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CHAPTER V. REAL NUMBERS AND POLYNOMIALS

1. Axioms of real numbers

In the present chapter we shall try to make our idea of real numbers more
precise. Our tendency will not be towards very rigorous reasoning, but we shall
only try to give enough accuracy to our notions and reasoning in this field, so that
we are able to prove statements about real numbers.

If we choose an origin and a unit on a line, we can represent real numbers as
points on the line. Thus, if we make our idea of real numbers more precise, we give
at the same time a more precise description of a line and points lying on it. In the
sequel we shall often, as an illustration, use this bijective correspondence between
real numbers and points on a line.

Let us try to take geometry as an example and bring the precision of definitions
and arguing to the level which already exists in the school geometry courses. There,
some axioms appear as the basis of all the construction, and starting from these
axioms all other statements are proved. Axioms themselves are not proved: we
take them on the basis of experiment or intuition.

In order to be more concrete, let us look at the construction of plane geom-
etry based on axioms. We can distinguish three types of logical notions. First of
all, there are basic geometrical notions—points and lines. Then, there are basic
relations: a point lies on a line; a point lies on a line between other two points.
Neither of these are defined. We think as if a “list” of all points and all lines exists
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somewhere, and we know which points lie on which lines or which triples of points
A, B, C on the line l are such that B lies between A and C. And only in third
place there are axioms, i.e., statements about basic notions and relations among
them. For instance: each two distinct points belong to exactly one line. Or: among
three distinct points on a line, there is exactly one lying between other two.

There is a complete analogy with real numbers. The basic notions here are
real numbers themselves. This means that, for the moment, we do not assume
anything more about real numbers, but only that they constitute a certain set.
Basic relations between real numbers are of two different types: operations and
inequalities. Let us describe them in more detail.

1) Operations with real numbers

For every two real numbers a and b we define a third number c, called the sum
of a and b. We write this as: a + b = c.

For every two real numbers a and b we define a third number d, called the
product of a and b. We write this as: ab = d.

2) Inequalities between real numbers

For some pairs of real numbers a and b we have that a is less than b. We write
this as: a < b. The same relation is also written as b > a. If we want to say that
a < b or a = b, we write a 6 b (or b > a).

Before we pass to the formulation of axioms connecting basic notions with
basic relations among them, let us emphasize once more the analogy with geometry.
Write analogous notions in the table:

Algebra Geometry
Basic notions

Real numbers Point, line, . . .
Basic relations

sum: a + b = c A point lies on a line.
product: ab = d Point C lies between
inequality: a < b points A and B.

. . .
Axioms

. . . . . .

There is no need to list geometrical axioms here; and axioms on real numbers shall
be listed now. They will be formulated in terms of basic notions and relations
between them, listed in the table. We group the axioms according to the basic
relations they deal with.

I (axioms of addition)

I1. Commutative law: a + b = b + a for arbitrary real numbers a and b.
I2. Associative law: a+(b+ c) = (a+ b)+ c for arbitrary real numbers a, b and c.
I3. There exists a number called zero, denoted by 0, such that a + 0 = a is valid

for each real number a.
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(Remark. There exists exactly one such number. If 0′ were another number
with the same property, we would have 0′ + 0 = 0′, by the definition of 0, 0′ + 0 =
0 + 0′ by the commutative law and 0 + 0′ = 0, by the definition of 0′. Finally, we
obtain 0′ = 0′ + 0 = 0 + 0′ = 0, i.e., 0′ = 0.)

I4. For each real number a there exists a number called opposite, denoted by −a,
such that a + (−a) = 0.
(Remark. For the given number a there exists exactly one such number.

If a′ were another number with the same property: a + a′ = 0, we would have
(a + (−a)) + a′ = 0 + a′ = a′. Also, (a + (−a)) + a′ = ((−a) + a) + a′, and by the
associative law, ((−a) + a) + a′ = (−a) + (a + a′). By the property of number a′,
a + a′ = 0 and (−a) + 0 = −a. Taking these equalities together, we obtain that
a′ = −a.)

II (axioms of multiplication)

II1. Commutative law: ab = ba for arbitrary real numbers a and b.
II2. Associative law: a(bc) = (ab)c for arbitrary real numbers a, b and c.
II3. There exists a number called unit, denoted by 1, such that a · 1 = a for an

arbitrary real number a.
(Remark. There exists only one such number. It can be proved in the

same way as the remark following axiom I3—we only have to replace addition by
multiplication, and 0 by 1.)
II4. For each real number a, different from 0, there exists a number called inverse,

denoted by a−1, such that a · a−1 = 1.
(Remark. For each real number a different from 0, there exists only one such

number. The proof is exactly the same as in the remark following axiom I4.)

III (axiom of addition and multiplication)

III1. Distributive law: (a + b)c = ac + bc for arbitrary real numbers a, b and c.

IV (axioms of order)

IV1. For any two real numbers a and b exactly one of the following three relations
holds: a = b or a < b or b < a.

IV2. If for some three real numbers a, b and c we have a < b and b < c, then a < c.
IV3. If a < b, then a + c < b + c for arbitrary three real numbers a, b and c.
IV4. If a < b and c > 0, then ac < bc for arbitrary three real numbers a, b and c.

V (real and rational numbers)

Rational numbers are contained among real numbers, and operations and
inequalities, defined for real numbers, when applied to rational ones, give
usual operations and inequalities.

VI (axiom of Archimedes)

For each real number a there exists a natural number n such that a < n.
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VII (axiom of embedded segments)

Let a0, a1, a2, . . . and b0, b1, b2, . . . be two sequences of real numbers,
satisfying a0 6 a1 6 a2 6 · · · , b0 > b1 > b2 > · · · and bn > an for each n.
Then there exists a real number c, such that bm > c and c > an for all m
and n.

If we use representation of real numbers on a line, then numbers x satisfying
the condition a 6 x and x 6 b (a 6 x 6 b for short) are represented by the set which
is called a segment and denoted by [a, b]. So, the premises of the last axiom state
that the segments In = [an, bn] are embedded one into another: I0 ⊃ I1 ⊃ I2 ⊃ · · · .
The axiom states that there exists a point (i.e., a number) which is common for all
these embedded segments (hence the name of the axiom).

All the usual properties of real numbers easily follow from the listed axioms. It
would be too boring to devote several pages to these completely obvious arguments.
Hence, we shall only formulate some assertions which we shall need later—and give
just some remarks in connection with their proofs (see also problems 2, 3, 4).

It follows from the axioms of group II that for each number a different from
0 and each number b, the number c = a−1b is the unique solution of the equation
ax = b. It is called the quotient of b and a and denoted by b

a . All the usual rules
about dealing with parentheses and fractions follow from the axioms.

Since for a natural number n the equality n = 1 + · · · + 1 (n summands) is
valid, it follows from the axioms of group III that for each number a, the number
na (product of n and a) is equal to the sum a + · · ·+ a (n summands).

Axiom IV3 implies that if a < b and c < d, then a + c < a + d < b + d. If
a < 0, then −a > 0 (because from −a < 0 it would follow 0 < 0). As a result we
conclude that each real number is either positive (a > 0), has the form −b, where
b > 0, when we say that it is negative, or it is equal to 0. Multiplication obeys the
usual “rule of signs”. As usual, we write |x| = x if x > 0 and |x| = −x when x < 0.

Axiom of embedded segments (axiom VII) is particularly useful when the
length of segment In (i.e., the difference bn − an) becomes arbitrary small when
n increases. In other words, if for an arbitrary real number ε > 0 there exists an
index N such that bn−an < ε for all n > N . In such a case one can conclude more
than just what is said in the axiom:

LEMMA 1. If differences bn − an become arbitrary small with increasing of
the index n, then number c, whose existence is guaranteed by axiom VII, is unique.

Proof. Suppose that there exist two such numbers: c and c′ and, for example,
c < c′. Then an < c < c′ < bn and c′−c = bn−an−(c−an)−(bn−c′) 6 bn−an. We
obtain (for n sufficiently large) that c′− c < ε for an arbitrary given number ε > 0.
For instance, such a relation has to be valid for ε = c′−c

2 , whence 1
2 (c′− c) < 0, but

this contradicts the fact that c′ − c > 0, 1
2 > 0.

We meet exactly this situation when we intend to measure the given real
number approximately, with deficiency or excess, using rational numbers. In that
case an and bn are rational numbers. An example is the construction of

√
2 we spoke
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about in Section 1 of Chapter I. Thus, axiom VII formulates what we intuitively
have in mind when we speak about “better and better measuring”. Together with
the preceding Lemma it gives us the possibility of constructing real numbers with
the prescribed properties. We shall often use this observation later.

Concerning axioms V and VI we just remark that we assume here natural and,
more generally, rational numbers to be known. We shall not analyse these notions
in detail.

Let us remark at the end that the given axioms are not independent. This
means that some of them could be proven as theorems, relying on other axioms (see,
e.g., problem 6). We have just gathered those properties of real numbers which we
are used to and which are intuitively convincing. Taking greater number of axioms
we obtained the right to skip not very interesting proofs of some intuitively obvious
facts.

Problems

1. Which of the axioms I–VII are also valid in the set of rational numbers,
and which are specific for real numbers?

2. Prove, using axioms I–III, that for each real number a, 0a = 0.

3. Prove that for arbitrary real numbers a and b the equation a + x = b has a
solution and that it is unique.

4. Prove that for arbitrary real numbers a 6= 0 and b the equation ax = b has
a solution and that it is unique.

5. Consider the set of rational numbers as a subset of the set of real numbers—
on the basis of axiom V. Prove that rational number 0 coincides with the real
number 0 whose existence is based on axiom I3. Do the same for rational number
1 and the real number 1 whose existence is based on axiom II3.

6. Not using axiom V, prove that numbers 0, 1, 1 + 1, . . . , 1 + 1 + · · · + 1
(n summands) are different for all natural n. Here 1 denotes the number whose exis-
tence is guaranteed by axiom II3. Hence, prove that natural numbers are contained
amongst the reals, and that operations and inequalities, defined for real numbers,
when applied to natural ones, give usual operations and inequalities. Prove after
that the assertion of axiom V. In that way, this axiom is in fact superfluous in our
list, since it could be proven on the basis of other axioms.

7. Instead of the operation of multiplication, given by definition for real num-
bers, define a new operation ¯ given by the formula a ¯ b = a + b + ab. Does it
obey the axioms of group II?

2. Limits and infinite sums

In order to illustrate the role of axiom of embedded segments as a method of
construction of new real numbers, we shall introduce several notions which will also
be useful later.
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We met in Chapter IV sequences which were bounded as well as sequences
which increased unboundedly. Consider now sequences which are decreasing. For
the sake of simplicity, consider first sequences of positive numbers and call such a
sequence unboundedly decreasing if its terms unboundedly approach zero. The exact
definition can be made analogously to the definition of unboundedly increasing
sequences, given in Section 2, Chapter IV.

