infinite sequence of primes, then the expression

1(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pn

) becomes greater than any arbitrary number for n

sufficiently large. This is, of course, equivalent to the fact that the denomina-
tor of the last fraction becomes smaller than an arbitrary positive number for n
sufficiently large. We have proved

THEOREM 2. If p1, p2, . . . , pn, . . . is the sequence of all primes, then the

product
(

1− 1
p1

)(
1− 1

p2

)
· · ·

(
1− 1

pn

)
, for n sufficiently large, becomes smaller

than any given positive number.

This is a first approximation to our goal. Let us try now to give a more useful
form of the characteristic obtained.

THEOREM 3. If p1, p2, . . . , pn, . . . is the sequence of all primes, then the

sequence of sums
1
p1

+
1
p2

+ · · ·+ 1
pn

increases unboundedly.

Derivation of Theorem 3 from Theorem 2 is purely formal: it does not use the
fact that p1, p2, . . . , pn, . . . is the sequence of primes—it could be an arbitrary
sequence of natural numbers which satisfies the conditions of Theorem 2.

LEMMA 2. For each natural number n > 1 the inequality

(4) 1− 1
n

> 1
41/n

is valid.

Since both sides of inequality (4) are positive, rasing them to the power of n,
we obtain an equivalent inequality

(5)
(

1− 1
n

)n

> 1
4
,

which we are going to prove. Expanding the left-hand side by the binomial formula
we obtain

(6)
(

1− 1
n

)n

= 1− n
1
n

+
n(n− 1)

2
1
n2
− n(n− 1)(n− 2)

3!
1
n3

+ · · ·+ (−1)n 1
nn

.

Absolute values of the summands on the right-hand side of formula (6) form the
sequence Ck

n
1

nk . We examined such a sequence in connection with the Bernoulli
scheme in the section “Language of probability” in Chapter III (formula (35)).

More precisely, if in that formula we put p =
1

n + 1
, q = 1− 1

n + 1
=

n

n + 1
, then

we obtain that p+q = 1, pkqn−k = (n+1)−nnn−k and the numbers obtained differ

from the ones examined in formula (6) just by the common factor
(

n
n+1

)n

. The
expression (n + 1)p − 1 is in our case equal to zero. In the section “Language of
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probability” of Chapter III we proved that if k > (n + 1)p− 1 (in our case k > 0),
then the (k+1)-st term is smaller than the k-th one. This means that the numbers
of the sequence Ck

n
1

nk , k = 1, 2, . . . , n decrease monotonously. (We referred here to
Chapter III just to stress the connection between different problems that we are
dealing with. It would, of course, be easy to write down the ratio of the (k + 1)-st
term of the sequence to the k-th one and conclude that it is less than 1). We can see
that in formula (6), the first two terms on the right-hand side cancel. The next two
terms (after cancellation which can be done easily) give 1

3 − 1
3n2 . This number is

not less than 1
4 for n > 2 (check it yourself!). The rest of the terms can be grouped

in pairs, where in each pair the first term is positive and the next negative, but, as
we have seen, by absolute value less than the first one. Therefore each pair gives
a positive contribution to the sum (6). If n is odd, then the number of summands
on the right-hand side of formula (6) is even (it is equal to n + 1) and the sum
is partitioned into n+1

2 pairs. If n is even, then after grouping into pairs, there
remains the summand 1

nn . In such a way, in any case the right-hand side consists
of a summand which is not less than 1

4 , and some additional positive summands.
This proves inequality (5), and so the lemma itself.

Theorem 3 is now evident. For each pi we have, according to the Lemma:

1− 1
pi

> 1
41/pi

.

Multiplying these inequalities for i = 1, . . . , n we obtain
(

1− 1
p1

)(
1− 1

p2

)
· · ·

(
1− 1

pn

)
> 1

4

(
1
p1

+ 1
p2

+ · · ·+ 1
pn

) .

If the sums 1
p1

+ 1
p2

+ · · ·+ 1
pn

were for each n less than a certain value k, it would
follow that (

1− 1
p1

)(
1− 1

p2

)
· · ·

(
1− 1

pn

)
> 1

4k
.

