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Abstract. Solving equations. The problems, techniques, and viewpoints are our
legacy. One theme throughout this lecture is that classical and modern mathematics
are tightly intertwined, that contemporary mathematics contributes real insight and
techniques to understand traditional problems.
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Ex irrationalibus oriuntur quantitates impossibiles seu imaginari-
ae, quarum mira est natura, et tamen non contemnenda utilitas.

[From the irrationals are born the impossible or imaginary quan-
tities whose nature is very strange but whose usefulness cannot be
denied.]

Gottfried Wilhelm Leibniz (1646–1716)

Education is not the filling of a pail, but the lighting of a fire.
William Butler Yeats (1865–1939)
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3.2. Variational methods
3.3. Fixed point methods

4. An Open Question

In the long second section I discuss some procedures that help to solve equa-
tions. I found that the section on symmetry required an extensive discussion be-
cause it is treated so inadequately as a fundamental thread throughout mathematics
courses. The third section gives three different techniques to prove that equations
have solutions. They are typical of those used when an explicit formula for a
solution cannot be found.

I organized this so that most of the sections are independent; thus you can
skip to examples that are more appealing. To make this more self-contained I have
occasionally added details that may not be easily accessible. A few of the tools
used here are frequently not met until beginning graduate courses. If these tools
are unfamiliar, their appearance here may serve as motivation to learn them.

One ingredient in solving equations that I have not emphasized adequately
is the basic role of inequalities. They are lurking here and there: the Euclidean
algorithm and the application of the Brouwer fixed point theorem, to name two less
obvious instances. It is a shock the first time one sees a proof that A = B not by
algebraic manipulation but instead by proving the inequality |A − B| < ε for any
ε > 0. To give inequalities their due would have changed the character of this.

1. Introduction

The simplest equations are of the form

2x + 7 = 4.

Although the coefficients are positive integers, one is forced to enlarge the type of
possible solution to include not only rational numbers, but also negative numbers.
It took centuries for negative numbers to be accepted. Through the Middle Ages
they frequently were called false numbers.

The next sort of equation one meets is perhaps

x2 = 2.

Again to solve this one must enlarge the type of possible solution to include the
irrational number

√
2. The word irrational itself reveals people’s emotional atti-

tudes. Another word used for numbers such as
√

2 is surd, which is related to the
word “absurd.”

The equation
x2 + 1 = 0

again forces one to introduce new types of numbers, the imaginary numbers. The
quotation from Leibniz at the beginning of this article conveys the views of his era.

These complex numbers were adequate to solve all quadratic equations

(1) ax2 + bx + c = 0.
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From the explicit formula (−b ± √
b2 − 4ac)/2a for the solutions x1 and x2, one

observes that

(2) x1 + x2 = − b

a
and x1x2 =

c

a
.

For further progress it was essential that one also could obtain these formulas
without using the explicit formula for the solution. One merely expands

(3) 0 = (x− x1)(x− x2) = x2 − (x1 + x2)x + x1x2

and compares the coefficients with those of (1). This was an early significant
instance where one found properties of the solutions of an equation without first
requiring a formula for the solution.

After using complex numbers to solve quadratic equations, it was, however,
surprising that complex numbers were also adequate to find a formula to solve the
general cubic polynomial equation p(x) := ax3 + bx2 + cx + d = 0. One does not
need to enlarge further beyond the complex numbers. Without using the formula
for the roots it is obvious how to obtain the analog of (2); if the roots are x1, x2, x3,
then expanding p(x) = a(x− x1)(x− x2)(x− x3) we get for instance

(4) x1 + x2 + x3 = − b

a
An immediate consequence is that if the coefficients in the polynomial are rational
and if two of the roots are rational, then so is the third root.

Eventually, an explicit formula for the solutions of a quartic equation was also
found. Here too, complex numbers were adequate to find all solutions. In the
seventeenth century there was probably uncertainty if

√
i was a complex number.

That one could write
√

i = ±(1 + i)/
√

2 would have surprised many—including
Leibniz.

Solving the general quintic polynomial was a challenge. If the coefficients of

(5) p(x) := x5 + bx4 + cx3 + dx2 + ex + f.

are real, obviously for all large positive x we have p(x) > 0, while for all large
negative x we have p(x) < 0. Thus if you graph the polynomial y = p(x), it is
geometrically evident that it crosses the x-axis at least once and hence there is at
least one real root x1 of p(x) = 0. The polynomial q(x) := p(x)/(x− x1) is then a
quartic polynomial for whose four roots there are formulas. Thus it was known that
every quintic polynomial has five (some possibly repeated or complex) roots. It was
upsetting when Abel [1802–29] showed that despite knowing these five roots exist,
there cannot be a general formula for them that involves only the usual arithmetic
operations along with taking roots. Formulas similar to (4) were essential in Abel’s
reasoning.

Mathematicians found themselves in the fascinating dilemma of having proved
that these roots exist but also having proved that there can never be an algebraic
formula for them. The general existence proof is what we now call the Fundamental
Theorem of Algebra, while understanding the obstructions to finding formulas for
the roots is Galois [1811–1832] theory. Both were vital pillars in the future devel-
opment of mathematics. As a twist of fate, except for their fundamental historic
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role, the formulas for the solutions of the cubic and quartic have become museum
pieces, rarely used because they are so complicated.

The proof that the quintic (5) always has at least one real root was one of
the first “pure” existence proofs. Although this proof was regarded as obvious, in
the nineteenth century mathematicians became more concerned because this proof
presumes that the real number line has no “holes”. What would happen if there
were a hole in the number line exactly where the root should have been? How can
one precisely define this “no holes” property?

After considerable effort, mathematicians learned how to make precise what
they meant when they said that the number line has no “holes”. Ever since, the
resulting concept, completeness, has been a basic ingredient in mathematics. One
reason that it is so important to consider the class of all Lebesgue [1875–1941]
integrable functions is that by including them the function spaces Lp are complete.

By allowing polynomials to have complex roots, one can prove that a polyno-
mial of degree n has exactly n roots—if one counts multiple roots appropriately.
The number of real roots is considerably more complicated and depends on the co-
efficients of the polynomial (Sturm’s theorem [Wf]). This is why when one studies
the roots of simultaneous polynomial equations, which is the focus of algebraic ge-
ometry, one usually uses a field, such as the complex numbers, where polynomials
of degree n have exactly n roots. Not much is known about polynomials if one
works only with the real numbers.