A sequence an of nonnegative real numbers is said to approach zero unboundedly
if for each arbitrary small positive number ε there exists a natural number N such
that an < ε for all n > N . In such a case we also say that the sequence an tends
to 0 and denote it by: an → 0 when n →∞ (“when n tends to infinity”).

A typical example of such a sequence is the sequence an = 1
n .

Consider now a less obvious example.

LEMMA 2. If a is an arbitrary positive number smaller than 1, then the
sequence an = an unboundedly approaches 0, i.e., an → 0 when n →∞.

Really, put a = 1/A. Then A > 1 and it can be written in the form A = 1 + x
with x > 0. Using binomial formula, An = (1 + x)n = 1 + nx + y, where y is a
sum of positive numbers, so y > 0. Thus, An > 1 + nx and so for each ε > 0 there
exists such N that An > 1/ε for all n > N (this N can be found explicitly). Hence,
an < ε which means that an → 0 when n →∞.

We can generalize the previous definition to sequences (a1, a2, . . . , an, . . . )
whose terms can also be negative. Then the numbers |a1|, |a2|, . . . , |an|, . . .
are nonnegative and we can apply the previous definition to them. We shall say
that the sequence an approaches zero unboundedly, if the sequence of numbers |an|
unboundedly approaches 0. In that case one also writes an → 0 when n →∞.

Now we have come to our main definition. If for a sequence a =
(a1, a2, . . . , an, . . . ) there exists a number α, such that an − α → 0 when n → ∞,
then α is called the limit of the sequence a. One also says that the sequence an

tends to α and one writes an → α when n →∞.
Not every sequence has a limit. For example, if a sequence has a limit, then it

is bounded. Really, let αn → α when n → ∞. Then there exists an N , such that
|αn − α| < 1 for n > N . Since αn = α + (αn − α), it follows that |αn| 6 |α| + 1
for n > N and therefore |αn| 6 C for all n, where C is the maximum of numbers
|α1|, . . . , |αN |, |α|+1. But even if a sequence is bounded, it can have no limit. An
example is the sequence (0, 1, 0, 1, . . . ) where 0 and 1 alternate. If it had a limit α,
we could take in the definition of the limit ε = 1

2 and we would have |an − α| < 1
2

for all n > N . But among an’s with n > N there are both 0 and 1. Therefore we
would have |α| < 1

2 and |1− α| < 1
2 . Clearly, such a number α does not exist.

But if a sequence has a limit, this limit is unique. Namely, suppose that a
sequence (a1, a2, . . . , an, . . . ) has two limits: α and β, α 6= β. Then for each ε there
exist numbers N and N ′, such that for n > N it is |an − α| < ε and for n > N ′

it is |an − β| < ε. Let n > N and n > N ′; then |an − α| < ε and |an − β| < ε,
wherefrom |α − β| < 2ε. But ε in our reasoning is an arbitrary positive number,
and we can choose it so that ε < 1

2 |α− β|, hence a contradiction.
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As not every bounded sequence has a limit, considering just such sequences
would not lead us to the construction of new real numbers. Our main result will
be that there is a simple special type of sequences which always have limits and
therefore they will give us a method of constructing new real numbers.

A sequence (a1, a2, . . . , an, . . . ) is called increasing, if an 6 an+1 for all n, i.e.,
a1 6 a2 6 a3 6 a4 6 · · · .

THEOREM 1. Each bounded and increasing sequence of positive numbers has
a limit.

The proof will follow the logic of an anecdote which was popular when I was
a student (i.e., before the war). The story was about different ways to catch a
lion in a desert. There was a French method, method of NKVD-investigators,
mathematician’s method, . . . Mathematician’s method went like this. He divides
the desert into two parts. The lion is situated in one of these parts. He divides this
part again in two parts—and he continues like this till the lion appears in a part of
the desert whose dimensions are less than the dimensions of the cage. It remains to
put the cage around it. This was a parody to a way of proving existence theorems,
one of which we are going to demonstrate now.

Let a = (a1, a2, . . . , an, . . . ) be an increasing sequence of positive numbers. By
the assumption it is bounded, so there exists a constant C such that all an < C.
Divide the segment I1 = [0, C] into two equal parts by the number C/2. Then one
of the following is valid. Either there exists an m, such that am > C/2, and then
all an with n > m are contained in the segment [C/2, C] (since the sequence is
increasing); or an 6 C/2 for all n, and then all terms of the sequence belong to
the segment [0, C/2]. Denote by I2 one the segments, [0, C/2] or [C/2, C], namely
the one which contains all the terms of sequence a, starting from some place.
After that, divide the new segment into two parts. Obviously, we can continue
the process unboundedly and we will obtain a sequence of embedded segments
I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃ Im ⊃ · · · , where segment Ik has the length C/2k, and which
possesses the property that each segment Ik contains all the terms of sequence a,
starting from some place. By the axiom of embedded segments (axiom VII) there
exists a real number α, belonging to all the segments Ik. It is indeed the limit
of sequence a. Really, as we have seen, all the terms of sequence a, starting from
some place, belong to segment Ik, This means that for each natural number k there
exists an N such that an ∈ Ik for all n > N . But also a ∈ Ik. Since the length of
segment Ik is equal to C/2k, it follows that |an −α| < C/2k for n > N . This gives
us the property which appears in the definition of the limit, if we choose k so that
C/2k < ε. In particular, note that such a choice is always possible (the sequence(
1, C

2 , C
4 , C

8 , . . .
)

tends to 0).

Theorem 1 is particularly useful when the sequence a = (a1, a2, . . . , an, . . . ) is
the sequence of sums of a sequence of nonnegative numbers c = (c1, c2, . . . , cn, . . . )
(cn > 0), i.e., when a1 = c1, a2 = c1 + c2, . . . , an = c1 + c2 + · · · + cn. In such a
case, obviously, the sequence a is increasing. But it has to be checked (and it could
by no means be easy) whether it is bounded. For example, if in the sequence c all
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cn = 1, then an = n and the sequence a is unbounded. We considered a less trivial
example in Section 2 of Chapter IV: in the sequence c all cn = 1/n. We saw that in
that case the sequence a is also unbounded. But if we can check that the sequence
a of sums is bounded, then according to Theorem 1 it has a unique limit α. This
limit is called the sum of the sequence (c1, c2, . . . , cn, . . . ), which is denoted by

c1 + c2 + · · ·+ cn + · · · = α.

Sometimes the infinite sum c is called a series and its sum—the sum of the series.
If the sequence of sums an is bounded, then, as we have seen, the sum of the

series c1 + c2 + · · ·+ cn + · · · exists. If it is unbounded, then we say that the sum
of the series does not exist. Hence, Lemma 1, Section 2, Chapter IV, states that

the sum of the series 1 +
1
2

+
1
3

+ · · · does not exist.

Consider an example. Let a nonnegative number a, less than 1, be given, and
let c = (1, a, a2, . . . , an, . . . ). Then an = 1 + a + a2 + · · ·+ an−1 (in the n-th place
in the sequence c there appears an−1). The sum 1 + a + a2 + · · · + an−1 can be
evaluated using the formula for the sum of a geometric progression—formula (12)
of Chapter I:

(1) an = 1 + a + a2 + · · ·+ an−1 =
1− an

1− a
=

1
1− a

− an

1− a
.

We have seen that an → 0 when n → ∞, wherefrom it follows immediately that
an

1− a
→ 0 when n →∞. Thus, formula (1) gives that an → 1

1− a
. We can write

this as:

(2) 1 + a + a2 + · · ·+ an + · · · = 1
1− a

for a < 1.

The series on the left-hand side of relation (2) is called an infinite geometric pro-
gression, and formula (2) itself—the formula for the sum of an infinite geometric
progression.

But there are examples of series where existence of sums is not hard to prove,
but the explicit evaluation of the sums is much harder. For example, in Section

2 of Chapter IV we proved that the sums
1
12

+
1
22

+ · · · + 1
n2

are bounded. This

means that the sum of the series
1
12

+
1
22

+ · · ·+ 1
n2

+ · · · exists. But what is its
value? This problem attracted mathematicians in the middle of XVIII century. It
was Euler who solved it, when he found an interesting equality

(3) 1 +
1
22

+
1
32

+ · · ·+ 1
n2

+ · · · = π2

6
.

This was one of the most sensational Euler’s discoveries. Euler went even further,

evaluating the sum of the series 1 +
1
2k

+
1
3k

+ · · ·+ 1
nk

+ · · · for arbitrary even k.
It appeared that these sums were connected with the numbers of Bernoulli, which
we described in the Appendix of Chapter II. Namely, the following formula is valid
for each even k:

(4) 1 +
1
2k

+
1
3k

+ · · ·+ 1
nk

+ · · · = πk(−1)
k
2−1 Bk

2
k!.
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We know nearly nothing about analogous sums with odd k. It was proved only

recently (in 1978) that the sum 1+
1
23

+
1
33

+ · · ·+ 1
n3

+ · · · is an irrational number.
This remains probably the only known fact about these sums for odd values of k.

Let us remark that just knowing the fact that a series c1 + c2 + · · ·+ cn + · · ·
has a sum, one can deduce useful corollaries even if the value of the sum is not
known.

LEMMA 3. If the sum of the series c1 + c2 + · · · + cn + · · · exists, then the
sequence of numbers dn = cn + cn+1 + · · · unboundedly approaches 0.

We shall use an easy property of the limit. Suppose that a sequence a1, a2,
. . . , an, . . . has a limit α, i.e., an → α when n →∞. Then for each number β the
sequence β−a1, β−a2, . . . , β−an, . . . has the limit β−α. Really, the difference
β−α−(β−an) = an−α, and the difference an−α → 0, hence β−α−(β−an) → 0
when n → ∞. Denote the sum of the series c1 + c2 + · · · + cn + · · · by α and the
number c1 + c2 + · · ·+ cm by am. By the definition of the sum of an infinite series,
the sum α of the series c1 + c2 + · · ·+ cn + · · · is equal to the limit of the sequence
a1, a2, . . . , am, . . . . In the same way the sum dn of the sequence cn+1 +cn+2 + · · ·
is equal to the limit of the sequence an+1 − an, an+2 − an, . . . an+k − an, . . . . By
the remark from the beginning of the proof, the last limit is equal to α′−an, where
α′ is the limit of the sequence an+1, an+2, . . . , an+k, . . . (for fixed n). But the
limit of the sequence an+1, an+2, . . . is the same as the limit of the sequence a1,
a2, . . . , i.e., α′ = α. We obtain that dn = α − an. But, by the definition of limit,
α− an → 0, i.e., dn → 0 when n →∞.

As an example, put dn =
1
n2

+
1

(n + 1)2
+ · · ·. We see that dn → 0 when

n →∞.

Considering limits of infinite sums leads us away from algebra, which is mainly
concerned with finite expressions. These questions are closely related with another
branch of mathematics, called analysis. That is why we are not going to consider
them in more detail. Let us remark only that the most interesting results—such as
formulas (3) and (4)—appear on borders of these areas.