This contradicts Theorem 2.
We run here into a problem of a new kind. If N is a subset of a finite set M ,

then we can tell how much “smaller” N is than M , comparing the number of their
elements, e.g., computing the ratio n(N)/n(M). But now we have two infinite sets:
the set of all natural numbers and the set of all primes contained in it. How can
we compare them? Theorem 3 offers one way of comparing, not very easy at first
sight. It can be applied to each sequence of natural numbers a: a1, a2, . . . , an,
. . . . According to Lemma 1, for the sequence of all natural numbers, the sums of
their inverses (i.e., the sums S−1(n)) increase unboundedly. We can think of the
sequence a to be “tightly” distributed among natural numbers if it has the same
property, i.e., if the sums 1

a1
, 1

a1
+ 1

a2
, . . . , 1

a1
+ 1

a2
+ · · · + 1

an
, . . . unboundedly

increase. This means that in the sequence a enough natural numbers remained
so that the sums of their inverses are not too much less than the sums S−1(n) of
the inverses of all natural numbers. If, on the other hand, the sums of inverses of
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the sequence a remain bounded, we can think of it as “loosely” distributed in the
natural row. Theorem 3 states that the sequence of primes is “tight”. The most
“loose” case is the case of a sequence a having only a finite number of terms.

But there are intermediate cases. For instance, the sequence of squares: 1, 4,
9, . . . , n2, . . . . It is natural to denote the corresponding sums 1+ 1

4 + 1
9 + · · ·+ 1

n2

by S−2(n). We shall prove that they are bounded by a number not depending on n.
We use the same idea as in the proof of Lemma 1. Let m be such that 2m > n.
Then S−2(n) 6 S−2(2m). We divide the sum S−2(2m) = 1 + 1

22 + 1
32 + · · · + 1

22m

into parts:

(1) +
(

1
22

)
+

(
1
32

+
1
42

)
+ · · ·+

(
1

(2m−1 + 1)2
+ · · ·+ 1

22m

)
.

Each part
1

(2k−1 + 1)2
+ · · · + 1

22k
again contains 2k−1 terms and the first term

is the greatest. Therefore this part cannot be greater than 2k−1 1
(2k−1 + 1)2

<

2k−1 1
(2k−1)2

=
1

2k−1
. Therefore, S−2(2m) 6 1 + 1 +

1
2

+
1
22

+ · · · + 1
2m−1

=

1 +
1− 1

2m

1− 1
2

6 1 +
1

1− 1
2

= 3. So, none of the sums S−2(n) is greater than 3.

In such a way, Theorem 3 shows that, for example, the primes are distributed
more “tightly” in the natural row than the squares.

Problems

1. Prove that for each given integer k > 2 and for all natural n, the sums
S−k(n) = 1

1k + 1
2k + · · ·+ 1

nk are bounded.

2. Let the sequence a be an arithmetic progression: a0 = p, a1 = p + q,
a2 = p + 2q, . . . , an = p + nq for some natural p and q. Prove that the sums 1

a0
,

1
a0

+ 1
a1

, . . . , 1
a0

+ 1
a1

+ · · ·+ 1
an

, . . . become unboundedly large for n sufficiently
large.

3. Let the sequence a be a geometric progression: a0 = c, a1 = cq, a2 = cq2,
. . . , an = cqn, . . . , where c and q are natural numbers. Is it “tight” or “loose” in
the natural row?

4. Let p1, . . . , pn, . . . be the sequence of all primes. Prove that the expressions
1(

1− 1
p2
1

) (
1− 1

p2
2

)
· · ·

(
1− 1

p2
n

) are bounded for each n.

3. The function π(n)

In this section we will try once more to estimate how much the sequence of
primes differs from the sequence of all natural numbers. We will replace the more
elaborate method of comparing “tight” and “loose” sequences from the previous
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section by a more naive one, which can be understood more easily. Namely, we
will try to answer the naive question—“which portion of the sequence of natural
numbers is covered by the primes”— by finding how many primes there are smaller
than 10, how many smaller than 100, how many smaller than 1000, etc. For each
natural number n, denote by π(n) the number of primes not greater than n, so that
π(1) = 0, π(2) = 1, π(4) = 2, . . . . What can be said about the ratio π(n)

n when n
increases?