2. Steps Toward Solving Equations

In solving equations, the most primitive question is to decide if there are any
solutions at all. From our understanding of the special case of polynomial equations,
we have learned to separate this from the important problem of explicitly finding
solutions. Moreover, in the many cases where we know there is a solution but there
is no “formula”, you need qualitative properties of the solution.

2.1. What does “solution” mean?

It may be necessary to broaden what an acceptable solution is, much as for
polynomials we usually allow complex solutions, perhaps in projective space. You
may solve a diophantine equation mod p for all primes p. For partial differential
equations one accepts solutions in various function spaces, including distribution
and Sobolev spaces of functions. Finding the appropriate notion of “solution” may
be a key step.

2.2. Find a formula for a solution

Usually there is no formula of any sort. Even when is there is one, it may
involve a reduction to another problem, say finding the roots of a polynomial or
evaluating an integral, which you accept as a solution. But this acceptance de-
pends on the personal background of the consumer. In earlier centuries difficulties
were faced if the “solution” of a problem involved numbers like

√
7 or π, or, worse

yet, complex numbers. Similarly, many people have difficulty accepting a power or
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Fourier [1768–1830] series as the solution of any equation. For them infinite series
are problems, not answers. From the power series for sin x, the 2π periodicity is far
from obvious; that information is more accessible from other approaches. Eventu-
ally, one learns that even an infinite series solution may encode useful information,
although it takes experience before one learns to find them useful.

A numerical solution may be valuable in some circumstances, yet in others it
may be a jumble of numbers that you need to decipher to learn anything useful.
Hamming’s assertion: “The purpose of computing is insight, not numbers”, applies
to most scientific computations.

There are elementary problems where there is no formula for the solution, but
there is an algorithm for finding a solution. Even in such cases occasionally you
may prefer a non-constructive proof that a solution exists.

An example is solving ax ≡ b (mod m ), where a and m are relatively prime.
Since the solution is x ≡ a−1b (mod m ), we need to find a−1 (mod m ). One tradi-
tional approach is to observe that the numbers a, 2a, . . . , (m− 1)a are all distinct
(mod m ) so one of them must be 1 (mod m ). This proof that a−1 exists gives no
hint of how to find it except by trial and error. This is a non-constructive exis-
tence proof for the solution of ax ≡ 1 (mod m ). One constructive proof considers
the equivalent problem of solving ax − my = 1 for integers x, y. The Euclidean
algorithm solves this explicitly (see [Da, Section I.8]). Since at the kth step in this
algorithm the absolute value of the remainder can be chosen to be at most half the
value of the previous remainder, this new remainder is at most a/2k so you need at
most log a/ log 2 steps (this is one of the few places that we consider the important
issue of the efficiency of an algorithm).

An alternative approach to find a−1 is to use the Fermat [1601–65]–Euler [1707–
83] identity aϕ(m) ≡ 1 (mod m ), where the Euler function ϕ(m) is the number of
integers k, with 1 ≤ k ≤ m− 1 that are relatively prime to m (if m = p is a prime
number then ϕ(p) = p − 1). Thus a−1 ≡ aϕ(m)−1 (mod m ). Note, however, that
computing aϕ(m)−1 (mod m ) requires as much calculation as exhaustively testing
a, 2a, . . . , (m− 1)a; the method using the Euclidean algorithm is faster.

Polynomial interpolation supplies an example where a variety of approaches are
available to solve some equations, each approach with its own illumination. Here we
seek a polynomial p(x) := a0 + a1x + · · ·+ akxk of degree k with the property that
its graph y = p(x) passes through k + 1 specified points (x1, y1), . . . , (xk+1, yk+1),
where the xj ’s are distinct. Thus we can view the problem as solving the k + 1
linear equations p(xj) = yj , j = 1, . . . , k + 1 for the k + 1 coefficients a0, . . . , ak.

Method 1 (Lagrange [1736–1813]). Lagrange introduced a clever basis for the
space Pk of polynomials of degree at most k. It is ej(x) = Πi6=j

[
(x−xi)

/
(xj−xi)

]
,

j = 1, . . . , k +1. Thus ej(xi) = δij , the Kronecker delta (this was perhaps the first
instance in mathematics of a “dual basis”). Then the explicit—unique—solution
to the interpolation problem is simply

(6) p(x) = y1e1(x) + y2e2(x) + · · ·+ yk+1ek+1(x).
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Method 2 (Newton [1642–1727]). Seek p(x) in the special form

p(x) = A0 + A1(x− x1) + A2(x− x1)(x− x2) + · · · + Ak(x− x1) · · · (x− xk).

Setting x = x1 we find y1 = p(x1) = A0. Then set x = x2 to find A1, and so on,
finding succeeding coefficients A2, . . . , Ak recursively. Here we use Newton’s basis
1, (x− x1), (x− x1)(x− x2), . . . , (x− x1)(x− x2) · · · (x− xk) for Pk.

Method 3. Define the linear map L : Pk → Rk+1 by the rule

L : p 7→ (p(x1), p(x2), . . . , p(xk+1)) .

The interpolation problem is to find the inverse map of L. Observe that if Lp = 0,
then p ∈ Pk vanishes at the k +1 distinct points x1, . . . , xk+1, therefore p must be
the zero polynomial. Thus, the kernel of L is zero. Since both Pk and Rk+1 have
the same dimension, k + 1, then by basic linear algebra the map L is invertible.
This proves that the interpolation problem has a unique solution—but yields no
formulas or special procedures.

Comparing these, Method 1 yields some basic information quickly, but is not
easy to use to compute p(x) at other points (too many multiplications). The
formula for Method 2 is computationally much easier to use to evaluate p(x). It
has two additional virtues. (i) If the polynomial p(x) is an approximation to some
other function, f(x), then you can use this method to find an estimate for the
error |f(x) − p(x)|. This error estimate is similar to that found for Taylor series
(see any book on numerical analysis, my favorite is [D-B, p. 100]). (ii) If you add
another interpolation point xk+2, then the formulas for the coefficients Aj already
computed do not change. Finally, Method 3 shows quickly that the problem has
a unique solution. See our discussion of harmonic polynomials in Section 2.5 for a
less obvious application of Method 3.