Problems

1. Prove that if the sum of the series c1 +c2 + · · ·+cn + · · · exists, then cn → 0
when n →∞.

2. Prove that if an < C for each n and an → α when n → ∞, then α 6 C.
Give an example when equality is obtained.

3. Let an → α when n → ∞. Put bn = a2n. Does the sequence b1, b2, . . .
have a limit and what is its value? Is it possible, from the existence of the limit
of this sequence, to conclude that the sequence a1, a2, . . . itself has a limit? If it
does have a limit, what is its value?
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4. Does there exist a limit of the sequence a1, a2, . . . where

an =
1
2
− 1

3
+ · · ·+ (−1)n

n
?

Hint. Group consecutive terms in pairs.

5. Let f(x) be a polynomial of degree d. Prove that an → 0 when n → ∞,
where an = f(n)/nd+1.

6. Find the sum of the series b + ba + ba2 + ban + · · · , where |a| < 1 and b is
arbitrary. Usually, the sequence (b, ba, ba2, . . . ) is also called an infinite geometric
progression.

7. In a square with side b, centres of the sides are joined by segments. In the
new square which is obtained in that way the same procedure is done, etc. Find
the sum of areas of all squares that can be obtained in this way.

8. Find the sum of the series
1

1 · 2 +
1

2 · 3 + · · ·+ 1
n · (n + 1)

+ · · · .

9. Construct a sequence of positive rational numbers smaller than 1, such that
an has the denominator n and which does not have a limit.

10. Prove that if the sequence a1, a2, . . . has a limit α, and the sequence
b1, b2, . . . has a limit β, then the sequence of sums a1 + b1, a2 + b2, . . . has the
limit α + β.

3. Decimal representation of real numbers

In Section 1 we described real numbers using a system of axioms. Now we are
going to show how real numbers can be given concretely. Here we shall not say
anything new—we shall speak about justification of the well known representation
of real numbers by infinite decimal fractions. But now we shall show how the
existence of such a representation can be deduced from axioms listed in Section 1.

We shall use the usual representation in which integer part can be either pos-
itive or negative, while fractional part (sometimes called the mantissa) is always
nonnegative.

Let A be an arbitrary integer (of either sign) and a1, a2, . . . , an, . . . an infinite
sequence of numbers, each of which can take one of 10 values: 0, 1, 2, 3, 4, 5, 6,
7, 8, 9. All this together will be denoted by A, a1a2a3 . . . and called an infinite
decimal fraction. For the time being it is just an infinite sequence, written in a
different way. Now we are going to show how a real number can be corresponded
to it. We define, for each index n, a number

(5) αn = A +
a1

10
+ · · ·+ an

10n
.

Obviously, the sequence α1, α2, . . . , αn, . . . is increasing. Let us prove that it is
bounded. Really, since all ai 6 9, we have

a1

10
+

a2

102
+ · · ·+ an

10n
6 9

10

(
1 +

1
10

+ · · ·+ 1
10n−1

)
.
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We apply the formula about the sum of geometric progression:

1 +
1
10

+ · · ·+ 1
10n−1

=
1− 1

10n

1− 1
10

<
10
9

and as a result we obtain that

(6)
a1

10
+

a2

102
+ · · ·+ an

10n
< 1

so that αn < A + 1.
By Theorem 1, the sequence α1, α2, . . . , αn, . . . has a limit α. Real number

α will be called the number corresponded to the infinite decimal fraction, and this
will be denoted by

(7) α = A, a1a2 . . . an . . .

Sometimes it is said that α is equal to the decimal fraction A, a1a2 . . . an . . . . This
simply means that α is equal to the sum of the infinite series A+

a1

10
+· · ·+ an

10n
+· · · .

Our next goal is to explore this correspondence between decimal fractions and
real numbers. Is it bijective? In other words: can a real number correspond to two
different decimal fractions? And is each real number corresponded to some decimal
fraction?

Consider the first question. First of all, remark that the answer is sometimes
positive. Take, e.g., the infinite decimal fraction 0, 9999 . . . , where each decimal
after the comma is equal to 9. Which real number does it represent? According

to general definition we have to consider the sequence αn =
9
10

+
9

102
+ · · ·+ 9

10n
.

This sum is easy to evaluate: according to the formula about the sum of geometric
progression (formula (12) in Chapter I) it is equal to

9
10

(
1 +

1
10

+ · · ·+ 1
10n−1

)
=

9
10

1− 1
10n

1− 1
10

=
9
10

1− 1
10n

9
10

= 1− 1
10n

.

Obviously, the limit of the sequence α1, α2, . . . , αn, . . . is equal to 1, so that
1 = 0, 9999 . . . . But, on the other hand, surely 1 = 1, 00 . . . , where in front of the
comma there is just 1, and after it all zeros. In such a way, the same real number
1 is corresponded to two distinct infinite decimal fractions.

It is clear that one can construct a lot of examples of the same kind. In general,
such an example has the following form. Let an infinite decimal fraction has the
form A, a1 . . . ak99 . . . , i.e., suppose that starting form some place (in our case from
the (k + 1)-st one) all the decimals are equal to 9. We can assume that ak 6= 9,
i.e., k-th is the first place after which all the 9’s follow. Then, literally repeating
previous reasoning, one can conclude that this fraction is equal to the same number
as the fraction A, a1 . . . ak−1(ak +1)000 . . . , in which all the decimals after the k-th
one are equal to 0. A fraction having all the decimals 9, starting from some place,
is said to have 9 as a period. We have seen that for such fractions one-to-one
correspondence between fractions and real numbers is violated.

It is a bit of a surprise that such violation appears only in those cases.
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THEOREM 2. Two distinct infinite decimal fractions, neither of which has 9
as a period, are corresponded to distinct real numbers.

The proof can be obtained easily if we connect our construction of a real
number, defined by a decimal fraction, with the usual measuring of numbers with
accuracy of 1/10m, with deficiency and excess. One has to divide the line into
segments of the length 1/10m, whose endpoints are rational numbers with denom-
inator 10m. Then each point from the line, that is, each real number, falls in one
of the segments. The endpoints of the segment give a measure of the number, with
deficiency and excess and accuracy of 1/10m. However, violating of one-to-one cor-
respondence appears because of the endpoints of segments themselves. To which of
the segments, left or right, is each of these points corresponded? This is the same
problem which appears in connection with number 9 in the period. We are going
to show that our choice (without 9 in periods) corresponds to the case when the
endpoints of segments are always attached to segments on the right-hand side. In
other words, the constructed numbers αm and the number α which they define are
connected by the relation

(8) αm 6 α < αm +
1

10m
.

(The fact that numbers αm are rational with the denominators of the form 10m

follows from their form (5).)
Remember that number α was defined as the limit of the sequence α1, α2, . . . ,

αn, . . . . All numbers αn with n > m, obviously satisfy the condition αn > αm.
Hence, such an inequality is valid for their limit α. Really, from the assumption
α < αm we could deduce that αn−α = (αn−αm)+(αm−α) > αm−α for all n > m.
But, by the definition of limit, the absolute value of the number αn − α is smaller
than an arbitrary given positive number for n large enough. This contradicts the
fact that it is not smaller than the fixed positive number αm−α (see Problem 2 in
Section 2).

In this way the left-hand inequality in (8) is proved. The right-hand one can
be proved similarly, if the sign < is replaced by 6. Namely, for each n > m we
have

(9) αn = αm +
am+1

10m+1
+ · · ·+ an

10n
6 αm +

1
10m

(am+1

10
+ · · ·+ an

10n−m

)

and applying inequality (6) we conclude that αn < αm + 1
10m . Repeating the

previous reasoning we obtain that α 6 αm + 1
10m .

But, if we want to obtain the right-hand inequality in (8) with the sign <, we
have to use the fact that the fraction A, a1a2 . . . does not have 9 as a period. The
proof is only a bit more complicated. Let us prove the right-hand inequality in (8)
for fixed index m. We shall use the fact that the decimal fraction does not have 9
as a period. That means that somewhere after am there has to appear a digit ak

different from 9. For an arbitrary n > k we can write

αn = αm + (am+1/10m+1 + · · ·+ ak/10k) + (ak+1/10k+1 + · · ·+ an/10n).
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As before, we see that

ak+1/10k+1 + · · ·+ an/10n 6 1/10k

and so
αn 6 αm + (am+1/10m+1 + · · ·+ (ak + 1)/10k).

Since ak 6= 9, the digit ak + 1 is one of the digits 1, 2, . . . , 9. Put

c = am+1/10 + · · ·+ (ak + 1)/10k−m.

We can repeat our reasoning once more and obtain that c < 1. Number c depends
only on the choice of m and k, and not on n. Hence, replacing αn by its limit α,
we obtain, as before, α 6 αm + c/10m < αm + 1/10m.

That proves inequality (8).
It follows right away from the inequality (8) that to each two distinct decimal

fractions, not having 9 as a period, there correspond two distinct real numbers.
Let, to the contrary, the same number α corresponds to fractions A, a1a2 . . . and
A′, a′1a

′
2 . . . . Then together with inequalities (8) we have relations

α′m 6 α < α′m +
1

10m
,

where α′m = A′+
a′1
10

+· · ·+ a′m
10m

. Let α′m 6= αm and α′m > αm. From these relations

it follows that α′m < αm + 1
10m , i.e., α′m − αm < 1

10m . But this contradicts the
fact that αm and α′m are distinct rational numbers having the same denominator
10m. Hence, α′m = αm for all m. But numbers am are uniquely determined by the
numbers αm, since αm − αm−1 = am/10m. Thus, they coincide in both fractions,
too.

We pass now to the second question: does every real number correspond to
some infinite decimal fraction? As well as the answer, the method of proof is already
known to us. We just want to convince ourselves that the reasoning can be based
on the axioms we formulated.

First of all, let us remark that each real number α is situated between two
consecutive integers, i.e., there exists an integer A, such that A 6 α < A + 1. Let,
for start, α be positive. Applying Archimedes’ axiom, we conclude that there is an
integer n such that α < n. Obviously, n > 0, and since there exist only a finite
number of natural numbers not exceeding n, there also exists the last (the smallest)
one with that property. Denote this number by m. Then α < m, but m − 1 does
not possess this property; that means m − 1 6 α < m and A = m − 1 has the
desired properties. If α is negative, we put α′ = −α. Then α′ > 0 and we can apply
our procedure: there exists n such that n 6 α′ < n + 1. Axiom IV3 implies that
−(n + 1) < α 6 −n. If α′ 6= n, we can put A = −(n + 1) and A < α < A + 1. If
α′ = −n, then we have to put A = −n. And so, for each real number α there exists
an integer A such that A 6 α < A + 1, hence α can be represented as α = A + ε,
where 0 6 ε < 1.

