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Abstract. The purpose of this article is to suggest a few problems for exploration
which could motivate pupils to think and work independently on their solution. The
article consists of three parts, describing experinces with pupils of different age groups:
Part I describes a problem, related to solving the equation ax+by = n, with a, b, n ∈ N
in non-negative integers x and y. This problem has been studied with pupils aged 14–15.
Part II is devoted to sequences and combinatorial investigations of problems designed
for 16–18 years old youngsters. In Part III the importance of introducing youngsters
at an early age to independent work is underlined. This will be done by providing
problems for children aged 10–13.
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Introduction

The following problem is included in the book “How to solve it: Modern Heuris-
tics” of the American authors Z. Michalevicz and D. B. Fogel [1]:

Two men, X and Y , meet on the street. X syas: “All three of my
sons have their birthday this very day”. Y asks: “How old are they?” X
replies: “The product of the ages of my sons is 36.” “Give me some more
information” says Y . X points at the house next to them: “The sum of
their ages is equal to the number of windows you see in this building”. Y
thinks for some time and asks for an additional hint. “My oldest son has
blue eyes” says X. “This is sufficient” exclaims Y and gives the correct
ages of the sons.

A simple, common sense approach to solving this puzzle is the following: Since
the ages of the sons are natural numbers with product 36, first of all one has to
look at all possible ways of representing 36 as a product of three positive integers.
There are eight such possibilities: 36,1,1; 18,2,1; 12,3,1; 9,4,1; 9,2,2; 6,6,1; 6,3,2 and
4,3,3. The sums of the factors are 38, 21, 16, 14, 13, 13, 11 and 10, respectively.
There are only two sums: 9 + 2 + 2 and 6 + 6 + 1 equal to one another. Then the
house next to Y must have 13 windows. The ages of the sons cannot be 6, 6 and 1
because in that case X would not have an oldest son. Hence the ages of the sons
are 9, 2 and 2.

The authors of the book point out that although the puzzle is quite easy,
many students of mathematics have difficulties with it. One of the reasons for such
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a failure is, according to Michalewicz and Fogel the following: Already at school,
and also later at university, pupils and students are trained to solve problems by
applying algorithms or formulae which they have learnt recently. When confronted
with a problem, they automathically search for a suitable “ready made” algorithm,
instead of finding their own way to a solution.

This situation has to be changed. Michalewicz and Fogel recommend that
pupils should be regularly given problems whose solution requires independent,
original thinking.

The purpose of this article is to suggest a few problems for exploration which
could motivate pupils to think and work independently on their solution. The
article consists of three parts, describing experinces with pupils of different age
groups: Part I describes a problem, related to solving the equation ax+by = n, with
a, b, n ∈ N in non-negative integers x and y. This problem has been studied with
pupils aged 14–15. Part II is devoted to sequences and combinatorial investigations
of problems designed for 16–18 years old youngsters. In Part III the importance
of introducing youngsters at an early age to independent work is underlined. This
will be done by providing problems for children aged 10–13.

Part I

The following set of problems was posed in a coursework for pupils aged 14–15:

Problem 1. Find the greatest natural number which cannot be written as a
sum of numbers taken from the set S = {3, 5}.

Problem 2. Answer the same question as in Problem 1 if: a) S = {2, 7};
b) S = {6, 5}; c) S = {15, 14}.

Problem 3. Answer the same question as in Problem 1 if: a) S = {1, 9};
b) S = {4, 20}.

Problem 4. Compare the solutions of Problems 1–3 and describe your obser-
vations.

Problem 5. How should one choose natural numbers p and q such that the
following property holds: There is no natural number not expressible as a sum with
summands taken from the set {p, q}? Justify your answer.

Problem 6. Let p and q be coprime natural numbers greater than 1. Find
the formula for the greatest natural number g(p, q) which cannot be written as a
sum with summands from S = {p, q}.

The coursework has been carried out by different groups of pupils during the
last years. Its outcome is sketched in [2]: Problem 1 was solved by most pupils as
follows: By expection it was found out that the numbers 1, 2, 4 and 7 cannot be
written as sums with summands 3 and 5, while 8, 9 and 10 are three consecutive
numbers which are expressible as sums of 3 and 5. This implies that all natural
numbers greater than 7, being of the form 8 + 3k, 9 + 3k and 10 + 3k for k =
0, 1, 2, . . . , can be written as sums of 3 and 5. Thus the greatest natural number
not expressible as sum of elements from S = {3, 5} is 7. Answers to parts a) and b)
of Problem 2 were also easily obtained by the same strategy; they were the numbers
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5 and 19. The answer to part c) of Problem 2—which is 181—was more difficult
to obtain because the summands 15 and 14 were quite large and therefore more
natural numbers had to be tested.