First of all, consider what can be learned from tables. Each assertion or ques-
tion concerning natural numbers can be checked for all natural numbers not exceed-
ing a certain limit N . This fact plays a role in the number theory, which investigates
properties of natural numbers, similar to that of the possibility of experimenting
in theoretical physics. in particular, one can compute the values π(n) for n = 10k,
k = 1, 2, . . . , 10. The following table is obtained.

n π(n)
n

π(n)

10 4 2.5
100 25 4.0
1000 168 6.0
10000 1229 8.1
100000 9592 10.4
1000000 78498 12.7
10000000 664579 15.0
100000000 5761455 17.4
1000000000 50847534 19.7
10000000000 455059512 22.0

Table 1.

We see that the ratio n
π(n) is constantly increasing, which means that π(n)

n is
decreasing all the time. In other words, the portion of primes among the first n
numbers becomes close to zero when n increases. According to the tables, it could
be said that “the primes constitute a zero portion among all natural numbers”.
That was the way Euler formulated this fact, although his reasoning did not contain
a full proof. We will now give the precise formulation and then the proof.

THEOREM 4. The ratio π(n)
n becomes smaller than any given positive number

for n sufficiently large.

In order to prove the theorem we have to estimate somehow the function π(n).
For actual calculation of its values we start with the prime 2, then we cancel all
the numbers which are multiples of 2 and not exceeding n. Then we take the
first remaining number—this will be 3—and repeat the process. We continue till
we have exhausted all the numbers not exceeding n. The numbers which are not
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cancelled (2, 3, etc.) are all primes not exceeding n. This method was used already
in the antique times; it is called “the sieve of Eratosthenes”.

We will apply the same process in our reasoning. Suppose we have already
found the first r primes: p1, p2, . . . , pr. Then the remaining primes, not exceed-
ing n, are contained among “noncancelled” numbers, not exceeding n, i.e., among
those numbers m 6 n which are not divisible by any of the numbers p1, p2, . . . ,
pr. But the number of numbers not exceeding n and not divisible by any of the
primes p1, p2, . . . , pr was explored in Chapter III—it is given by the formula in
the section Set algebra of Chapter III. As we showed there, the expression in the
formula can be replaced with the easier one n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
, where the er-

ror is less than 2r (formula (28) of Chapter III). Hence, the number s of numbers
m 6 n not divisible by any of the primes p1, p2, . . . , pr satisfies the inequality

(7) s 6 n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
+ 2r.

All π(n) primes not exceeding n are contained either among r primes p1, p2, . . . , pr,
or among s numbers accounted for by inequality (7). In such a way, π(n) 6 s + r,
and

(8) π(n) 6 n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
+ 2r + r.

Inequality (8) is remarkable because it contains the product
(
1− 1

p1

)
· · ·

(
1− 1

pr

)

which can be estimated using Theorem 2.
Now we can pass to the proof of Theorem 4. Let an arbitrary small positive

number ε be given. We have to find a number N , depending on ε, such that π(n)
n < ε

is valid for each n > N . In the inequality (8) we replace r by a greater number 2r

(cf. Problem 6 in section 2 of Chapter I), in order to obtain a simpler inequality

(9) π(n) 6 n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
+ 2r+1.

In the inequality (9) there are two summands and we shall choose N so that for
each n > N each of the summands will not exceed εn/2. Then from the inequality
(9) we will conclude that π(n) < εn, and so π(n)

n < ε. Recall that till now the
number r in our reasoning was arbitrary. We choose it so that the first summand
does not exceed εn/2, and then we choose N such that the second summand does
not exceed εn/2. The first choice is possible according to Theorem 2. It states that
for r sufficiently large, the product

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
is less than any arbitrary

given positive number. We can take ε/2 to be such a number. Then the first
summand in the inequality (9) does not exceed εn/2. The second summand can be
dealt with even more easily. Now r has already been chosen. Choose N such that