Now observe that if some three numbers a1, a2, a3 satisfy a1 < a2 and a2 < a3,
then for each α satisfying conditions a1 6 α < a3, one of the following conditions
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must be satisfied: either a1 6 α < a2 or a2 6 α < a3. The fact is demonstrated
in Fig. 1 where the interval [a1, a3) is simply the union of the intervals [a1, a2) and
[a2, a3). Formally, it is a consequence of the fact that for each α exactly one of the
relations α < a2, a2 < α and a2 = α holds.

Fig. 1

Consider a more general case. Let the following conditions be satisfied for n
numbers α1, . . . , αn: α1 < α2, α2 < α3, . . . , αn−1 < αn. Then for each number
α, satisfying α1 6 α < αn, one of the conditions αi−1 6 α < αi (i = 2, 3, . . . , n) is
valid. In order to prove it one just has to apply the previous assertion to the case
of three numbers α1, α2, αn. Then either α1 6 α < α2 (and our statement is valid
for i = 2), or α2 6 α < αn. In the latter case consider numbers α2, α3, αn, etc.
For some i we come to the desired condition αi−1 6 α < αi.

We can return now to our original question. We have already proved that
each real number α can be represented in the form A + ε, where A is an integer

and 0 6 ε < 1. Consider now numbers
k

10
, k = 0, 1, . . . , 10. According to the

previous result, we can conclude that
k

10
6 ε <

k + 1
10

for some k, 0 6 k < 10.

Denoting this number by a1, we can write ε =
a1

10
+ ε1, where 0 6 ε1 <

1
10

.

Hence, α = A +
a1

10
+ ε1. Continuing the process, we obtain numbers a1, . . . ,

an, . . . , where always 0 6 ai 6 9, and the sequence α1, α2, . . . , αn, . . . , where
αn = A +

a1

10
+ · · · + an

10n
, has the limit α, i.e., the number α is corresponded to

the infinite decimal fraction A, a1a2 . . . an . . . .
Summing up, one can say that forming infinite decimal fractions for real num-

bers does not establish a one-to-one correspondence between infinite decimal frac-
tions and real numbers, but such a correspondence becomes one-to-one if we exclude
those decimal fractions which have 9 as a period.

Problems

1. Prove that a real number α corresponds to an infinite decimal fraction
having 0 as a period if and only if α is a rational number a/b where a and b are
integers such that just 2 and 5 can be prime factors of b.

2. When finding the infinite decimal fraction which corresponds to a rational
number a/b, it is enough to find the mantissa, so we can assume that 0 < a < b.
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Let αn =
a1

10
+

a2

102
+ · · ·+ an

10n
, where 0, a1a2 . . . is the infinite decimal fraction

corresponding to the number a/b. Prove that
a

b
− αn =

rn

10nb
, where 0 6 rn < b

and the numbers rn are connected by the relation 10rn−1 = ban + rn, i.e., an is
the quotient and rn the remainder when 10rn−1 is divided by b. Convince yourself
that this method of successive evaluation of digits an of a decimal fraction agrees
with the usual division algorithm.

3. Prove that the infinite decimal fraction corresponding to a rational number
is periodic, i.e., it has the form (∗∗ · · · )(P)(P) · · · , where (∗∗ · · · ) denotes a certain
finite group of symbols, after which the group of symbols (P), called the period,
repeats. Hint. Use Problem 2 (i.e., the division algorithm) and note that the
possible number of remainders when 10rn−1 is divided by b is finite (not greater
than b).

4. Prove that if the denominator b of the fraction a/b is relatively prime with
10, then the period begins immediately after the comma.

5. Under the assumptions of Problem 4, prove that the number of digits in
the period is equal to the smallest number k for which 10k − 1 is divisible by b.

6. Under the assumptions of Problems 4 and 5, prove that the number of digits
in the period is not greater than the number of natural numbers not exceeding b
and relatively prime with b. This number is given by formula (25) of Chapter III.

7. Prove that each periodic infinite decimal fraction corresponds to a rational
number A. Namely, if A, a1a2 . . . an stays in front of the period (p0, p1, . . . , pm−1),
and A +

a1

10
+ · · ·+ an

10n
= Q, p010m−1 + p110m−2 + · · · + pm−1 = P, then the

rational number corresponding to the given fraction is Q +
P

10n(10m − 1)
.

8. Prove that the infinite decimal fraction 0, 1010010001 . . . , where the number
of zeros between two consecutive 1’s increases by 1 each time, corresponds to an
irrational number.

4. Real roots of polynomials

Having made a firmer basis for the theory of real numbers, we can now obtain
some new results about real roots of polynomials with real coefficients. In order
to do this, we have to investigate first the behaviour of a polynomial f(x) in the
neighbourhood of a value x = a.

THEOREM 3. For each polynomial f(x) and each number a there exists a
constant M , such that the inequality

(10) |f(x)− f(a)| 6 M |x− a|
is valid for all x such that |x− a| 6 1.

Remember that |A| (read as “absolute value of number A”), by the definition,
is equal to A if A > 0 and to −A if A < 0. It follows that |A| is always a nonnegative
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number. From school courses it is known that

|A + B| 6 |A|+ |B|(11)

|A + B| > |A| − |B|(12)

|AB| = |A| · |B|.(13)

Theorem 3 gives a quantitative estimate of how much f(x) differs from f(a)
if x slightly differs from a. In order to prove the theorem, put y = x − a, i.e.,
x = a + y and substitute this value into the polynomial f(x). Each term akxk of
the polynomial f(x), after the substitution, gives the expression ak(a + y)k, which
can be written as a sum of powers of y and then similar terms in f(a + y) can be
reduced. As a result we obtain that f(a+ y) is a polynomial in y, which we denote
by g(y) = c0 + c1y + · · ·+ cnyn. Then f(x) = f(a + y) = g(y), f(a) = f(a + 0) =
g(0) = c0, x− a = y and inequality (10) which we intend to prove becomes

(14) |g(y)− g(0)| 6 M |y|
for all y satisfying |y| 6 1.

In the transformed form, the expression g(y) − g(0) acquires a simple form
c1y+ · · ·+cnyn (since g(0) = c0). Inequality (11) can be applied also to a sum with
an arbitrary number of summands (which can be proved directly by induction) and,
in particular, to our sum c1y + · · ·+ cnyn. We obtain that

|g(y)− g(0)| = |c1y + · · ·+ cnyn| 6 |c1y|+ · · ·+ |cnyn|.
Using equality (13) (also applied to an arbitrary number of factors), |ckyk| = |ck| ·
|y|k, so that

|g(y)− g(0)| 6 |c1||y|+ · · ·+ |cn||y|n.

Since, by the assumption, |y| 6 1, we have |y|k 6 |y| and

|g(y)− g(0)| 6 (|c1|+ · · ·+ |cn|)|y|
for |y| 6 1.

It is enough to put M = |c1|+ · · ·+ |cn| to obtain inequality (14), which also
means inequality (10).

Now we are able to prove an important property of polynomials.

THEOREM 4. (Bolzano’s theorem) If a polynomial for x = a and x = b takes
values with opposite signs, then it takes the value 0 somewhere between a and b.

In other words, if for a polynomial f(x) values f(a) and f(b) are numbers of
opposite signs and a < b, then there exists c, such that a < c < b and f(c) = 0.

Theorem 4 appears rather obvious if one looks at the graph of the polynomial
f(x) (Fig. 2). It states that the graph cannot “jump” across the x-axis without
intersecting it. On the other hand, it is completely possible to draw such a graph
(Fig. 3). So, we have to prove that such a graph cannot be the graph of a polyno-
mial. For more general functions it is connected with a rather involved property
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Fig. 2 Fig. 3

which is called continuity. In the case of polynomials it is enough to use the easy
inequality (10), proved in Theorem 3.

The proof is based on the same principle of “catching a lion in a desert”, we
have already used for proving Theorem 1.

Suppose, for example, that f(a) > 0, f(b) < 0. Consider the segment [a, b]
(i.e., the set of real numbers x satisfying a 6 x and x 6 b). Denote this segment by
I1 and divide it into two segments of equal length by the point r = a+b

2 . If f(r) = 0,
then the theorem is proved (c = r). If f(r) 6= 0 and, for example, f(r) > 0, then
the polynomial f(x) takes values of opposite signs for x = r and x = b. Denote
then by I2 the segment [r, b]. If that f(r) < 0, then the segment [a, r] will be
denoted by I2. In any case we obtain a segment I2 contained in I1, having two
times smaller length, and having again the property that the polynomial f(x) has
values of opposite signs at its endpoints—namely, positive at the left-hand end and
negative at the right-hand one.

This process can be continued. Either we shall at some moment reach a root of
the polynomial f(x) (and the theorem will be proved), or the process shall continue
unboundedly. It remains to consider the latter case. We obtain an infinite sequence
of embedded segments I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · , In = [an, bn], such that each of
them is of half-a-length of the previous one, and the polynomial f(x) takes values
of opposite signs at the endpoints an and bn of each segment In, more precisely,
f(an) > 0, f(bn) < 0. Now we are going to use the more precise definition of real
numbers we gave in Section 1. Segments In satisfy the prepositions of Axiom VII
(axiom of embedded segments) and Lemma 1 of Section 1. Really, segments In are
embedded one into another, by their construction, and since In is half-of-length of

segment In−1, its length is equal to
b− a

2n−1
, and so this length becomes unboundedly

small when n increases. Hence, according to Axiom VII and Lemma 1, there exists
a unique number c, belonging to all segments In, i.e., such that

(15) an 6 c 6 bn.

In this way we have constructed the number c which we searched for. Namely, we
now prove that f(c) = 0.

Consider the values f(an) of the polynomial f(x) at the left-hand endpoints
of segments In. By the assumption, all f(an) > 0. Inequality (11) implies that the
sequence a1, a2, . . . approaches the number c unboundedly: really, an 6 c 6 b and
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0 6 c − an 6 bn − an, where, by the assumption, bn − an =
b− a

2n−1
. Therefore the

inequality |an − c| < ε will be satisfied if
b− a

2n−1
< ε, and this will be valid for each

ε > 0 if n is chosen large enough. Let us prove that it follows from this that the
values f(an) approach the value f(c) unboundedly. Really, in order to prove that
|f(am)− f(c)| 6 ε for m large enough, we can use inequality (10) from Theorem 3.
Since am approaches c unboundedly, we have |am − c| < 1 for m large enough,
and we can apply inequality (10). We see that |f(am)− f(c)| < M |am − c| and so
|f(am)− f(c)| < ε if M |am− c| < ε, i.e., if |am− c| < ε/M . But we have convinced
ourselves that this inequality is valid for m large enough (since ε/M can again be
denoted by ε!).

What can be said about the number f(c), which is known to be the limit of
the sequence of positive numbers f(an)? Clearly, f(c) > 0. Really, if f(c) were
negative, than for positive f(an) we would have f(an) − f(c) > −f(c), and hence
|f(an)− f(c)| > −f(c), but this would contradict the fact that |f(an)− f(c)| < ε
if ε < −f(c).