Problem 3 was solved by most of the pupils. They discovered that there is no
natural number which cannot be written as a sum of numbers taken from S = {1, 9},
since any natural number n is the sum of n summands equal to 1. This settles part
a) of Problem 3. In case b) both elements of S = {4, 20} are divisible by 4; thus any
number of the form a ·4+b ·20 with a, b ∈ N∪{0} must be divisible by 4. There are
infinitely many natural numbers not divisible by 4; therefore there is no greatest
natural number which cannot be written as a sum of numbers from S = {4, 20}.

To Problems 4 and 5 many pupils could provide only partial answers. They
found out that there is no greatest natural number n such that n 6= ap + bq for
a, b ∈ N ∪ {0} if at least one of the numbers p and q is equal to 1, or if one of the
numbers p and q is divisible by the other. Only a few advanced youngsters remarked
that there is no greatest number n of the form n 6= ap + bq, with a, b ∈ N ∪ {0}
whenever the greatest common divisor of p and q is greater than 1.

Problem 6 proved to be too difficult for all pupils. Some of them guessed the
correct answer: g(p, q) = pq− (p + q), however they could not prove the validity of
this formula. At this stage it seemed worth while to provide some hints:

It was suggested to return to Problem 1 and, instead of looking for numbers
n not expressible as sums of elements from S = {3, 5}, to list all natural numbers
of the form 3a + 5b for a, b ∈ N ∪ {0}. This can be carried out systematically as
shown in Table 1:

3 6 9 12 15 . . .
5 8 11 14 17 20 . . .
10 13 16 19 22 25 . . .
15 18 21 24 27 30 . . .
20 23 26 29 32 35 . . .
. . . . . . . . . . . . . . . . . . . . .

Table 1

The first row of Table 1 consists of the multiples of 3, the second row of the numbers
5+3k for k = 0, 1, 2, . . . , the third row of the numbers 2 ·5+3k for k = 0, 1, 2, . . . .
In general, the i-th row for i > 1 is the set of the natural numbers of the form
(i− 1) · 5 + 3k for k > 0.

Pupils were asked to discover properties of Table 1. This task, related to a
specific number pattern, motivated all pupils (also the weakest among them) to
carry out further research. They discovered the following:

• All numbers in the first three rows are different from one another.
• The elements of the fourth row are contained in the first row; the elements

of the fifth row are contained in the second row, and the elements of the sixth row
are in the third row. In general, any element in the i-th row for i > 4 is contained
in one of the first three rows of Table 1. Therefore attention can be restricted to
the first three rows of the Table.
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• Table 1 contains 3, 5, 6 and all natural numbers n > 8. The elements of the
sequence 8, 9, 10, 11, 12, 13, . . . appear one after the other on the lines parallel
to the straight line passing through 10, 11 and 12 (see Table 2).

At this stage Table 2 was constructed. It consists of the first three rows of
Table 1 each of which is extended to the left by listing the elements 3− 3k, 5− 3k
and 10− 3k in the first, second and third row respectively for k = 1, 2, 3, . . . :

Table 2

From Table 2 it is clear that the greatest natural number which did not appear
in Table 1 is the number in the bottom row of Table 2, preceding the broken line
which separates the part of Table 2 corresponding to Table 1 from the rest. Thus,
g(3, 5) = 7.

Parts a), b) and c) of Problem 2 were revisited in the same way: Tables, similar
to Table 2 were constructed for the numbers 2a + 7b, 6a + 5b and 15a + 14b for
a, b ∈ Z. This led to the guess: g(p, q) = pq − (p + q) for any two coprime natural
numbers p and q, greater than 1.

The proof of this conjecture in the general case was carried out later with
a selected group of well advanced pupils. For this the following table has been
constructed:

Table 3

The following properties of Table 3 were verified:
(1) In each (horizontal) row the numbers are monotonously increasing when

proceeding from left to the right.
(2) In each (vertical) column the numbers are monotonously increasing when

proceeding from the top to the bottom.
(3) Let ri be the remainder of iq when divided by p for i = 0, 1, . . . , p − 1.