2r+1 < eN/2. For this it is enough to choose N >
2r+2

ε
. Then 2r+1 <

εN

2
6 εn

2
for each n > N . Theorem 4 is proved.
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Note that if we choose an arithmetic progression am + b even with a very big
difference a, i.e., being very “sparse”, then the number of terms of this progression
not exceeding n is the same as the number of integers m satisfying am 6 n − b,
i.e.,

[
n−b

a

]
. We saw in section 3 of Chapter III that

[
n−b

a

]
differs from n−b

a by not
more than 1. Hence, the number of terms of the progression not exceeding n is not
less than n−b

a − 1. Its quotient with n is not less than 1
n (n−b

a − 1) = 1
a − 1

n
b
a − 1

n .
When n increases, this number approaches 1

a and is not becoming arbitrarily small.
Thus, Theorem 4 would become false if we replaced the sequence of primes in it by
an arbitrary arithmetic progression. This shows that primes are distributed more
sparsely than any arithmetic progression.

Problems

1. Let pn denote the n-th prime. Prove that for an arbitrarily large positive
number C the inequality pn > Cn is valid for n sufficiently large. [Hint. Use the
fact that π(pn) = n.]

2. Consider natural numbers having the property that, when written in deci-
mal form, they do not contain a certain digit (e.g., 0). Let q1, q2, . . . , qn, . . . be
those numbers, written in ascending order, and let π1(n) denotes the number of
such numbers not exceeding n. Prove that the ratio π1(n)

n becomes smaller than
any arbitrary given positive number, for n sufficiently large. Prove that the sums
1
q1

, 1
q1

+ 1
q2

, . . . , 1
q1

+ 1
q2

+ · · · + 1
qn

, . . . are bounded. [Hint. Do not try to copy
the proof of Theorem 4. Split the sum to parts, where in each part denominators
are contained between 10k and 10k+1. Then find the number of numbers qi in such
intervals. The answer depends on the digit which is excluded: r = 0 or r 6= 0.]

APPENDIX

Inequalities of Chebyshev for π(n)

We have put this text in the Appendix mainly for formal reasons, because we
have to use logarithms, the knowledge of which is not assumed in the rest of the
text. Recall that the logarithm with basis a of the number x is a number y such
that

ay = x.

This is written as y = loga x. In the sequel it will always be assumed that a > 1
and that x is a positive number. Basic properties of logarithms, following directly
from the definition, are:

loga(xy) = loga x + loga y, loga cn = n loga c, loga a = 1.

loga x > 0 if and only if x > 1. Logarithm is a monotonous function, i.e., loga x 6
loga y if and only if x 6 y.

In this text, if the basis of a logarithm is not indicated, it is supposed that it
is equal to 2; log x means log2 x.
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The second reason for putting this text in the Appendix is the following. In
the rest of the book, the logic of reasoning was clear, namely, why do we follow
a certain road (at least I hope it was so). Here we encounter the case, not rare
in mathematical investigations, when it looks as if some new consideration has
“jumped in from nowhere”, when even the author cannot explain how he came to
the conclusion. About such situations Euler used to say: “Sometimes it seems to
me that my pencil is smarter than myself”. Of course, these are results of long
trials and unknown work of psyche.

We are going now to continue our investigations concerning the ratio π(n)
n when

n is increasing unboundedly. Take another look at Table 1, showing the values of
π(n) for n = 10k, k = 1, 2, . . . , 10. The last column of the table contains the values
of the ratio n

π(n) for some values of n. We see that when we pass from n = 10k to
n = 10k+1, that is when we go down by one row, the value of n

π(n) increases always
approximately by the same value. Namely, the first number is equal to 2.5; the
second differs from it for 1.5, and the further differences are: 2; 2.1; 2.3; 2.3; 2.3;
2.4; 2.3; 2.3. We see that all of these numbers are close to the one: 2.3. Not trying
at the moment to explain the meaning of this particular value, let us suppose that
also beyond the range of our table the numbers n

π(n) , when passing from n = 10k to
n = 10k+1, increase by amounts which are closer and closer to a certain constant α.
This would mean that n

π(n) for n = 10k would be very close to αk. But, if n = 10k,
then by the definition k = log10 n. It is natural to assume that also for other values
of n the ratio n