We have thus proved that f(c) > 0. Following exactly the same arguments,
considering numbers bn satisfying f(bn) < 0, we can prove that f(c) 6 0. Therefore,
for the number f(c) only one possibility remains—f(c) = 0. The theorem is proved.

One should pay attention to a completely new way of reasoning in proving this
theorem. We have proved in fact (under certain conditions) the existence of a root
of the polynomial f(x). But we have not done it using any kind of formula (as,
for example, when solving a quadratic equation) but using the axiom of embedded
segments. But, at the same time, it is by no means a pure “theorem of existence”,
where we know only that a certain quantity exists—and nothing more than that.
For example, we can in fact find the root c with deficiency and excess and with
an arbitrary prescribed accuracy, constructing numbers an and bn such that c lies
between them (inequality (15)) and which get closer and closer to each other.

Bolzano’s theorem gives us the possibility to know a lot about concrete poly-
nomials. Consider, for example, the polynomial f(x) = x3 − 7x + 5 and make a
table of its values for integer values of x, with small absolute values (Table 1). One
can see from the table that the polynomial f(x) takes values of opposite signs at
the ends of the segments [2, 3], [0, 1] and [−3,−2]. By Bolzano’s theorem it has a
root in each of these segments. Hence, the polynomial f(x) has at least three roots.
But its degree is equal to 3 and by Theorem 3 of Chapter II it cannot have more
than 3 roots. We have proved that the polynomial f(x) has exactly 3 roots and
they lie in segments [2, 3], [0, 1] and [−3,−2].

x −3 −2 −1 0 1 2 3

f(x) −1 11 11 5 −1 −1 11

Table 1.

There are some other polynomials for which Bolzano’s theorem gives the precise
answer, too. An important case is the polynomial xn − a whose roots are called
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“roots of a of degree n” (denoted as n
√

a). Consider first the case when a > 0. Then
the polynomial f(x) = xn−a takes for x = 0 negative value −a. On the other hand,
it is easy to find a value x = c such that f(c) > 0 Really, by Archimedes’ axiom
(Axiom VI) there exists a natural number m such that m > a. Then mn > m and
mn− a > m− a > 0. Using Bolzano’s theorem, we can state that there is a root of
the polynomial in the segment [0, m]. If, on the other hand, a < 0 and n is even,
then such polynomials obviously do not have roots: xn > 0 as an even power of
a real number, and xn − a > 0. If n is odd, then putting x = −y we obtain that
xn− a = −yn− a = −(yn + a). The polynomial yn + a (for a < 0), as we have just
proved, has a root, and so the same is true for the polynomial xn − a. In school
courses these arguments are usually omitted (because of the lack of a precise theory
of real numbers), but it is proved (very easily) that for n odd the polynomial xn−a
does not have more than one root (as we have seen—it has exactly one) and that
for n even and a > 0—not more than two roots which differ only in the sign (which
means it has exactly two roots).

But in the case of other polynomials, it can happen that Bolzano’s theorem
does not give anything. Take as an example the polynomial x2 − x + 2. Using the
formula for solutions of quadratic equation we can conclude that this polynomial
has no real roots. But if we tried to give values 0, ±1, ±2, . . . to the argument x,
we would obtain only positive values, and Bolzano’s theorem wouldn’t give us
anything. Therefore, we will try now to explore polynomials more thoroughly.

Theorem 3 estimates values of a polynomial for values of x being close to
a certain value a. We shall prove now a similar assertion about values of the
polynomial for large (by absolute value) values of x.

THEOREM 5. For the polynomial f(x) = a0 + a1x + · · ·+ anxn there exists a
constant N > 0 such that

(16) |a0 + a1x + · · ·+ an−1x
n−1| < |anxn|

for all values of x such that |x| > N .

The theorem states that for sufficiently large values of x, the absolute value
of the leading term exceeds the absolute value of the sum of all other terms. In
order to prove this, we use inequality (11) (for an arbitrary number of summands)
and equality (13). It follows from them that |a0 + a1x + · · ·+ an−1x

n−1| 6 |a0|+
|a1||x|+ · · ·+ |an−1||x|n−1, and |anxn| = |an||x|n. In order to prove inequality (16)
it is enough to convince oneself that |a0| + |a1||x| + · · · + |an−1||x|n−1 6 |an||x|n,
and this will be proved if we show that

(17) |ak||x|k <
1
n
|an||x|n

for each k = 0, 1, . . . , n− 1 and |x| > N for N large enough. Then, summing up all
the inequalities (17) for k = 0, 1, . . . , n− 1 we obtain the inequality we needed.

Inequality (17) can be solved in the usual way. It is equivalent to
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|x|n−k >
n|ak|
|an| , i.e.,

(18) |x| > n−k

√
n
|ak|
|an| .

Therefore, it is enough to choose for N an arbitrary number larger than all the

numbers n−k

√
n
|ak|
|an| , k = 0, 1, . . . , n − 1, and it will satisfy the assertion of Theo-

rem 5.
Theorem 5 has a lot of useful corollaries. Note first that under the assump-

tions of the theorem (i.e., for |x| > N) we always have |f(x)| > 0, which follows
immediately from inequality (12)

|f(x)| = |a0 + a1x + · · ·+ anxn| 6 |anxn| − |a1 + a1x + · · ·+ an−1x
n−1|.

But this means that the polynomial f(x) does not have roots x with |x| > N .
In other words, roots of a polynomial (if they exist) have to be contained in the
segment |x| 6 N , where, as we have shown (inequality (18)) N can be chosen as

the greatest of the numbers n−k

√
n
|ak|
|an| . One calls such a number N the bound of

roots of the polynomial. So, for the polynomial x3 − 7x + 5 one can take for N an
arbitrary number greater than 3

√
3 · 5 and

√
3 · 7. For example, N = 4,6 satisfies

the conditions. This means that all roots of the polynomial are distributed between
−4,6 and 4,6. We have convinced ourselves earlier that they are in fact contained
between −3 and +3 (Table 1).

Theorem 5 implies more that just the assertion that f(x) 6= 0 if |x| > N , for
the found value of N . To evaluate the value of a0 + a1x + · · ·+ an−1x

n−1 + anxn

means to sum up two real numbers a0 + a1x + · · · + an−1x
n−1 and anxn, first of

which is smaller (by absolute value) than the other (for |x| > N). But then the
sign is determined by the sign of the second summand. We come to the following
conclusion:

COROLLARY 1. For |x| > N , where N is the bound of roots defined in Theo-
rem 5, values of the polynomial f(x) have the same sign as the leading term anxn.

Suppose that the degree n of the polynomial is odd. Then the sign of the
leading term anxn for x > 0 agrees with the sign of the coefficient an, and for
x < 0 it is opposite. Corollary 1 shows that for x > N and x < −N the polyno-
mial itself acquires values of opposite signs (namely, the signs of an and of −an).
Bolzano’s theorem implies that between these values there is at least one root of
the polynomial. We obtained the following proposition:

COROLLARY 2. Each polynomial of odd degree has at least one root.

This is really an unexpected result. In fact, you know that a polynomial of
the second degree may have no roots (e.g., the polynomial x2 + 1). One may think
that the same could happen to polynomials of greater degrees: 3, etc. But here,
according to the corollary, a polynomial of the third degree always has a root. The
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situation appears more complicated; it depends not on how large the degree of the
polynomial is, but on its parity.

Finally, consider one more property of polynomials, which can make inves-
tigations in some cases much easier. Theorem 3 gave us information about the
absolute value of the difference f(x)− f(a) when the difference x− a is small. We
shall investigate now the sign of the difference f(x)− f(a). Here we shall exclude
the cases when the value x = a appears to be a root of the derivative f ′(x) of the
polynomial f(x). These special values of a could be investigated easily in the same
manner, but we will not need this at the moment.

THEOREM 6. Let a polynomial f(x) be given and take a value x = a which
is not a root of its derivative f ′(x) (i.e., f ′(a) 6= 0). If f ′(a) > 0, then the values
f(x) for x close, but to the left of a, are smaller than f(a), and for x close, but
right of a, are greater than f(a). If f ′(a) < 0, then the situation is opposite.

f ′(a) > 0 f ′(a) < 0
Fig. 4 Fig. 5

This means that there exists sufficiently small ε > 0 (depending on f(x) and
on a), such that when f ′(a) > 0, for a − ε < x < a we have f(x) < f(a), and for
a < x < a + ε, we have f(x) > f(a). If, however, f ′(a) < 0, then for a− ε < x < a
we have f(x) > f(a), and for a < x < a + ε, we have f(x) < f(a) (see graphs of
f(x) on Figs. 4 and 5).

The proof is quite easy. We know by Bezout’s theorem that the polynomial
f(x)− f(a) is divisible by x− a. Therefore

(19) f(x)− f(a) = (x− a)g(x, a),

where the coefficients of the polynomial g(x, a) depend on a. For x = a the poly-
nomial g(x, a) takes the value f ′(a) (this was just our definition of the derivative
of a polynomial, see formula (13) of Chapter II). By the assumption, f ′(a) 6= 0,
and so g(a, a) = f ′(a) 6= 0. Denote by ε an arbitrary number, smaller than the
distance from a to the nearest root of the polynomial g(x, a) (here, a is fixed and
x is the unknown), so that the polynomial g(x, a) does not vanish on the segment
[a− ε, a+ ε]. Then it preserves the same sign on this segment as it has for x = a: if
it acquired two values of opposite signs, then by Bolzano’s theorem it would vanish
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somewhere inside the segment, which would contradict the choice of the number ε.
This contains in fact the assertion of Theorem 6. Let, for example, f ′(a) > 0.
Then g(a, a) = f ′(a) > 0, too, and according to what was said, g(x, a) > 0 for
a−ε < x < a+ε. The other factor x−a in formula (19) also behaves in the known
way: x − a < 0 for a − ε < x < a and x − a > 0 for a < x < a + ε. Multiplying,
we obtain from formula (19) that f(x) − f(a) < 0 for a − ε < x < a + ε and
f(x)− f(a) > 0 for a < x < a + ε. This is really the assertion of the theorem. The
case f ′(a) < 0 is treated completely analogously.

The theorem we have just proved has an interesting corollary.

THEOREM 7. (Rolle’s theorem) Between two adjacent roots of a polynomial,
not having multiple roots, there is always a root of its derivative.