We’ll give a brief application of interpolation to numerical integration. Say
you want to evaluate J :=

∫ b

a
f(x) dx. You specify k + 1 distinct points a ≤ x1 <

· · · < xk+1 ≤ b and seek a formula

(7)
∫ b

a

f(x) dx ≈ B1f(x1) + B2f(x2) + · · ·+ Bk+1f(xk+1).

Can one find coefficients Bj so this formula is exact whenever f happens to be a
polynomial of degree at most k? Yes, and the Bj ’s are unique. A naive approach
is to let f be xj , j = 0, . . . , k in (7). This gives k + 1 linear equations for the
k + 1 unknowns B1, . . . , Bk+1. But it is simpler to use the Lagrange formula
(6) to find the polynomial interpolating f at the chosen points: f(x) ≈ p(x) =∑k+1

j=1 f(xj)ej(x). Then
∫ b

a

f(x) dx ≈
∫ b

a

p(x) dx =
k+1∑

j=1

f(xj)
∫ b

a

ej(x) dx.

Thus Bj =
∫ b

a
ej(x) dx. The trapezoidal rule is the special case of the two points

x1 = a, x2 = b, while Simpson’s rule is for the three points, x1 = a, x2 = (a+ b)/2,
x3 = b.
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Finally we might also want to pick the points xj themselves so the formula
(7) is exact for all polynomials of even higher degree. Since the right side of (7)
now involves 2k + 2 parameters (the Bj ’s and xj ’s), we suspect by choosing them
adroitly we should be able to have (7) be exact for all polynomials of degree 2k +1
(its dimension is 2k + 2). The equations (7) are linear in the Bj ’s but nonlinear in
the xj ’s. Gauss studied this. He found that the xj ’s should be chosen as the zeroes
of the polynomial ϕk+1 of degree k + 1 from the family of orthogonal polynomials
associated with the standard inner product 〈u, v〉 =

∫ b

a
uv dx (for a = −1, b = 1

these are the Legendre polynomials). We prove Gauss’ result.
The proof is short and clever. Let Q be any polynomial of degree at most

2k + 1. By division write Q = qϕk+1 + r, where q and r are polynomials of degree
at most k. The orthogonality property gives 〈q, ϕk+1〉 = 0; combined with our
choice of the Bi’s to make the formula exact for all polynomials of degree k we find

(8)
∫ b

a

Q(x) dx =
∫ b

a

r(x) dx =
k+1∑

j=1

Bjr(xj).

But since the xj ’s are zeroes of ϕk+1 then

(9)
k+1∑

j=1

BjQ(xj) =
k+1∑

j=1

Bj [ϕk+1(xj) + r(xj)] =
k+1∑

j=1

Bjr(xj).

Comparing (8) and (9) we see that the integration procedure (7) is exact for Q.

2.3. Find an equivalent problem that is simpler.

a) Change of variable. Making a change of variable is perhaps the most
familiar technique to simplify a problem. A small example of this is the cubic
polynomial p(x) = ax3 + bx2 + cx + d. View the coefficients as those in a Taylor
series. Since the second derivative is zero at the point where 6ax + 2b = 0, the
change of variables z = 6ax + 2b (or just the translation z = x + b/3a) yields a
simpler polynomial q(z) = αz3+γz+δ without a quadratic term. If the coefficients
of the original equation were rational, then so are those of the new equation and
the rational roots of the new equation correspond to those of the original equation.
This is a generalization of the procedure of “completing the square.” Similarly, by
a translation one can eliminate the coefficient an−1 in p(x) = xn + an−1x

n−1 +
lower order terms.

We can use this to show that every double root of a cubic polynomial with
rational coefficients is rational. Using our change of variable, it is enough to show
this for q(z) = αz3 + γz + δ. Thus, we must show that if q(r) = 0 and q′(r) = 0,
then r is rational. But 0 = q′(r) = 3αr2 + γ implies that αr3 = −(γ/3)r. Thus
0 = q(r) = −(γ/3)r + γr + δ, that is, r = −3δ/2γ, which is rational. From (4),
since x1 = x2 = r, the third root of q (and hence of p) is also rational.

For cubic polynomials with rational coefficients and having a double root r
(necessarily rational, from the above) you can now find all rational points (x, y)
(that is, both x and y are rational) on the “elliptic curve” y2 = p(x). They are
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the points where straight lines through (r, 0) and having rational slope intersect
the curve. This is now an easy exercise. A related exercise is to show that the
rational points on the circle x2 + y2 = 1 are where the straight lines through (1, 0)
with rational slope intersect the circle. One consequence is a formula for all the
“Pythagorean triples”: the integers a, b, c with a2 + b2 = c2.

Another instance of finding an equivalent problem that is simpler is the change
of variable (that is, a change of basis) in a matrix equation to diagonalize the matrix
(if possible). We can use the same idea for a system of differential equations

(10) Lu := u′ + Au = f,

where u(t) and f(t) are vectors and A(t) is a square matrix. We seek a change of
variables u = Sv where S(t) is an invertible matrix, to transform this to a simpler
equation. In some applications this is called a gauge transformation. To find a
useful S we compute

(11) f = Lu = u′ + Au = (Sv)′ + A(Sv) = Sv′ + (S′ + AS)v.

The right side of this is simplest if S is a solution of the matrix equation

(12) LS = S′ + AS = 0, say with S(0) = I;

we use S(0) = I to insure that S is invertible. Then solving (11) is just integrating
v′ = g where g = S−1f .

With this choice of S and writing D := d/dt it is instructive to rewrite (11)
as f = Lu = SDv = SDS−1u. In particular, L = SDS−1. One sees that every
linear ordinary differential operator is “conjugate” or “gauge equivalent” to D.
We thus come to the possibly surprising conclusion that any first order linear
differential operator L is equivalent to the simple operator D; this makes studying
linear ordinary differential operators far easier than partial differential operators.
We also have formally L−1 = SD−1S−1. Since D−1 is integration (and adding a
constant of integration), an immediate consequence is that the general solution of
the inhomogeneous equation Lu = f is

(13) u(t) = L−1f = S(t)C + S(t)
∫ t

0

S−1(τ)f(τ) dτ,

where C = u(0). The matrix S defined by (12) is the usual fundamental matrix
solution one meets for ordinary differential equations. Unfortunately it is presented
frequently as a trick to solve the inhomogeneous equation rather than as a straight-
forward approach to reduce the study of L to the simpler differential operator
D. It is sometimes useful to introduce Green’s function (G. Green [1793–1841])
G(t, τ) := S(t)S−1(τ) and rewrite (13) as

(14) u(t) = u(0) +
∫ t

0

G(t, τ)f(τ) dτ.