π(n) is very close to α log10 n. Thus, π(n) is very close to c
n

log10 n
,

where c = α−1.
A lot of mathematicians where attracted by the secret of distribution of primes

and tried to solve it using tables. In particular, Gauss got interested in this question
almost as a child. His interest in mathematics started, it seems, from the child’s
interest in numbers and forming tables. In general, a lot of great mathematicians
showed virtuosity in calculations and were capable of doing immense ones, often by
heart (Euler was even fighting insomnia in that way!). When Gauss was only 14,
he constructed a table of primes (in fact, a smaller one than our Table 1) and came
to the conclusion we have formulated. Later on this conclusion was considered by
many mathematicians. But the first result in that direction was proved only half a
century later, in 1850, by Chebyshev.

Chebyshev proved the following assertion.

THEOREM. There exist constants c and C such that for all n > 1

(10) c
n

log n
6 π(n) 6 C

n

log n
.

Before we proceed with the proof, we give some remarks concerning the for-
mulation of the theorem. What is the basis of the logarithms we are using? The
answer is: arbitrary. From the definition of logarithms it immediately follows
that logb x = logb a loga x: it is enough to substitute a by blogb a in the relation
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aloga x = x, to obtain blogb a loga x = x, which shows that logb x = logb a loga x.
Hence, if the inequality (10) is proved for loga n, then it is true also for logb n, with
the substitution of c and C by c

logb a and C
logb a .

Inequalities (10) express the idea inspired by tables that π(n) is “close” to
c n

log n for some c. The question why in our hypothetical reasoning there appeared
one constant c, and in the theorem there appear two of them—c and C—and
whether it is possible to use only one constant, will be discussed after the proof of
the theorem.

The key to the proof of Chebyshev’s theorem are properties of binomial coef-
ficients Ck

n: mostly the fact that they are integers and some properties about their
divisibility by primes. We shall recall these properties before we pass to the proof.

First of all, there is a proposition proved in section 3 of Chapter II which says
that the sum of all binomial coefficients Ck

n for k = 0, 1, . . . , n is equal to 2n. Since
the sum of positive summands is greater than any of them, we deduce that

(11) Ck
n 6 2n.

We shall particularly need large binomial coefficients. We saw in Chapter II that
for even n = 2m the coefficient Cm

2m is greater than all the others, and for odd
n = 2m + 1 there exist two equal coefficients Cm

2m+1 and Cm+1
2m+1 which are greater

than the others. We draw our attention to them, particularly to

(12) Cn
2n =

2n(2n− 1) · · · (n + 1)
1 · 2 · . . . · n .

If we group the factors of the numerator with the factors of the denominator taken
in reverse order, we obtain

Cn
2n =

2n

n
· 2n− 1

n− 1
· . . . · n + 1

1
.

Obviously, no factor in the last formula is less than 2, so

(13) Cn
2n > 2n.

Consider now properties of divisibility of binomial coefficients by primes. Fac-
tors in the numerator in the expression (12) are obviously divisible by all primes
greater than n and not exceeding 2n. These primes cannot divide any factor in the
denominator, and so they do not cancel and they are divisors of Cn

2n. The number
of primes between n and 2n is equal to π(2n) − π(n) and all of them are greater
than n, hence

(14) Cn
2n > nπ(2n)−π(n).

An analogous assertion is valid for the “middle” coefficients Cn
2n+1 = Cn+1

2n+1 with
an odd lower index. If we write them as

Cn
2n+1 =

(2n + 1) · · · (n + 2)
1 · 2 · . . . · n ,
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we see that π(2n + 1) − π(n + 1) of primes, greater than n + 1 and not exceeding
2n + 1, enters the numerator and cannot be cancelled with the denominator. Since
they are greater than n + 1, we have

(15) Cn
2n+1 > (n + 1)π(2n+1)−π(n+1).

The inequalities (14) and (15) already reveal important connections between bino-
mial coefficients and prime numbers.

Finally, we state the last of the properties of binomial coefficients which we
need for the proof; although it is quite easy, it is not as obvious as the previous
ones.

LEMMA. For an arbitrary binomial coefficient Ck
n, any power of a prime di-

viding it does not exceed n.