We assume that our polynomial does not have multiple roots only to make
argument shorter. Anyway, this will be the only case that we shall need later.

f ′(α) > 0, f ′(β) > 0 – impossible f ′(a) > 0, f ′(β) < 0 – possible
Fig. 6 Fig. 7

Let α and β, α < β, be two adjacent roots of the polynomial f(x), so it has
no roots lying between them. Since we have assumed that the polynomial has no
multiple roots, α and β are not multiple roots and by Theorem 5 of Chapter II,
f ′(α) 6= 0, f ′(β) 6= 0. Let, for example, f ′(α) > 0. Let us prove that then f ′(β) < 0.
Really, if f ′(β) > 0, then by the preceding theorem we would have f(x) > f(α) = 0
for α + ε > x > α and f(y) < f(β) = 0 for β − ε < y < β. Then, for arbitrary
x satisfying α + ε > x > α and for arbitrary y, satisfying β − ε < y < β, we
would have f(x) > 0 and f(y) < 0. Then Bolzano’s theorem would imply that the
polynomial f had a root lying between x and y, i.e., in the segment [α, β]. But this
would contradict the fact that α and β, as we assumed, were adjacent roots of the
polynomial f(x). We see that there remains the only possibility that f ′(β) < 0,
but then by Bolzano’s theorem the polynomial f ′(x) has a root between α and β.
On Figs. 6 and 7 an impossible and a possible case of signs for f ′(β) (if f ′(α) > 0)
are demonstrated. The case when f ′(α) < 0 can be considered literally in the same
way.

At the end of this Section we shall show that the theorems we have proved
are already sufficient to solve completely the question about the number of roots
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for a polynomial of the third degree. In Section 3 of Chapter II we saw that each
equation of the third degree can be replaced by an equivalent equation of the form
x3 + ax + b = 0. We shall investigate such a form in the sequel.

First of all let us solve the question about multiple roots. We proved in section
2 of Chapter II that multiple roots of a polynomial are in fact joint roots of the
polynomial and its derivative. According to formula (15) of Section II, for the
polynomial f(x) = x3 + ax + b the derivative is equal to f ′(x) = 3x2 + a. If a > 0,
then the derivative has no roots and this means that the polynomial f(x) has no
multiple roots. If a < 0, then denote by δ the positive root of the polynomial
3x2 + a (i.e., δ =

√
−a/3). Then the polynomial f(x) can have as a multiple root

only one of the numbers δ or −δ. Since the polynomial f(x) can be written in the
form f(x) = (x2 + a)x + b and for x = ±δ, x2 = −a/3 and x2 + a = 2a/3, then the
condition that f(x) has a multiple root takes the form ±δ 2a

3 = −b, i.e., δ2 4a
9 = b2,

and since δ2 = −a/3, the condition becomes − 4a3

27 = b2, i.e., 4a3 + 27b2 = 0. If
this condition is satisfied, then the polynomial has a multiple root α and may be
represented in the form f(x) = (x − α)2g(x). Here the polynomial g(x) has to be
of the first degree which means that it has a single root β. Thus, the polynomial
f(x) has two roots equal to α, and one root equal to β.

Consider now the remaining case when the polynomial f(x) does not have
multiple roots, i.e., 4a3 + 27b2 6= 0. According to Corollary 2 of Theorem 5, the
polynomial f(x) has at least one root α. If it has another root β, then it must be
divisible by (x− α)(x− β), i.e., it has the form f(x) = (x− α)(x− β)g(x), where
g(x) is a polynomial of the first degree and therefore it has a root γ. In such a way,
the polynomial f(x) has three roots: α, β and γ. It cannot have more than three
roots. We conclude that only two things can happen: either the polynomial f(x)
has 1 root or the polynomial f(x) has 3 roots. Our problem is to find out which of
the cases takes place (for given coefficients a and b).

Fig. 8

Suppose that the polynomial f(x) has three roots: α, β and γ, where α < β <
γ. This means that the polynomial does not have roots smaller than α and larger



24 I. R. Shafarevich

than γ. But according to Corollary 1 of Theorem 5 there exists a number N such
that for x large enough (more precisely, for x > N), the values of the polynomial
have the same sign as the values of the leading term x3—i.e., they are positive, and
for x 6 −N they are negative, for the same reason. Hence, for x < α it is always
f(x) < 0, and for x > γ it is always f(x) > 0 (Fig. 8).

Since we have f(x) < 0 for α − ε < x < α and arbitrary ε > 0, according to
Theorem 6, f ′(α) > 0 and so f(x) > 0 for α < x < α + ε. Since f(x) has no roots
between α and β, by Bolzano’s theorem its values are of the fixed sign, so f(x) > 0
for α < x < β. Analogously, we obtain that f(x) < 0 for β < x < γ. According to
Theorem 7, between the roots α and β, and also between the roots β and γ, there
is a root of the derivative f ′(x) of the polynomial f(x). Since f ′(x) = 3x2 + a,
for a > 0 the derivative has no roots and such a case (existence of three roots
of the polynomial f(x)) is impossible. For a = 0, f(x) = x3 + b. As we have
seen earlier, such a polynomial has only one root. Finally, if a < 0, the derivative
f ′(x) = 3x2 + a has two roots: δ > 0 and −δ < 0 (here, δ =

√
−a/3). Obviously,

α < −δ < β < δ < γ.
Since the polynomial takes positive values on the interval (α, β), and negative

values on the interval (β, γ), we have

(20) f(−δ) > 0, f(δ) < 0

(under the preposition that the polynomial f(x) has three roots).
Conversely, if conditions (20) are satisfied, then by Bolzano’s theorem the

polynomial f(x) has a root lying between −δ and δ. Denote this root by β. Besides,
according to Corollary 1 of Theorem 5, for x sufficiently large, the polynomial
takes positive values, and for x sufficiently small it takes negative values. Bolzano’s
theorem implies then that the polynomial has a root smaller than −δ, and also a
root greater than δ. Denote these roots by α and γ, respectively. Thus, conditions
(20) imply that the polynomial has 3 roots: α, β and γ. In other words, conditions
(20) are necessary and sufficient for the polynomial f(x) to have 3 roots. In all
other cases it has 1 root.

The assertions we have just proved solve our problem. We will only transform
conditions (20) into a simpler form. Since f(x) = (x2 + a)x + b and 3δ2 + a = 0,
δ2 = −a/3, we have f(±δ) = (δ2 + a)(±δ) + b = ±δ 2a

3 + b and so conditions (20)
acquire the form

−2a

3
δ + b > 0,

2a

3
δ + b < 0,

i.e.,
2a

3
δ < b < −2a

3
δ. These inequalities are equivalent to just one: b2 <

4a2

32
δ2.

Since
4a2

32
δ2 = − 4a3

27b2
, conditions (20) are equivalent to the inequality 4a3+27b2 <

0. This is in fact the final answer: if 4a3 +27b2 < 0, then the polynomial x3+ax+b
has 3 roots, if 4a3 + 27b2 = 0, it has two equal roots and one other root, and if
4a3 + 27b2 > 0, then it has only 1 root.

Clearly, all that has been said applies only to a polynomial of the third degree.
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For polynomials of arbitrary degrees analogous investigations can be done, but
arguments are a bit more complicated, so we shall leave them for the Appendix.

Problems

1. We proved at the end of Chapter I that the polynomial x3 − 7x2 + 14x− 7
has no rational roots, so its roots—if they exist—are irrational numbers. Determine
the number of roots of this polynomial, their signs and also, for each of the roots,
two consecutive integers such that this root is lying between them.

2. Prove that the polynomial x4 + ax + b either has no roots, or it has two
roots and find conditions (on coefficients a and b) such that the first or the latter
case takes place.

3. Prove that the number of roots of a polynomial of even degree is even and
of odd degree is odd.

4. Prove that the polynomial xn + ax+ b, for n even, has 0 or 2 roots, and for
n odd—1 or 3. Determine conditions (on coefficients a and b) such that the first or
the latter case takes place.

5. Determine the number of roots of the polynomial xn+axn−1+b (depending
on n, a and b).

6. Prove that each polynomial f(x) takes arbitrarily large values (by absolute
value), for sufficiently large values of x (by absolute value).

7. Prove that as a bound of roots N the number
M

|an| + 1 can be taken,

where M is the largest of the numbers |a0|, . . . , |an−1|. Hint. Use the inequality
|a0 + · · ·+ an−1z

n−1| 6 M(1 + |z|+ · · ·+ |z|n).
8. Prove that the polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 + anxn,
where an > 0, ai 6 0 for i = 1, . . . , n − 1, a0 < 0, has exactly one positive root.

Hint. Write f(x) in the form anxn

(
1 +

an−1

anx
+ · · ·+ a0

anxn

)
and find whether the

expressions
an−k

anxn
increase or decrease when x increases, remaining positive.

9. Let a polynomial f(x) have all the coefficients at even powers of x equal
to 0, and all the coefficients at odd powers positive. Prove that it has a unique
root.

APPENDIX

Sturm’s Theorem

We shall present now a method allowing to determine for each polynomial f(x)
the number of its roots lying in a given segment [a, b].

The idea of the method is based on the fact that, although for a single polyno-
mial f(x) there is no simple method which could connect its properties with some
properties of polynomials with smaller degree, for a pair of polynomials f(x), g(x)
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such a method is well known: it consists of divison with remainder of the polynomi-
al f(x) by g(x): f(x) = g(x)q(x) + r(x), and passing from the pair of polynomials
(f, g) to the pair of polynomials (g, r). Repeating this process leads us to the al-
gorithm of Euclid for finding the greatest common divisor of polynomials f and g.
For example, the question of the existence of common roots of polynomials f and
g can be reduced to the question of the existence of common roots of the polyno-
mials of smaller degree g and r and, as a result, to the question of the existence of
roots of the polynomial of smaller degree g. c.d.(f, g). The method can be applied
to the case of the pair of a polynomial and its derivative and then we obtain the
answer to the question of the existence of multiple roots of the polynomial. That is
how we proceeded in Chapter II, and we shall also proceed like that now: we shall
first consider a certain property of roots of the pair of polynomials (f, g), which
can be treated using division with remainder. Applying then this property to the
pair consisting of a polynomial and its derivative, we shall find the answer to our
question.

Let us start with a simple observation, related to a single polynomial F (x).
Let x = α be its root and let this root have the multiplicity k. Then we can write
down (by the definition of the multiplicity of roots, given in Section 2 of Chapter II)

(1) F (x) = (x− α)kG(x),

where G(α) 6= 0. Thus, if a number ε is smaller than the distance from α to the
nearest root of the polynomial G(x), then G(x) takes the values of the same sign
in the segment [α − ε, α + ε]. Really, if for any two numbers x and y lying in this
segment the polynomial G had values G(x) and G(y) of opposite signs, then, by
Bolzano’s theorem, there would exist a root of the polynomial between x and y.
But this would contradict the way how ε had been chosen—that there had been no
root of the polynomial G lying in the segment [α− ε, α + ε]. In particular, all the
values of the polynomial G(x) for x in the segment [α−ε, α+ε] have the same sign
as G(α). Formula (1) implies now that if multiplicity k is even, then the values of
the polynomial F (x) for x lying in the segment [α− ε, α + ε] have the same sign as
G(α). The graph could be situated as in Fig. 9.