We then think of the integral operator with kernel G(t, τ) as L−1. This integral can
be interpreted physically and gives another (equivalent) approach to solving (10).

Usually S cannot be found explicitly. However in special cases such as a
single equation or a 2× 2 system with constant coefficients, you can carry out the
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computations and obtain the classical formulas quickly. For instance, for a single
equation, we find that S(t) = e−

∫
A(t) dt. Then we recognize (13) as the standard

formula. Since one can write a second order linear ODE as a first order system of
this form, we have also covered that case.

What we call a “change of variable” is part of a fundamental procedure known
to everyone, yet often seems exotic when it arises in a mathematical setting. As
an illustration, say you have a problem P that
is stated in another language, perhaps Latin.
To solve it, first translate (T ) it into your lan-
guage, solve the translated versionQ, and then
translate it back (T−1). Symbolically, reading
from right to left,

P = T−1QT

old
P−−−−−−−−−−−−−→

(original version)
old

T

y
xT−1

new
Q−−−−−−−−−−→

(new version)
new

Figure 1

(see Figure 1). The goal is to choose the new setting and T so the new problem Q is
easier than P. Diagonalizing a matrix and using a Laplace [1749–1827] transform
are two familiar mathematical examples. The same idea—but with a different
twist—is also useful in discussing symmetry (Section 2.7). There we will see that
finding a T so that the new version is the same as the old, P = T−1PT , is how
one identifies symmetries of the problem P. As a silly linguistic illustration, one
observes the phrase “madam I’m Adam” reads the same backwards. Here T is the
operation of reading backward.

b) Variational problem. The calculus of variations offers a radical way to
reformulate some problems. First an example in Rn. If A is a self-adjoint matrix,
then solving Ax = b is equivalent to finding a critical point of the scalar-valued
function

J(x) = 1
2 〈Ax, x〉 − 〈x, b〉,

where we use the standard inner product in Rn. To see this, if x is a critical point of
J(x) and if we set ϕ(ε) = J(x+ εv), where v is a vector and ε a scalar, then by the
definition of critical point, ϕ′(0) = 0. But by a computation ϕ′(0) = 〈Ax − b, v〉.
Thus 〈Ax − b, v〉 = 0 for any vector v. Since v is arbitrary this implies that
Ax− b = 0, as we asserted.

A related problem is to find the lowest eigenvalue of a self-adjoint matrix
A. It is an simple exercise to show this is the minimum value of the function
J(x) = 〈x,Ax〉/‖x‖2 as x ranges over all vectors x 6= 0 (or, equivalently, minimize
〈x,Ax〉 on the unit sphere ‖x‖ = 1). A vector x giving this minimum value is a cor-
responding eigenvector. This approach to the eigenvalues of a self-adjoint matrix is
used widely in computations, as well as giving one way to prove that one can always
diagonalize a self-adjoint matrix. Since it does not use the fundamental theorem
of algebra, this approach is applicable to some problems in infinite dimensional
spaces—such as Sturm ([1803–55]–Liouville ([1809–82]) theory and the spectrum
of the Laplacian (see just below).

The identical approach works for more complicated problems. Say we want to
solve the wave equation, utt = uxx +uyy to find the position u(x, y, t) of a vibrating
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membrane Ω; thus (x, y) are in a region Ω ⊂ R2 and time t is a real number. We
claim that u being a solution of the wave equation is equivalent to u being a critical
point of the functional

(15) J(u) =
1
2

∫∫

Ω

∫ β

α

(u2
t − u2

x − u2
y) dx dy dt.

One verifies this formally just as in the previous example by considering ϕ(ε) =
J(u + εv), where v is any smooth function with compact support in Ω × (α, β).
Again, by definition of critical point this means ϕ′(0) = 0 for any of our functions
v. By differentiating under the integral

ϕ′(0) =
dJ(u + εv)

dε

∣∣∣∣
ε=0

=
∫∫

Ω

∫ β

α

(utvt − uxvx − uyvy) dx dy dt.

To simplify this, we integrate by parts (the divergence theorem), taking the deriv-
ative off the v terms and placing them on the u terms. There are no boundary
terms because we assumed v had compact support. The previous equation reads

ϕ′(0) = −
∫∫

Ω

∫ β

α

[utt − uxx − uyy] v dx dy dt.

From this it is clear that the solutions of the wave equation are critical points
of ϕ. For this converse, it is helpful to introduce the inner product 〈f, g〉 =∫∫∫

fg dx dy dt. Then since ϕ′(0) = 0, the last formula asserts that the expres-
sion in brackets [· · · ] is orthogonal to all these functions v. Since smooth func-
tions v with compact support are dense, the expression in brackets must be zero.
That is, u must be a solution of the wave equation. It is customary to refer
to the wave equation as the Euler-Lagrange equation for the functional J(u) =∫

F (x, t, u, ut, ux, uy) dx dy dt whose integrand F (x, t, u, ut, ux, uy) := 1
2 (u2

t − u2
x −

u2
y) is called the Lagrangian.

Closely related to the linear algebra case, the lowest eigenvalue of the Lapla-
cian, −∆u = λu (note the “−” sign) for functions with zero boundary values
on a region Ω is found by minimizing the Rayleigh [1842–1919] quotient J(v) =∫
Ω
|∇v|2 dx

/ ∫
Ω

v2 dx among all functions v that are zero on the boundary of Ω.
This is useful both for theoretical and practical applications.

One virtue of introducing a variational problem is that some properties may
be more accessible. We see instances of this below, where we’ll use invariance of the
variational problem under the translation t 7→ t+ε to deduce conservation of energy
for the wave equation (Section 2.7d), and in a situation where the existence of a
solution to the original problem is more accessible from the variational approach
(Section 3.2). Two standard references to the calculus of variations are [G-F] (a
basic text) and [G-H] (a fresh, more thorough, approach). The book [H-T] is a nice
introduction for the general reader.