Then:
(i) all numbers of the i-th row have the remainder ri when divided by p;
(ii) all integers with remainder ri when divided by p are contained in the i-th row.

(4) For any two integers i1, i2, with 0 6 i1 < i2 6 p − 1, the remainders ri1

and ri2 are different. Hence {r0, r1, . . . , rp−1} = {0, 1, 2, . . . , p− 1}.
The above statements imply that Table 3 represents the set Z of all integers.

The greatest natural number not expressible as a sum aq + bp with a, b ∈ N ∪ {0}
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is in the bottom row, in front of the number (p− 1)q; that is g(p, q) = pq− (p + q).
This solves Problem 6.

Remark. Problem 6 is a special case of a number-theoretical problem stat-
ed by the German mathematician Frobenius (1849–1917): Determine the greatest
natural number n, for which the equation n =

∑k
i=1 aixi, where ai are relatively

prime natural numbers greater than 1, has no solution in the set of non-negative
integers. For k = 2 the problem was solved by Frobenius; he also showed that there
are (a1 − 1)(a2 − 1)/2 natural numbers which cannot be written in the form of the
above sum. For k = 3 the solution was found in the 1970-ies (see [2]). The case
k > 4 remains still open.

Part II

Table 1 shows that some natural numbers can be written in more than one
way as sums of numbers from the set {3, 5}. This observation led to Problem 7 for
advanced pupils aged 16–18:

Problem 7. Find the number of all representations of any natural number n
as a sum with summands from the set {1, 2}.

The following approaches to the solution of this problem were observed at work
with a group of youngsters [2]:

a) Some pupils tried to establish systematically the total number an of rep-
resentations of n as a sum of the numbers 1 and 2 for small values of n. They
obtained the following table:

number n ways of representing n as a sum an

1 1 = 1 1

2 2 = 1 + 1 2
2 = 2

3 3 = 1 + 1 + 1 3
3 = 2 + 1
3 = 1 + 2

4 4 = 1 + 1 + 1 + 1 5
4 = 2 + 1 + 1
4 = 1 + 2 + 1
4 = 1 + 1 + 2
4 = 2 + 2

. . . . . . . . .

Table 4

A glance at Table 4 reveals that there are two kinds of sums for n: sums with the
last summand equal to 1 and sums with the last summand equal to 2. There are
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an−1 sums of the first kind and an−2 sums of the second for each n > 3. Thus

(1)
an = an−1 + an−2 for n > 3,

a1 = 1, a2 = 2

The recursion formula (1) with the initial conditions a1 = 1, a2 = 2 characterizes
the famous Fibonacci numbers fn for n > 1. The Fibonacci numbers, named in
honour of Fibonacci of Pisa (1170–1240), are the members of the Fibonacci sequence
f0, f1, f2, . . . , where f0 = 1, f1 = 1 and fn = fn−1 + fn−2 for n > 2.

Thus the pupils. following this approach for the solution of Problem 7, con-
cluded that

(2) an = fn for all n ∈ N.

b) There were on the other hand youngsters who decided to classify sums
for n according to the number of summands equal to 2. It was easy to show the
following: There are

(
n−i

i

)
sums for n containing exactly i summands equal to 2, for

0 6 i 6 [n/2], where [n/2] denotes the greatest integer not exceeding n/2. Hence

(3) an =
[n/2]∑

i=0

(
n− i

i

)
.

Relationships (2) and (3) together led to the famous formula of the 19-th century
French mathematician Lucas:

(4) fn =
[n/2]∑

i=0

(
n− i

i

)
.

This formula has been now rediscovered by youngsters—a nice achievement in the
classroom.

The pupils were familiar with Pascal’s triangle consisting of the binomial co-
efficients

(
n
k

)
for n, k ∈ N ∪ {0} with n > k. Formula (4) shows that the binomial

coefficients in the sums for fn are situated on the straight lines through
(
n
0

)
, parallel

to the straight line through
(
2
0

)
and

(
1
1

)
:

Pascal’s triangle
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The above visualization of (4) resulted in attempts to generalize Lucas’ formu-
la:

Problem 8. Draw the straight line gj accross Pascal’s triangle, passing
through the entries

(
j
0

)
and

(
1
1

)
. Cover all entries of Pascal’s triangle with straight

lines parallel to gj and determine the sums of the binomial coefficients on each of
these parallel lines. These sums form a number sequence Sj . Study the properties
of Sj for various values of j.