G(α) > 0 G(α) < 0
Fig. 9
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If, on the other hand, the multiplicity k is odd, then for G(α) > 0 we have
F (x) < 0 for α−ε 6 x < α and F (x) > 0 for α < x 6 α+ε, and for G(α) < 0—the
opposite: F (x) > 0 for α − ε 6 x < α and F (x) < 0 for α < x 6 α + ε. In the
former case (i.e., for G(α) > 0) α is a root with increasing, and in the latter (for
G(α) < 0)—root with decreasing. Possible graphs of the polynomial F (x) in both
cases are displayed in Fig. 10.

G(α) > 0 G(α) < 0
Fig. 10

DEFINITION. Let F (x) be a polynomial having as roots neither a nor b. Char-
acteristics of the polynomial F (x) on the segment [a, b] is the difference between
the number of its roots with increasing and the roots with decreasing, lying in that
segment. Here, roots having even multiplicity are not counted. The characteristics
is denoted by [F (x)]ba. For example, the polynomial represented in Fig. 11 has 3
roots with increasing and 2 roots with decreasing, so we have [F ]ba = 1.

Fig. 11

Since after each root with increasing there must follow a root with decreasing
(roots with even multiplicity do not count), the characteristics is determined by
the signs of numbers F (a) and F (b), namely:

[F (x)]ba = 0 if F (a) and F (b) are of the same sign

[F (x)]ba = 1 if F (a) < 0, F (b) > 0

[F (x)]ba = −1 if F (a) > 0, F (b) < 0
Table 1
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Thus, the characteristics of the polynomial F (x) on the given segment is de-
termined by its signs at the endpoints of the segment and so it can be evaluated
easily, although by the definition it is connected with its roots which are ususally
hard to find.

Our situation can be visually demonstrated as if a passenger is travelling,
crossing several times the border between two states, say France and Germany.
What is the difference between the number of crossings the border from France to
Germany and from Germany to France? Obviously, it is equal to 0 if the passenger
started and finished his travel in the same state; it is equal to 1 if he started in
France and finished in Germany and to −1 if he started in Germany and finished in
France. His itinerary can be demonstrated as a line similar to the graph in Fig. 3,
where France is the area below the x-axis and Germany is above.

Consider now two polynomials, f and g, and assume that, first of all, they
have no common roots, and, secondly, that the former (i.e., f) does not vanish at
x = a, nor at x = b. The characteristics of the polynomial f with respect to the
polynomial g on the segment [a, b] is the difference between the number of roots of
the polynomial f contained in the segment [a, b] and being roots with increasing of
the polynomial fg and the number of its roots being roots with decreasing for fg.
The characteristics is denoted by (f, g)b

a.
The main example, which was the reason to introduce this notion is given by

the following proposition.

THEOREM 1. If a polynomial f(x) has no multiple roots and neither it nor
its derivative vanishes at the endpoints a and b of the segment [a, b], then the
characteristics (f, f ′)b

a is equal to the number of roots of the polynomial f contained
in the segment [a, b].

The theorem is an easy consequence of Corollary of Theorem 4, Section 3. We
simply state that all the roots of the polynomial f(x) are roots with increasing of the
polynomial ff ′. Really, according to Theorem 5 of Chapter II, the polynomials f
and f ′ have no common roots. If α is a root of the polynomial f(x) with f ′(α) > 0,
then according to Theorem 4 of Section 3 α is a root with increasing for f(x), and
so also for f(x)f ′(x), since f ′(x) > 0 in a neighbourhood of α. If, on the other
hand, f ′(α) < 0, then α is a root with decreasing for f(x), and so again a root with
increasing for f(x)f ′(x), since f ′(x) < 0 in a neighbourhood of α.

The characteristics (f, g)b
a is in fact an expression which can be evaluated using

division with remainder. Note first the following simple properties:
a) (f,−g) = −(f, g).
This is obvious since when multiplying the polynomial g by −1, the roots with

increasing and the roots with decreasing of the polynomial fg interchange.
b) If g(a) 6= 0 and g(b) 6= 0, then (f, g)b

a + (g, f)b
a = [fg]ba.

This is also obvious since, by the assumption, the polynomials f and g have
no common roots. Hence, the roots of the polynomial fg split into the roots of the
polynomial f and those of the polynomial g. The number of roots with increasing
(and similarly for roots with decreasing) of the polynomial fg is equal to the sum
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of the numbers of such roots of the polynomial f and of the polynomial g, which
gives us the equality b).

c) If polynomials g and h take the same values at the roots of a polynomial f
(i.e., if g(α) = h(α) whenever f(α) = 0), then

(f, g)b
a = (f, h)b

a.

Really, if g(α) = h(α), then a root α of the polynomial f(x) is at the same
time a root with increasing (decreasing) for the polynomials fg and fh.

d) If a polynomial f is divisible by a polynomial g, then

(f, g)b
a = [fg]ba.

Really, the polynomial g has no roots, since its roots would be common roots
for the polynomials f and g. Therefore, (g, f)b

a = 0 and from the property b) it
follows that (f, g)b

a = [fg]ba.
We shall describe now the process of evaluating the characteristics (f, g)b

a.
Divide f by g with remainder:

(2) f = gq + r.

According to property b), we have (f, g)b
a = −(g, f)b

a +[fg]ba. On the other hand, it
follows from relation (2) that f(α) = r(α) whenever g(α) = 0. Hence, by property
c) we obtain that (f, g)b

a = (g, r)b
a. The obtained equalities together show that

(3) (f, g)b
a = −(g, r)b

a + [fg]ba.

As a matter of fact, relation (3) solves our problem, since it reduces the evaluation
of the characteristics (f, g)b

a to the evaluation of the characteristics (g, r)b
a for the

polynomials g and r of smaller degree, because the expression [fg]ba is determined
by the values of the polynomials f and g at the endpoints a and b of the segment
[a, b] (see Table 1).

Our process of passing from the pair (f, g) to a pair of polynomials with smaller
degree is the same as in the process of determining the greatest common divisor
of the polynomials f and g. In such a case the characteristics is determined by
property d).

We intend to improve our result in two directions. Firstly, we shall present
in a unified form the final answer which can be obtained after passing from the
pair (f, g) to (g, r) and then executing all the divisions in the consecutive steps
of the Euclid’s algorithm. Secondly, our inductive reasoning needs that conditions
imposed on the polynomials f and g (f(a) 6= 0, f(b) 6= 0) are then imposed to
the polynomials g, r etc. We shall show how one can get rid of these additional
restrictions.

First of all, we shall transform a bit the answer we have obtained (formula (3)).
We start with changing the notation. The polynomial f will be denoted by f1, g by
f2 and −r by f3. Taking into account condition a) of the characteristics, formula
(3) obtains the form

(4) (f1, f2)b
a = (f2, f3)b

a + [f1f2]ba,
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and the formula of division with remainder (formula (2)) the form

f1 = f2q1 − f3

(we have denoted here q by q1). Now it is clear how to apply formula (4), reducing
degrees of polynomials considered. Starting from f1 and f2 define polynomials fi

by induction:

(5) fi−1 = fiqi−1 − fi+1,

where the degree of fi+1 is smaller than the degree of fi (assuming that fi−1 and
fi are already defined). Clearly, fi−1 are just those plynomials which appear as re-
mainders in the Euclid’s algorithm, only with the changed signs. After several steps
we come to a polynomial fk, differing eventually only by sign with the gcd(f1, f2).

Applying formula (4) to f2 and f3 instead to f1 and f2, we obtain that
(f2, f3)b

a = (f3, f4)b
a + [f2f3]ba. Substituting this value for (f2, f3)b

a into formula
(4), we get

(f1, f2)b
a = (f3, f4)b

a + [f1f2]ba + [f2f3]ba.

Repeating this process k times and noting that [fkfk+1]ba = 0 as a result we obtain:

(6) (f1, f2)b
a = [f1f2]ba + [f2f3]ba + · · ·+ [fk−1fk]ba.

However, in order that we have the right to apply formula (4), we have to assume
that fi(a) 6= 0, fi(b) 6= 0 for all i = 1, 2, . . . , k.

Consider carefully the expression [fg]ba which can be evaluated using Table 1
for F = fg. In our case it can be rewritten as

[fg]ba =





0, if f(a)g(a) > 0 and f(b)g(b) > 0, or f(a)g(a) < 0 and f(b)g(b) < 0,
1, if f(a)g(a) < 0 and f(b)g(b) > 0,
−1, if f(a)g(a) > 0 and f(b)g(b) < 0.

Table 2

If two numbers A and B, distinct from 0, are given, then one says that in the
pair (A,B) there exists one change of sign if A and B are of opposite signs, and
that there is no change of sign if they are of the same sign. Using this terminology,
one can reformulate information of Table 2, denoting by n the number of changes
of sign in the pair (f(a), f(b)) and by m the number of changes of sign in the pair
(f(b), g(b)). Table 2 obtains the form:

[fg]ba m n

0 0 0
0 1 1
1 1 0
−1 0 1

We see that in all the cases we have [fg]ba = m− n.
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We shall apply now the last remark to formula (6). Denote by mi the number
of changes of sign in the pair (fi(a), fi+1(a)), and by ni the number of changes
of sign in the pair (fi(b), fi+1(b)). As a consequence of the remark, formula (6)
obtains the form

(7) (f1, f2)b
a = m1 − n1 + m2 − n2 + · · ·+ mk − nk.

What is the meaning of the number m1 + m2 + · · · + mk? One has just to write
down the numbers f1(a), f2(a), . . . , fk(a) and find out how many changes of sign
are there in this sequence—the number of these changes will be m1 +m2 + · · ·+mk.
In general, if a sequnce of numbers A1, . . . , Ak, distinct from 0, is given, then by
the number of changes of sign in this sequence, we shall mean the number of places
where numbers of opposite signs stay. For example, in the sequence 1, −1, 2, 1, 3,
−2 there are 3 changes of sign. We can say that m1+m2+ · · ·+mk is the number of
changes of sign in the sequence f1(a), f2(a), . . . , fk(a), and that n1 +n2 + · · ·+nk

is the number of changes of sign in the sequence f1(b), f2(b), . . . , fk(b). Formula
(7) can be interpreted now in the following way:

THEOREM 2. If none of the terms f1, . . . , fk of Sturm’s sequence of poly-
nomials f1, f2 vanishes, either in a, or in b, and the polynomials f1, f2 have no
common roots, then the characteristics (f, g)b

a is equal to the difference between the
numbers of changes of sign in the sequences of values of polynomials in Sturm’s
sequence at the points a and b.

We have now to get rid of the restrictions fi(a) 6= 0, fi(b) 6= 0 for i = 1, . . . , k,
which can be uncomfortable in applications: we shall assume just that f1(a) 6= 0
and f1(b) 6= 0. In order to do that we have to generalize a bit the notion of the
number of changes of sign. If some of the terms in the sequence A1, . . . , Ak are
equal to 0, then the number of changes of sign in it is defined as the number of
changes of sign in the sequence which is obtained by deleting all the zeros in the
given sequence. For example, deleting zeros in the sequence 1, 0, 2, −1, 0, 3, 1, the
sequence 1, 2, −1, 3, 1 is obtained, and the latter has two changes of sign. Hence,
the given sequence has two changes of sign, by definition.