2.4. Duality: Find a related problem that is useful.

To me, duality is the most vague and mysterious item in this lecture. My im-
pression is that duality appeared first in projective geometry where one interchanges
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the roles of points and lines (this evolved slowly from Apollonius’ [c. 262–190 b.c.]
use of “pole” and “polar” through 1850). Lagrange introduced the adjoint of a
differential operator in the eighteenth century (this is the essence of Lagrange’s
identity for linear second order ordinary differential operators) while the adjoint
of a matrix seems to have been used significantly only in the nineteenth century.
Green’s second identity (1828) asserts that the Laplacian is formally self-adjoint.
Lagrangian and Hamiltonian mechanics are dual objects: Lagrangian living on the
tangent bundle, Hamiltonian on the cotangent bundle. There are dual problems in
the calculus of variations—including linear programming. Cohomology is the dual
of homology. Duality is even a standard device in rhetoric: “Do unto others as
you would want others do unto you”, and J.F. Kennedy’s “ . . . ask not what your
country can do for you, ask what you can do for your country”. I do not know
how to make the concept of duality precise enough to fit all known mathematical
instances and ease introduction of new dual objects.

In Section 2.6 below we give a more subtle uses of duality in linear algebra
and differential equations. As preparation, and for its own interest, here we follow
Lagrange and define the formal adjoint L∗ of a linear differential operator L. Use
the inner product for real-valued functions: 〈ϕ,ψ〉 =

∫
ϕψ dx. Then L∗ is defined

by the usual rule
〈u, L∗v〉 = 〈Lu, v〉

for all smooth functions u and v that are zero outside a compact set; we choose
functions that are zero outside a compact set to avoid having boundary terms when
we integrate by parts. We use the word “formal” since the strict adjoint requires a
(complete) Hilbert [1862–1943] space and the consideration of boundary conditions.

If L := d/dt, then an integration by parts reveals that

〈Lu, v〉 =
∫

u′v dt = −
∫

uv′ dt = 〈u, L∗v〉.

Thus, the formal adjoint of L := d/dt is L∗ = −d/dt. Similarly, if A(t) is
a matrix and u(t) is a vector, then the formal adjoint of Lu := u′ + A(t)u is
L∗v = −v′ + A∗(t)v. Two integrations by parts show that the formal adjoint of
the second order system Mu := u′′ + A(t)u is M∗v = v′′ + A∗(t)v. In particular,
if A is symmetric then M is formally self-adjoint, a fact that is basic in quantum
mechanics, where, with a complex inner product, the self-adjoint operator id/dt
appears in the Schrödinger equation.

One application of the adjoint is that if u is a solution of the homogeneous
system Lu := u′ + A(t)u = 0 and v is a solution of the adjoint system, L∗v =
−v′ + A∗(t)v = 0, then their pointwise inner product v · u is a constant. Indeed,

(16)
d

dt
(v · u) = v′ · u + v · u′ = A∗v · u− v ·Au = 0.

Observing that v ·u is the matrix product v∗u, a similar computation shows that if
S(t) and T (t) are (not necessarily square) matrix solutions of LS = 0 and L∗T = 0,
respectively, then

(17) T ∗(t)S(t) = constant.
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In particular, if A, S and T are square matrices with S(0) = T (0) = I (as in (12),
S and T are then fundamental matrix solutions), we have
(18) T ∗(t)S(t) = I that is, T (t) = S−1∗(t).
If this formula (17) appears boring, the disguise is perfect. It is a wide-sweeping
generalization both of ete−t = 1, which is the special case of Lu := u′ + u, so
L∗v = −v′ + v, as well as cos2 t + sin2 t = 1. In a physical context it may express
some conservation law.

To prove cos2 t+sin2 t = 1, consider the second order system Mw := w′′+Cw =
0, where C(t) is an n×n matrix, with corresponding adjoint system M∗z = z′′+C∗z.
Let ϕ(t) and ψ(t) be (vector or matrix) solutions of Mϕ = 0 and M∗ψ = 0,
respectively. We assert that
(19) ψ∗′(t)ϕ(t)− ψ∗(t)ϕ′(t) = constant.
This reduces to cos2 t + sin2 t = 1 in the special case where C is the 1× 1 identity
matrix, ϕ(t) = cos t, and ψ(t) = sin t. The identity (19) is a routine consequence of
the basic identity (17) and requires no additional insight to discover; merely rewrite
w′′ + C(t)w = 0 as a first order system by the usual procedure of letting u1 := w

and u2 := w′. Then u :=
(ϕ

ϕ′
)

satisfies the first order system Lu := u′ + Au, where

A is the 2n × 2n block matrix A :=
(0 −I

C 0

)
. Similarly v :=

( ψ′

−ψ

)
is a solution of

the adjoint equation L∗v = −v′ + A∗v = 0. The result (19) now follows from the
identity (17) with S = u and T = v.

For equations of the form Lu := Pu′ + Au, where P may be singular at
a boundary point of the interval under discussion (this arises in Sturm-Liouville
theory), it is useful to observe that probably one should not multiply by P−1 to
reduce to the earlier case. Instead directly use L∗v = −(P ∗v)′+A∗v and generalize
the identity (17) to T ∗(t)P (t)S(t) = const . Similarly, for Mw := (Pw′)′+Cw = 0
identity (19) becomes ψ∗′Pϕ− ψ∗Pϕ′ = const.

A consequence of (18) and (14) is that if G(t, τ) = S(t)S−1(τ) is Green’s
function for Lu := u′+Au, then Green’s function for L∗ is G∗(τ, t), a fact that has
the useful physical interpretation that for the adjoint one interchanges the roles of
the observation time t and event time τ (to see this clearly for a scalar equation let
f(τ) be the Dirac delta function at, say, τ = τ0 in (14).

2.5. Understand the family of all solutions.

How many solutions are there? Is uniqueness desirable? If so, what conditions
would insure uniqueness of the solution? If you slightly modify some parameters
in the problem, do the solutions change only slightly? This continuous dependence
on parameters is basic in real-life problems where the data are known only approx-
imately. It is also important for problems solved using a computer that introduces
both round-off errors (computers use only a finite number of decimal places) and
truncation errors (computers approximate limiting processes such as integration by
finite discrete operations).

For instance, by Rouche’s theorem in complex analysis the roots of a polyno-
mial p(z) depend continuously on the coefficients, that is, if p has k roots in the
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small disk |z − c| < ρ and if we perturb the coefficients of p slightly, then this
perturbed polynomial also has exactly k roots in this disk. A corollary is that the
eigenvalues of a matrix depend continuously on the elements of the matrix. The
simple example x2 = ±ε shows that these assertions may be false if one considers
only real roots.