Finally let us consider the following generalization of Problem 7:
Problem 9. Determine the number tn of the representations of any natural

number n as a sum with summands from the set {1, 2, 3}.
It can be easily shown, by constructing a table analogous to Table 4, that tn

satisfies the recursion formula

tn = tn−1 + tn−2 + tn−3 for n > 3

with the initial conditions
t0 = t1 = 1, t2 = 2.

On the other hand tn can be expressed as the sum of certain trinomial coefficients,

that is numbers of the form
p!

q! r! s!
with q + r + s = p. (These expressions are

obtained when one classifies the sums for tn with summands from {1, 2, 3} according
to the number of the summands equal to 1, 2 and 3.) It was left as an excercise
for the most advanced pupils to establish a formula for tn in terms of trinomial
coefficients.

Part III

It is important to introduce pupils at an early age to work independently,
carrying out investigations on various topics. This task is made easier by the fact
that young children possess a fair degree of intuition and phantasy enabling them
to make interesting observations and suggestions for further steps at work. Here I
will concetrate attention on two topics designed for children aged 10–13.

(a) Construction of models for polyhedra (for 10 years old pupils)
The youngsters had at their disposal a large number of congruent, equilateral

triangles cut out from a cardboard, and plenty of selotape. They were given the
following problem:

Problem 10. Construct as many different shapes as you can by sticking
together some of the triangles.

The diversity of the shapes, constructed by the pupils was amazing: they pro-
duced convex, concave and starlike bodies of various kinds. After having completed
their practical work the pupils were asked to write down their observations about
the bodies and to state with explanations which of the shapes have impressed them
most. Some of the “mathematically minded” youngsters found the bodies with 4
faces and with 8 faces especially interesting, because as they pointed out “one can
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turn them in various directions and they still look the same”. In other words they
discovered two of the Platonic solids: the regular tetrahedron and the octahedron.
The activities carried out by the pupils paved the way to the introduction of the
three remaining Platonic solids: the icosahedron (also made by congruent equilat-
eral triangles as faces), the cube (which was already well known to the children)
and the dodecahedron. There was also opportunity to mention details about Plato,
relevant to the history of Mathematics.

Some of the pupils remarked the following: All bodies constructed from trian-
gles as faces had an even number of faces. The age of the pupils did not allow me
to provide them with a proof of the general statement:

• There is no polyhedron with an odd number of faces all of which are triangles.
This can be shown at a later stage, by combinatorial arguments as follows: Let

P be a polyhedron with triangular faces. Denote by f the number of the faces and
by e the number of edges of P . We shall count the number i of the pairs of incident
faces and edges. (A pair consisting of a face and of an edge is called incident if
the edge belongs to the face.) Since each face of P has three edges, it is i = 3f .
On the other hand, since each edge belongs to two faces, we have i = 2e. Thus
the equation 3f = 2e holds. This implies that 3f must be divisible by 2; that is, f
must be an even number.

Another problem, involving models of cubes, proved to be useful in developing
spatial awareness. To start with, the pupils were acquainted with the notion of a
hexomino. A hexomino is a shape in the plane, consisting of six congruent squares
with the following properties: 1) Any square of the shape has a common edge with
at least one of the remaining squares. 2) Any two squares of the shape have either
no point, or a vertex, or an edge in common. The youngsters were asked to solve
the following problem:

Problem 11. a) Draw on a cardboard as many different hexaminoes as you
can and mark those of your drawings which in your opinion represent the net of a
cube.

b) Having done that, cut out all of your hexaminoes and fold them along edges
common to pair of squares, trying to form cubes from the folded shapes. Find out
whether you have solved correctly part a) of the problem.