We draw the attention to the fact that we are not speaking about the exponent
of the power but about the power itself. In other words, we assert that if pr divides
Ck

n, where p is a prime, then pr 6 n. For example, C2
9 = 9 · 4 is divisible by 9 and

by 4, and both of these numbers do not exceed 9.
Write the binomial coefficient in the form

(16) Ck
n =

n(n− 1) . . . (n− k + 1)
1 · 2 · . . . · k .

The prime p we are dealing with has to divide the numerator of this fraction.
Denote by m the factor in numerator which contains the maximal power of p (or
one of those having such a property), and by pr this maximal power. Obviously,
n > m > n − k + 1. Set n −m = a, m − (n − k + 1) = b, then a + b = k − 1 and
Ck

n can be written in the form

(17) Ck
n =

(m + a)(m + a− 1) · · · (m + 1)m(m− 1) · · · (m− b)
k!

.

The factor m is now the most important for us and we write down the product in the
numerator as having a factors to the left and b factors to the right of it. Rearrange
the denominator analogously: k! = (1 · 2 · . . . · a)(a + 1) · · · (a + b)(a + b + 1). Since
(a + 1)(a + 2) · · · (a + b) is divisible by b!, this product (denominator) has the form
a! b! l, where l is an integer. Now we can rewrite Ck

n in the following form

(18) Ck
n =

m + a

a
· m + a− 1

a− 1
· . . . · m + 1

1
· m− 1

1
· . . . · m− b

b
· m

l
,

where we transferred the factor m
l to the end.

Note that in each of the factors m+i
i or m−j

j (i = 1, . . . , a, j = 1, . . . , b) the
power of p entering the numerator completely cancels with the denominator, and
hence after cancellation only the denominator could be divisible by p (though it
can also be relatively prime with p). Really, consider, for instance, fractions m+i

i

(factors of the type m−j
j can be treated in the same way). Let i be divisible exactly

by ps, i.e., i = psu, where u is relatively prime with p. If s < r, then m + i is
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also divisible exactly by ps: setting m = prv (recall that m is divisible by pr), we
obtain that m + i = ps(u + pr−sv). If s > r, then for the same reasons m + i is
divisible by pr and taking into account the way m was chosen (it is divisible by
the greatest power of p of all the numbers between n− k + 1 and n and this power
is pr), we conclude that the number m + i cannot be divisible by a greater power
of p than the r-th. Thus, pr cancels and in the numerator there remains a number
not divisible by p. As a result we see that among all the factors in the expression
(18), only the last one can contain p as a factor. But the power of p which divides
m is pr, and this means the product (18) cannot be divisible by a greater power of
p than pr. Since pr divides m, and m 6 n, it is pr 6 n. The Lemma is proved.

Let us see what it says about the canonical factorisation Ck
n = pα1

1 · · · pαm
m .

First of all, the primes p1, . . . , pm can appear just from the numerator of the
expression (16), therefore all pi 6 n and so m 6 π(n). According to the Lemma,
pαi

i 6 n for i = 1, . . . , m. As a result we obtain that

(19) Ck
n 6 nπ(n).

Now we can proceed with the proof of the Chebyshev’s theorem itself, i.e.,
with the proof of the inequalities (10). Note that it is enough to prove these
inequalities for all values of n starting with a certain fixed limit n0. For all n < n0

these inequalities can then be obtained by decreasing the constant c and increasing
the constant C. If we wanted to obtain values of these constants explicitly and
in the most economic way, then we could check, using tables of primes, that the
inequalities (10) are valid for values n 6 n0 (in our arguments n0 will not be a large
number).

We start with juxtaposition of inequalities (13) and (19) for the binomial co-
efficient Cn

2n. We obtain that 2n 6 Cn
2n 6 (2n)π(2n) and hence

(20) 2n 6 (2n)π(2n).

Taking logarithms with basis 2 of both sides (recall that we will write log2 x = log x)
and using monotonicity of the logarithm, we obtain that n 6 π(2n) log 2n and so

π(2n) > n

log 2n
=

1
2

2n

log 2n
,

i.e., the left of the two inequalities (10) with the constant c = 1
2 . But for the time

being it is proved only for even values of n. For odd values of the form 2n + 1 we
use the monotonicity of the logarithm and of the function π(n). It follows that

π(2n + 1) log(2n + 1) > π(2n) log 2n.