This example x2 = ε for ε near zero also shows that, even allowing complex
roots, the solution may not be a differentiable function of the parameter. By
contrast, we will use the implicit function theorem to show easily that simple roots
do depend smoothly on parameters. Here is the proof. Say we have a polynomial
p(x, c) depending smoothly on a parameter c and at c = c0 we have a root x0,
so p(x0, c0) = 0. Since x0 is a simple root, ∂p(x, c0)/∂x|x=x0 6= 0. Thus, by the
implicit function theorem, for all c near c0, there is a unique solution x = x(c)
near x0 of p(x, c) = 0. This solution depends smoothly on c. This proof was quite
general; it does not require p to be a polynomial. A consequence is that simple
eigenvalues of a matrix depend smoothly on the elements of the matrix.

The study of what happens when one cannot apply the implicit function the-
orem is carried out in bifurcation theory and in the study of singularities of maps.
We now know these are the same subjects, although they arose from different ori-
gins with different viewpoints. See [Arn], [C-H], [H-K], and [G-S]. The key new
phenomenon is that several solutions can branch—or solutions can disappear—as
occurs for the real solutions of x2 = ε; for ε < 0 there are no real solutions while for
ε > 0 there are two solutions. An early notable appearance of bifurcation theory
was Euler’s classical study of the buckling of a slender column under compression
(see the elementary discussion in the undergraduate text [Wi, pp. 167-169]).

In practical problems, one may need to delve more deeply into the dependence
of a problem on parameters. Wilkinson (see Forsythe’s beautifully illuminating
article [F] and subsequent book [F-M-M]) illustrated this with the polynomial

p(x) = (x− 1)(x− 2) · · · (x− 19)(x− 20) = x20 − 210x19 + · · · .

Let p(x, ε) be the polynomial obtained by replacing only the term −210x19 by
−(210 + ε)x19, where ε = 2−23. Since 27 < 210 < 28, this means we are changing
this one coefficient in the 30th significant base 2 digit. A smaller perturbation
of this sort might even occur because of roundoff error in a computer, because
computers keep only a finite number of decimal places. Since for ε = 0 the roots of
p(x, 0) are well-separated, then for ε near zero they depend smoothly on ε. By a
careful calculation, one finds that some of the roots have moved substantially. For
instance the complex numbers 16.73073 ± 2.81262i are now roots. Should we be
surprised the roots have moved this much? No. For if we differentiate p(x, ε) = 0
with respect to ε we obtain

∂p(x, ε)
∂x

∂x

∂ε
+

∂p(x, ε)
∂ε

= 0,

so
∂x

∂ε
= − ∂p /∂ε

∂p /∂x
=

x19

∑
1≤j≤20

∏
1≤k≤20

k 6=j

(x− k)
.
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Evaluating this at x = j for j = 1, . . . , 20 we find the sensitivity of the jth root:
∂x

∂ε

∣∣∣∣
x=j

=
j19

∏
1≤k≤20

k 6=j

(j − k)
.

For instance, at the root x = 16 one computes that ∂x
∂ε

∣∣
x=16

= 2.4× 109. Not small
at all.

One can explicitly find the family of all solutions for only the simplest problems,
yet these frequently serve as guides for more general cases. To the astute—at
least with hindsight—the polynomial equation zn = 1 and differential equation
u′′ = f(x) give significant hints of how more complicated cases behave. Even
without explicit formulas, you can sometimes obtain information on the set of all
possible solutions. The following example illustrates this; it also is an instructive
indication of the power of Method 3 in Section 2.2.

Consider the linear space P` of polynomials of degree at most ` in the n vari-
ables x1, . . . , xn and let P` be the sub-space of polynomials homogeneous of degree
`. The standard Laplacian on Rn is ∆u := ux1x1 + ux2x2 + · · ·+ uxnxn . A function
u(x) is called harmonic if ∆u = 0. We wish to compute the dimension of the
subspace H` of P` consisting of homogeneous harmonic polynomials. If n = 2, and
` ≥ 1 the dimension is 2, since for ` ≥ 1 one basis for the space of harmonic poly-
nomials of degree exactly ` is the real and imaginary parts of the analytic function
(x + iy)`.

For the general case, observe that ∆: P`+2 → P` and define the linear map
L : P` → P` by the formula
(20) Lp(x) := ∆

[
(|x|2 − 1)p(x)

]
,

where |x| is the euclidean norm. Now Lp = 0 means the polynomial u(x) :=
(|x|2 − 1)p(x) ∈ P`+2 is harmonic. But clearly u(x) = 0 on the sphere |x| = 1,
so u ≡ 0.1 Thus ker L = 0 so L is invertible. In particular, given a homogeneous
q ∈ P` there is a p ∈ P` with ∆

[
(|x|2 − 1)p(x)

]
= q. Let v ∈ P` denote the

homogeneous part of p that has highest degree `. Since ∆ reduces the degree by
two, we deduce that in fact ∆(|x|2v) = q. Therefore this map v 7→ q from P` → P`

is onto and hence an isomorphism.2 Here are two consequences.
1) Since the map ∆: P` → P`−2 is onto, again by linear algebra, we can

compute the dimension of the space of homogeneous harmonic polynomials:

dim H` = dim P` − dimP`−2 =
(

n + `− 1
`

)
−

(
n + `− 3

`− 2

)

=
(n + 2`− 2)(n + `− 3)!

`! (n− 2)!
.

1To prove u ≡ 0, one can use the divergence theorem to see that
∫
|x|<1

|∇u|2 dx =

−
∫
|x|<1

u ∆u dx = 0, so ∇u = 0. Thus u ≡ const. ≡ 0. Another approach uses the maxi-

mum principle for harmonic functions.
2One can also give a purely algebraic proof that if p ∈ P` satisfies ∆(|x|2p) = 0, then p ≡ 0

—hence the map M : P` 7→ P` defined by Mp := ∆(|x|2p) is an isomorphism of P`.
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For instance if n = 3 then dim H` = 2` + 1.
2) Any homogeneous polynomial q ∈ P` can be written (uniquely) in the

form q = h + |x|2v, where h ∈ H` and v ∈ P`−2. To prove this, first compute ∆q
and then use the above to find a unique v ∈ P`−2 so that ∆(|x|2v) = ∆q ∈ P`−2.
The function h := q − |x|2v is clearly harmonic. Applying this again to v and so
on recursively we conclude that q = h` + |x|2h`−2 + |x|4h`−4 + · · · , where hj ∈ Hj .
This yields the direct sum decomposition P` = H` ⊕ |x|2H`−2 ⊕ · · · . Since both
the Laplacian and the operation of multiplying by |x|2 commute with rotations
(see the discussion in Section 2.7a below), the summands in this decomposition
are SO(n)-invariant, a fact that is useful in discussing spherical harmonics and the
symmetry group SO(n).