(b) Application of figurate numbers in arithmetic and in algebra
In ancient Greece certain types of natural numbers were represented by pat-

terns of dots, in the shape of geometric figures. For example the numbers equal to
the products 1 · 1, 2 · 2, 3 · 3, 4 · 4, . . . were represented by dots in square arrays
(Figure 1). This representation justifies the name “square number” for a number
of the form n2, with n ∈ N.
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Fig. 1

Numbers equal to the sums 1, 1+2, 1+2+3, 1+2+3+4, . . . , were represented
by dots forming equilateral triangles:

Fig. 2

Hence the number equal to the sums 1+2+ · · ·+n was called “triangular number”.
Pupils aged 10 were presented with Figure 1. It was pointed out to them that

in any of the squares the dots in each row can be connected by a straight line
segment. In the first, second, third and fourth square each segment contains 1, 2,
3 and 4 dots respectively. Thus the total number of dots in each of the squares is
expressible as a sum of the form 1, 2 + 2, 3 + 3 + 3, 4 + 4 + 4 + 4, . . .

After that the following problem was stated:
Problem 12. a) Extend Figure 1 by drawing square arrays with 5 · 5, 6 · 6,

7 · 7 dots. b) Draw a square array consisting of 25 dots and suggest various ways
of partitioning the set of all dots enabling to express the number 25 as a sum of
natural numbers in different ways.

By joint efforts the following solutions to problem 12b) were obtained:

25 = 5 · 5 25 =
1 + 2 + 3 + 4 + 5
+ 4 + 3 + 2 + 1

25 =
1 + 3 + 5 + 7 + 9

Fig. 3
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Finally, the pupils were given:
Problem 13. a) Make drawings, similar to those in Figure 3, for various

square numbers. Use them to express the total number of dots as sums of different
types.

b) Express the number 100 as a sum of natural numbers; in how many ways
can you do this, by following the methods applied in part a) of this problem?

The solution of Problem 13 by the pupils was followed up by a discussion. It
became clear, that the pupils were aware of the validity of the formulae:

(5) 1 + 3 + 5 + · · ·+ (2n− 1) = n2

and

(6) n2 = 1 + 2 + 3 + · · ·+ (n− 1) + n + (n− 1) + · · ·+ 3 + 2 + 1.

The formal proof of the above formulae—by using mathematical induction had to
be abandoned at this stage; nevertheless the children understood their meanings.

The ancient Greeks used the number patterns for triangular and square num-
bers to prove the relations:

(7) 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

and

(8) tn + tn+1 = (n + 1)2,

where tn denotes the n-th triangular number. Their method was explained to the
pupils with the help of drawings for small values of n. Figure 4 presents proofs of
relations (7) and (8) for n = 4:

Fig. 4

Remark. Triangular numbers have more properties which can be illustrated
graphically; one of them, known already to Plutarch (about 45–120 AD) is the
following:

• n is a triangular number if and only if 8n + 1 is a square.
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12–13 years old pupils were asked to solve the following problem:
Problem 14. In Figure 5a) there are tn = 1 + 2 + · · · + n dots arranged

in the shape of a right-angled triangle ∆n. Eight copies of ∆n, together with an
additional dot, can be assembled to form a square array Q. Determine the square
number, represented by the number of the dots in Q.

b) A square array Q is constructed from k2 dots. Show that if k2 > 4, then
Q can be decomposed into eight right-angled triangles and a square containing a
single dot.

c) Deduce from a) and b) that the following assertion holds: A natural number
x is a triangular number if and only if 8x + 1 is the square of a natural number.

A solution of Problem 14 is shown for n = 4, in Figure 5.

(a) (b)
Fig. 5

In the general case the following formula can be proved:

8tn + 1 = (2n + 1)2.

It can be easily verified by the use of algebra that indeed

8 · n(n + 1)
2

+ 1 = (2n + 1)2.

Figurate numbers can be used on various occasions with more advanced pupils.
For example, square arrays of dots can be applied to find infinitely many—although
not all—solutions of “Pythagorean equation”

a2 + b2 = c2

in natural numbers a, b and c. This is done in the following way: Figure 6 shows
that

(9) n2 + (2n + 1) = (n + 1)2
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Fig. 6

for any integer n > 1. Namely, the whole square in Figure 6 contains (n+1)2 dots,
while the smaller square inside the pattern consists of n2 dots. In the “corridor”
between the two squares there are 2n + 1 dots.

In order to obtain solutions of Pythagorean equation in natural numbers n
must be chosen such that 2n + 1 is a square number. Since 2n + 1 is odd, it has to
be the square of an odd number, say 2n + 1 = (2k + 1)2. This implies that

n = 2k2 + 2k.

Thus (9) can be rewritten in the form

(2k2 + 2k)2 + (2k + 1)2 = (2k2 + 2k + 1)2.

The above identity holds for all natural numbers k.
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