Substituting here the obtained inequality for π(2n), we see that

π(2n + 1) > n log 2n

log(2n) log(2n + 1)
=

n

log(2n + 1)
.

Since it is always n > 1
3 (2n + 1), it follows that

π(2n + 1) > 1
3

2n + 1
log(2n + 1)

.
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Thus, the left inequality (10) is proved for odd n with the constant c = 1
3 . So, the

left inequality (10) is valid for all n and c = 1
3 .

We proceed to the proof of the right inequality in (10). We shall prove it by
induction on n. Let, first of all, n be even. We will write 2n instead of it. Taking
the inequality (11) for the coefficient Cn

2n (i.e., substitute in Ck
n n by 2n and k by n)

together with the inequality (14), as a consequence we obtain

nπ(2n)−π(n) 6 22n

and, passing to logarithms,

(21) π(2n)− π(n) 6 2n

log n
, π(2n) 6 π(n) +

2n

log n
.

In accordance with the inductive hypothesis, suppose that our inequality has been
proved: π(n) 6 C n

log n with a constant C whose value we shall make more precise
later. Substituting in the formula (21), we obtain:

π(2n) 6 C
n

log n
+

2n

log n
=

(C + 2)n
log n

.

We would like to prove the inequality π(2n) 6 C·2n
log 2n and for that we have to choose

the constant C in such a way that the inequality

(22)
(C + 2)n

log n
6 2Cn

log 2n

is valid for all n, starting from some limit.
This is just a simple school exercise. Cancel in the inequality both sides by n,

remark that log 2n = log 2 + log n = log n + 1 and denote log n by x. Then the
inequality (22) takes the form

C + 2
x

6 2C

x + 1
.

Multiplying both sides by x(x + 1) (as x > 0) and transforming, we write it in the
form (C − 2)x > C + 2. Obviously, C has to be chosen so that C − 2 > 0. Setting,
e.g., C = 3, we obtain that it is valid for C = 3 and all x > 5. Since x denotes log n,
this means that the necessary inequality would be valid if n > 25 = 32, 2n > 64.

It remains to consider the case of odd values of the form 2n + 1. Compare the
inequality (11) (substituting in it n by 2n+1 and k by n) with the inequality (15).
We obtain the inequality

22n+1 > (n + 1)π(2n+1)−π(n+1)

and, taking logarithms, the inequality

2n + 1 > (π(2n + 1)− π(n + 1)) log(n + 1).
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From here, using the inductive hypothesis about π(n + 1), we obtain, as before

π(2n + 1) 6 C
n + 1

log(n + 1)
+

2n + 1
log(n + 1)

.

The inequality that we need: π(2n+1) 6 C 2n+1
log(2n+1) will be proved if we can check

that

(23) C
n + 1

log(n + 1)
+

2n + 1
log(n + 1)

6 C
2n + 1

log(2n + 1)

for a suitable choice of the constant C and for all n starting from some limit. This
is again an exercise of purely school type, though a bit harder than the previous
one. In order to compare various terms in the inequality more easily, replace on
the left-hand side 2n + 1 by a greater value 2(n + 1):

(24) C
n + 1

log(n + 1)
+

2n + 1
log(n + 1)

6 (C + 2)(n + 1)
log(n + 1)

.

In order to transform the right-hand side, note that 2n + 1 > 3
2 (n + 1) for n > 1,

log(2n + 1) 6 log(2n + 2) = log(n + 1) + 1. Hence,

(25)
2n + 1

log(2n + 1)
> (3/2)(n + 1)

log(n + 1) + 1
.

Comparing inequalities (24) and (25) we see that the inequality (23) will be proved
if we prove that

(C + 2)(n + 1)
log(n + 1)

6 (3/2)C(n + 1)
log(n + 1) + 1

.