The idea behind the definition of L in (20) was that to solve ∆u = q ∈ P`,
we seek u in the special form u = (|x|2 − 1)p(x) to obtain a new problem, Lp = q,
whose solution is unique. Frequently it is easier to solve a problem if you restrict
the form of the solution to obtain uniqueness.

Homogeneous harmonic polynomials arise since, when restricted to the unit
sphere you can show that they are exactly the eigenfunctions of the Laplacian on
the sphere; the dimensions of the eigenspaces are the numbers just computed. As
above, when n = 3 this number is 2`+1. Atoms are roughly spherically symmetric
and this number arises as the maximum number of electrons in an atomic subshell.
There are 2` + 1 electrons with spin ± 1

2 , so 2(2` + 1) in all. Thus the subshells
contain at most 2, 6, 10, 14, . . . electrons.

In high school we solve polynomial equations in one variable and systems of
linear equations. These are the first steps in understanding the solutions of a system
of k polynomial equations

f1(z) = 0, f2(z) = 0, . . . , fk(z) = 0

in n unknowns z = (z1, . . . , zn). From experience we know that it is simplest to
allow complex numbers as solutions. If there are more equations than unknowns
(k > n), then usually there will be no solutions, that is, no common zeroes [chal-
lenge: restate this precisely and then prove it, say for any smooth functions fj ],
while if there are more unknowns than equations there are usually infinitely many
solutions. If there are the same number of equations as unknowns, then usually
there are only finitely many solutions. While plausible, this is not obvious (it is
false for non-polynomials as sin x = 0, which has infinitely many solutions—hardly
a surprise if one views its Taylor series as a polynomial of infinite degree).

Bezout [1730–83] made this precise for two polynomial equations in two vari-
ables:

(21) f(x, y) = 0 g(x, y) = 0.

If f has degree k and g degree `, he proved that there are exactly k` solutions,
possibly complex, unless f and g have a common (non-constant) polynomial factor
(see [Wa], [Ful]).

As usual, it is enlightening to introduce geometric language and think of the
two equations (21) as defining two curves C1 and C2. The common solutions of
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(21) are the points where the curves intersect.
We examine (21) in the special case where f(x, y) = a1x

3+a2x
2y+· · ·+a10 and

g are both cubic polynomials. Say they intersect at the nine points p1 = (x1, y1),
. . . , p9 = (x9, y9). So far this is quite general. But now assume that six of these,
p1, . . . , p6, happen to lie on a conic Γ, so they are also roots of the quadratic
polynomial q(x, y) = 0 that defines Γ. By Bezout, we know that C1 and Γ intersect
in six points, so it is quite special if C2 and Γ intersect in the same six points. For
simplicity also assume that the conic Γ is irreducible, that is, it is not the product
of two non-constant polynomials of lower degree (this is the case if Γ is the product
of two linear polynomials and hence is just two straight lines). We claim that the
remaining three points p7, p8, p9 lie on a straight line.

Here is an algebraic proof. For any linear combination h(x, y) := αf(x, y) +
βg(x, y), notice that the cubic curve C defined by h = 0 automatically contains the
points where C1 and C2 intersect. Pick another point v on the conic Γ and choose
α and β so that v is also a zero of h. Then the cubic curve C also intersects the
conic Γ at the seven points v, p1, . . . , p6. But by Bezout’s theorem C and Γ have
3 · 2 = 6 points of intersection unless h and q have a common factor. Thus there
must be a common factor. Because q is irreducible, the factor must be q itself, so
h(x, y) = q(x, y)r(x, y) where, by matching degrees, r(x, y) is a linear polynomial.
Thus p7, p8, p9, which are zeroes of h = 0 but not g = 0, are roots of the linear
polynomial r = 0 and thus lie on a straight line.

We can reinterpret this to obtain a
classical theorem of Pascal [1623–1662].
Connect any six points p1, . . . , p6 on a
conic to obtain a “hexagon”, probably
with self-intersections. Some terminology
for hexagons: a pair of sides separated by
two sides is called opposite (as p1p2 and
p4p5) while the points of intersection of
opposite sides are called diagonal points.
Thus a hexagon has three diagonal points
(circled in Figure 2). Pascal’s theorem as-
serts that these three points always lie on
a straight line.
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Fig. 2

To prove it, take the alternate edges of the hexagon, p1p2, p3p4, p5p6, and
p2p3, p4p5, p6p1, to obtain two triangles whose sides contain these edges. To each
triangle we associate a cubic polynomial by taking the product of the three linear
polynomials determined by the edges of the triangle. Note that here a triangle is
the union of the three entire lines, not just the segments joining vertices. Then the
points p1, . . . , p6 plus the three diagonal points are the nine points of intersection of
these triangles. Now apply the preceding algebraic result. To include the possibility
that some pairs of opposite sides might be parallel—so the corresponding points of
intersection are at infinity—it is better if one works in the projective plane.
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The algebraic reasoning generalizes immediately: Let f(x, y) = 0, g(x, y) = 0
be polynomials of degree n that intersect at n2 points. If kn of these points lie on an
irreducible curve defined by a polynomial of degree k, then the remaining n(n− k)
points lie on a curve defined by a polynomial of degree n − k. This generalization
illustrates the power of the algebraic approach, despite the loss of the special beauty
of a purely synthetic geometric proof.

2.6. If a solution does not always exist, find the obstructions

If an equation does not have a solution, it is important to understand the
reason. If you are trying to fit a straight line p = at + b to the k data points
(t1, p1), . . . , (tk, pk) that were found experimentally, then it is unlikely there will
be a choice of the coefficients a and b that fits the data exactly. In this situation one
seeks an “optimal” approximate solution. A typical approach to solving F (x) = y
approximately is to find a solution x0 that minimizes the error: E(x) =
‖F (x)−y‖. A non-trivial human decision is choosing a norm (or some other metric)
for measuring the error. One often uses a norm arising from an inner product; the
procedure is then called the Method of Least Squares. Here is a brief (but complete)
outline.