Denote now by ε the distance from a to the nearest root (distinct from a) of
any of the polynomials fi(x). Thus, fi(x) 6= 0 for a < x < a + ε. Choose any such
value a′, a < a′ < a + ε. A value b′ is chosen analogously. Let us state a lemma.

LEMMA. The number of changes of sign in the sequence f1(a), . . . , fk(a) is
equal to the number of changes of sign in the sequence f1(a′), . . . , fk(a′). The
same is true when a and a′ are replaced by b and b′.

First of all, let us show that the Lemma can really help us to extend Theorem 2
to arbitrary polynomials f1, f2 with the only conditions that f1(a) 6= 0, f1(b) 6= 0
and that f1 and f2 have no common roots.

Really, by the assumption, the polynomial f1 has no roots in the segments
[a, a′] and [b′, b]. Hence, all of its roots contained in the segment [a, b], are already
contained in the segment [a′, b′]. Therefore, (f1, f2)b

a = (f1, f2)b′
a′ . Theorem 2 can

now be applied to the characteristics (f1, f2)b′
a′ . The number of changes of sign in
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the sequence f1(a′), . . . , fk(a′), as well as in the sequence f1(b′), . . . , fk(b′), is
determined by the Lemma. Thus, we obtain the wanted result:

THEOREM 3. If polynomials f1 and f2 have no common roots, f1(a) 6= 0 and
f1(b) 6= 0, then the characteristics (f1, f2)b

a is equal to the difference between the
numbers of changes of sign in the sequence f1(a), . . . , fk(a) and in the sequence
f1(b), . . . , fk(b), where f1(x), . . . , fk(x) is Sturm’s sequence corresponding to the
pair of polynomials f1, f2.

We shall show now that the Lemma is valid. Consider, for example, the value
x = a. Suppose that fi(a) = 0 for some i = 1, . . . , k. By the assumption, i 6= 1
since f1(a) 6= 0. Also, i 6= k since the polynomial fk(x) can differ from gcd(f1, f2)
only by sign and so it is a number distinct from 0. Note that then fi−1(a) 6= 0
and fi+1(a) 6= 0. Really, if we had, for example, fi(a) = 0, fi+1(a) = 0, then it
would follow from formula (5) that fi−1(a) = 0. In exactly the same way, this
would imply that fi−2(a) = 0 etc., and finally f1(a) = 0, which would contradict
the original assumption. But we can say even more—not only that the numbers
fi−1(a) and fi+1(a) are distinct from 0, but they have opposite signs—it follows
immediately by substituting x = a into equality (5) and taking into account the
assumption that fi(a) = 0.

Compare now the sequences f1(a), . . . , fk(a) and f1(a′), . . . , fk(a′). Let
fi(a) = 0. Then, as we have seen, fi−1(a) 6= 0 and fi+1(a) 6= 0, and fi−1(a)
and fi+1(a) have opposite signs. But then fi−1(a′) 6= 0 and fi+1(a′) 6= 0, and
fi−1(a′) has the same sign as fi−1(a), while fi+1(a′) has the same sign as fi+1(a).
This follows from the fact that the polynomials fi−1 and fi+1 have no roots in the
segment [a, a′], and so (by Bolzano’s theorem) they can have no values of opposite
signs. Write down the respective parts of our sequences. Suppose that fi−1(a) > 0.
Then we obtain the following table:

fi−1(x) fi(x) fi+1(x)

x = a + 0 −
x = a′ + ? −

The characteristics (f1, f2)b′
a′ depends on the number of changes of sign in the lowest

row. But we see that it coincides with the number of changes of sign in the row
above it—whatever the unkown sign, denoted by ?, is, there will be exactly one
change of sign in each of the rows. The case when fi−1(a) < 0 can be treated
exactly in the same way. The Lemma is proved.

Combining Theorem 3 with Theorem 1 we obtain the basic result:

THEOREM 4. (Sturm’s Theorem) If a polynomial f(x) has no multiple roots
and does not vanish for x = a and x = b, then the number of its roots in the segment
[a, b] is equal to the difference between the number of changes of sign of the values
of polynomials in the Sturm’s sequence, formed for the polynomials f(x) and f ′(x)
at x = a and x = b.
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One has only to note that the lack of multiple roots of the polynomial f(x) is
equivalent to the lack of common roots of the polynomials f(x) and f ′(x)—this is
just the assertion of Theorem 5 of Chapter II. Therefore we can apply Theorem 1
to the polynomial f(x) and then Theorem 3 to the pair of polynomials f(x) and
f ′(x).

Sturm’s theorem gives a possibility to answer the basic questions about dis-
tribution of roots of a polynomial. First of all, using the theorem, the number of
roots can be determined. In order to do that, it is enough to remember Theorem 3
of Section 3, which indicates a number N such that all the roots of the polynomial
lie between −N and N . After that it is sufficient to apply Sturm’s theorem to the
segment [−N, N ]. However, it is remarkable that in order to determine the number
of roots it is neither necessary to evaluate the number N (using Theorem 3), nor
to evaluate the values of polynomials in Sturm’s sequence for x = −N and x = N .
Really, for applying Sturm’s theorem it is not necessary to know the values fi(±N)
themselves, but only their signs. That is why it is sufficient to choose a number N
large enough, such that the segment [−N,N ] contains not only all the roots of the
polynomial f1(x), but also all the roots of all the polynomials fi(x) of the Sturm’s
sequence (i.e., we can choose a respective number Ni for each polynomial fi(x) and
take for N the largest of them). According to Corollary 1 of Theorem 3, Section 3,
the sign of the value fi(N), resp. fi(−N), coincides with the sign of the leading
term of the polynomial fi(x) for x = N , resp. x = −N . They are determined by
the sign of the leading coefficient of the polynomial fi(x) and by the parity of its
degree. Therefore, there is no need to evaluate N and the values fi(N) and fi(−N).

When the number of roots is determined, it is possible to indicate segments,
each of which contains exactly one root. In order to do that it is already necessary
to evaluate the number N , indicated in Theorem 3 of Section 3. After that the
segment [−N, N ] is divided into two equal parts and using Sturm’s theorem the
number of roots in each part is found. Then the same is done with the segments
[−N, 0] and [0, N ] and the process is continued till each of the segments contains
only one root.

If it is known that a segment [a, b] contains exactly one root of the polynomial
f(x) and the polynomial has no multiple roots, then the values f(a) and f(b) must
be of opposite signs. Really, if the root is equal to α, then, according to Theorem
4 of Section 3, for ε small enough, the values f(α− ε) and f(α + ε) have the same
sign. But f(α−ε) and f(a) have to be of the same sign—otherwise the polynomial
would have one more root in the segment [α−ε, α]. The same is true for the values
f(α + ε) and f(b). Thus, f(a) has the same sign as f(α − ε), f(b) the same as
f(α+ε), and f(α−ε) and f(α+ε) have opposite signs. Hence, f(a) and f(b) have
opposite signs. Knowing that, it is possible to evaluate the root α with arbitrary
level of accuracy. It is sufficient to divide the segment [a, b] into two parts by a
point c and evaluate f(c). Either f(a) and f(c), or f(c) and f(b) have opposite
signs. In the former case α is contained in the segment [a, c], and in the latter—in
the segment [c, b]. After that we continue the process with the segment containing α
until we include α in a segment of arbitrary small length. This means that we have
evaluated it with arbitrary level of accuracy.
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Consider, for example, the polynomial f(x) = x3 + 3x − 1. Applying the
criterion from Section 3, we have to evaluate the expression 4a3 +27b2 = 4 ·27+27.
Since it is positive, the polynomial has one root. Applying Theorem 3 of Section 3,
we find the value N = 3. Therefore, the root is contained between −3 and 3,
where f(−3) < 0, f(3) > 0. Since f(0) < 0, the root is contained between 0
and 3. Since f(1) = 3 and f(2) = 13, the root is contained between 0 and 1. In
order to find its first decimal, we have to determine in which of the 10 segments
(between 0 and 1/10, 1/10 and 2/10, . . . , 9/10 and 1) it lies. Put first x = 1/2,
then f(x) = 5/8. Since f(0) and f(1/2) are of opposite signs, the root is contained
between 0 and 1/2. Put now x = 3/10. Since f( 3

10 ) = 27
1000 + 9

10−1 = 27
1000− 1

10 < 0,
the root is contained between 3/10 and 5/10. Finally, f( 4

10 ) = 64
1000 + 12

10 − 1 > 0.
Hence, the root lies between 3/10 and 4/10 and it has the form α = 0,3 . . . .

Since Sturm’s theorem has an elegant formulation and a lot of applications,
it became widely known immediately after it had been proved. Jacques Sturm, a
French mathematician who had proved it, when teaching about the theorem in his
lectures, used to say: “Now I will prove a theorem, the name of which I have the
honor to bare”.

Problems

1. Construct Sturm’s sequence for the polynomials f(x) and f ′(x) if f(x) =
x2 + ax + b or f(x) = x3 + ax + b. Using Sturm’s theorem deduce again the results
about the numbers of roots of these polynomials, obtained already at the end of
Section 3. Hint. In the case of f(x) = x3 + ax + b consider separately different
cases of possible signs for a and D = 4a3 + 27b2.

2. Determine, using Sturm’s theorem, the number of roots of the polynomial
xn + ax + b, depending on n (more precisely, on its parity), a and b.

3. Find the number of roots of the polynomial x5 − 5ax3 + 5a2x + 2b. Hint.
The answer depends on the sign of the expression a5 − b9.

4. Let a be a root of the derivative f ′(x) of a polynomial f(x). Put f1(x) =
f(x), f2(x) = f ′(x)/(x−a). Let f(x) has no multiple roots, and f1(x), . . . , fk(x) is
Sturm’s sequence for the polynomials f1(x) and f2(x). Express the number of roots
of the polynomial f(x) in terms of the number of changes of sign in the sequences
fi(N), fi(a) and fi(−N), i = 1, . . . , k where N is a sufficiently large number.

5. Let two polynomials f1 and f2 be given, with degrees n and n− 1, respec-
tively, and suppose that in their Sturm’s sequence the degree of the polynomial
fi(x) is n− i + 1 and its leading coefficient is positive. Prove that the polynomial
f1(x) has n roots. Moreover, each of the polynomials fi(x) has n− i+1 roots, and
between each two adjacent roots of the polynomial fi(x) there lies a root of the
polynomial fi+1(x).

6. Let a polynomial f(x) of degree n has n roots. Prove that in the Sturm’s
sequence (for the polynomials f and f ′) each polynomial has the degree which
is smaller exactly by 1 than the degree of the previous one, and all the leading
coefficients are positive. Prove that these conditions are sufficient in order that a
polynomial of degree n has n roots.
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