Cancelling both sides by n+1 and putting log(n+1) = x, we arrive at the inequality

C + 2
x

6 (3/2)C
x + 1

,

which can be solved completely in the same way as in the previous case. It is
enough to multiply both sides by x(x+1) and reduce similar terms. We obtain the
inequality (C + 2)x + C + 2 6 3

2Cx, i.e., ( 1
2C − 2)x > C + 2. Setting C = 6, we

see that the inequality is valid for x > 8, i.e., for n + 1 > 28, 2n + 1 > 511. Thus,
the right inequality (10) is proved with the constant C = 6 and for all values of n
starting with 511. The Theorem is proved.

Note that Theorem 4 appears as an easy consequence of the Theorem just
proved. Really, since π(n) < C n

log n , we have π(n)
n 6 C

log n . And as a logarithm

changes monotonously and increases unboundedly (log 2k = k), π(n)
n becomes less

than any arbitrary positive number. But, the proof of the theorem of Chebyshev
was based on completely different considerations than the proof of Theorem 4.

At the end, we return once more to assertions which can be made by considering
Table I. Starting from it, we came to the claim that n

π(n) is close to log10 n with
a certain value of the constant C: the first decimal figures of the number C−1 are
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2.3. Hence it can be concluded that π(n) is close to C−1 n
log10 n . This expression

can be given a simpler form n
loge n , if we use a new basis of logarithms e such that

C log10 n = loge n. But, as it was said earlier, it is always logb x = logb a · loga x,
and so our relation will be fulfilled if C = loge 10. Substituting the value x = b
into the relation logb x = logb a · loga x, we obtain that logb a · loga b = 1 and the
relation C = loge 10 which we are interested in can be rewritten as C−1 = log10 e.

14-year-old Gauss turned his attention to these relations and tried to guess
which number e could be, so that log10 e is close to (2.3)−1. Such a number at that
time was well known, thanks to the fact that the logarithm with such a basis has
a lot of useful properties. This number is commonly denoted by e. The logarithm
with the basis e is called natural and is denoted by ln: loge x = ln x. Here, to the
end of this page, we have to consider that the reader is familiar with the concept
of the natural logarithm.

In such a way, a natural assertion which can be deduced from tables is that π(n)
becomes close to n

ln n when n increases unboundedly. The theorem of Chebyshev
which has been just proved states (if we use natural logarithms) that there exist
two such constants c and C, that c n

ln n < π(n) < C n
ln n , starting from some n. The

hypothetical refinement deduced from tables asserts that the inequalities c n
ln n <

π(n) < C n
ln n are valid for n large enough whichever constants c < 1 and C > 1

we take. This assertion is called the asymptotical law of distribution of primes.
It was stated by Gauss and some other mathematicians at the end of XVIII and
the beginning of XIX century. After the proof of the inequalities of Chebyshev in
1850 it seemed that all that was needed was a better choice and approaching of the
constants c and C. However, the asymptotical law of distribution of primes was
proved just half a century later, at the end of XIX century, using completely new
ideas, proposed by Riemann.

Problems

1. Prove that pn > an log n for a certain constant a > 0 [Hint. Use the fact
that π(pn) = n.]

2. Prove that log n <
√

n, starting from some limit (find it). [Hint. Reduce the
problem to proving the inequality 2x > x2 for real x, starting from some limit. Let
n 6 x 6 n+1, where n is an integer. Reduce to proving the inequality 2n > (n+1)2

and use the induction.]

3. Prove that pn < Cn2 for some constant C. [Hint. Apply the inequality of
the previous problem and use the fact that n = π(pn).]

4. Prove that pn < An log n for some constant A.

5. Prove that that the largest exponent a for which pa divides n! is equal to[n

p

]
+

[ n

p2

]
+ · · ·+

[ n

pk

]
. Here

[r

s

]
is the incomplete quotient of dividing r by s,

the sum extends to all k for which pk 6 n, p denotes an arbitrary prime and n an
arbitrary natural number.
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6. Using the result of Problem 5 give a new proof of the Lemma in the
Appendix.

7. Prove that if p1, . . . , pr are all the primes between m and 2m + 1, then
their product does not exceed 22m.

8. Determine the constants c and C such that the inequality (10) is valid for
all n.

9. Try to find as large as possible a constant c and as small as possible a
constant C, for which the inequality (10) is valid for all n, starting from some
limit.
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