First observe that if a linear space V has an inner product (written as 〈x, y〉),
and S ⊂ V is a subspace, then the orthogonal projection yS of y into S has the
property that y − yS is perpendicular to S. The projection yS is the point in S
closest to y since for any w ∈ S we have y − w = (y − yS) + (yS − w). Because
(y − yS) ⊥ (yS − w) ∈ S, by Pythagoras

‖y − w‖2 = ‖y − yS‖2 + ‖yS − w‖2 ≥ ‖y − yS‖2.
For least squares to minimize the error ‖Lx−y‖ we thus want to pick x so that

yS := Lx is the orthogonal projection of y into S := image (L). Then y−yS = y−Lx
will be perpendicular to image (L) so for every vector z

0 = 〈y − Lx,Lz〉 = 〈L∗(y − Lx), z〉.
Therefore L∗(y−Lx) = 0. We can rewrite this by saying the desired x is a solution
of the normal equation L∗Lx = L∗y. Since L∗L is a square matrix, the normal
equations have a (unique) solution if ker(L) = 0. [If you have never done so, a
simple but useful exercise is to set-up the normal equations for the above example
of fitting a straight line to some data.]

There are situations where other procedures are more appropriate to minimize
the error F (x)− y. For nonlinear problems not much is known. In linear and non-
linear programming there is related work to find optimal solutions of inequalities.

Now, say you want to solve an equation that you believe should have an exact
solution under suitable conditions. You thus need to determine and understand
these conditions.

The simplest case is a system of linear algebraic equations Ax = y (the matrix
A is not assumed to be square). A basic—but insufficiently well known—result in
linear algebra uses the adjoint equation (duality) and says that for a given y there
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is at least one solution if and only if y is orthogonal to all the solutions z of the
homogeneous adjoint equation, A∗z = 0. Here is the short proof.

Say z satisfies A∗ z = 0. If there is a solution of Ax = y, then taking the inner
product with z we obtain
(22) 〈z, y〉 = 〈z,Ax〉 = 〈A∗z, x〉 = 0.

Thus z is orthogonal to y. This computation shows that
(23) image (A)⊥ = ker(A∗).

The proof of formula (23) is the same in infinite dimensional Hilbert spaces. If
V is a linear subspace of a Hilbert space, then (V ⊥)⊥ = V = closure of V . Thus,
in a Hilbert space, image(A) = ker(A∗)⊥. In some important cases—including Rn

where it is evident—one can show that image (A) is closed. One then has
(24) image (A) = ker(A∗)⊥.

Frequently this is called the Fredholm [1866–1927] alternative, since it can be
phrased as the following alternative: “Either you can always solve Ax = y, or else
there are obstructions. These obstructions are precisely that y must be orthogonal
to all the solutions of the homogeneous adjoint equation.”

As another example, consider solving the differential equation u′′ = f , where
we assume f(x) is periodic, say with period 2π, and we seek a solution u(x) that is
also periodic with the same period, so both u and u′ are periodic (that u′′ will be
periodic follows from the differential equation). Thus we are solving the differential
equation on the circle, S1. This is a simple example of an “elliptic differential
operator” on a “compact manifold without boundary.”

First we solve the equation directly. The general solution of u′′ = f is u(x) =
u(0) + u′(0)x +

∫ x

0
(x− t)f(t) dt. To insure that u is periodic we need u(2π) = u(0)

and u′(2π) = u′(0). The second condition imposes the requirement

(25)
∫ 2π

0

f(x) dx = 0,

and we use the first condition to solve for u′(0). The upshot is that a solution exists
if and only f satisfies (25). This solution is not unique since the constant u(0) can
be chosen arbitrarily.

Next we interpret (25) using the Fredholm alternative. Write our equation as
Lu = f , where Lu := u′′, so L is formally self-adjoint: L∗v = v′′. The Fredholm
alternative says that to find the image of L, we should first find the periodic so-
lutions of the homogeneous adjoint equation, z′′ = 0. Although this equation can
be solved by a mental computation, we use a different method that generalizes.
Multiply the equation z′′ = 0 by z and integrate by parts to obtain

(26) 0 = 〈z, Lz〉 =
∫ 2π

0

zz′′ dx = −
∫ 2π

0

|z′|2 dx,

so z′ = 0 and z is constant. The Fredholm alternative then states that f is in the
image of L precisely when it is orthogonal to the constants:

〈1, f〉 = 0.

This is just equation (25).
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This example may be generalized to solving the Laplace equation on the torus
Tn. Here we are given a (smooth) function f(x1, x2, . . . , xn) that is periodic with
period 2π in each variable and seek a periodic solution u(x1, x2, . . . , xn) of

(27) ∆u = f(x),

where ∆u := ux1x1 +ux2x2 + · · ·+uxnxn
. Using Fourier series, it is straightforward

to show that there is a solution if and only if the same condition holds,

(28)
∫

T n

f(x) dx = 0,

where, in this formula we integrate from 0 to 2π in each variable x1, x2, . . . , xn.
Just as for u′′ = f the Fredholm alternative gives (28) for the Laplace equation
(27); to compute ker∆ you merely replaces the integration by parts in (26) by the
divergence theorem (cf. the footnote in Section 2.5).

Almost 100 years ago, Fredholm proved that the Fredholm alternative holds for
the Laplace equation. We now know that it holds for many linear “elliptic” partial
differential equations with various boundary conditions. The Fredholm alternative
is more interesting for these differential operators than in finite dimensional spaces
since for them the kernels of L and L∗ are finite dimensional (this is elementary for
ordinary differential operators, but deeper for elliptic partial differential operators).
Thus there are only a finite number of obstructions to solving Lu = f , despite the
function space being infinite dimensional.

The Hodge [1903–75] theorem for compact manifolds is a straightforward con-
sequence (essentially algebraic) of the Fredholm alternative applied to the Hodge
Laplacian on differential forms.

Since it is both instructive and (to my surprise) not readily accessible in the
literature, we will show in detail that the Fredholm alternative holds for the second
order ordinary differential equation

(29) Mu := a(x)u′′ + b(x)u′ + c(x)u = g(x),

where the coefficients and g(x) and their derivatives are smooth functions that are
periodic with period 2π. To avoid singularities also assume a(x) 6= 0. We seek a
smooth solution u(x) that is also periodic with period 2π. In other words, we are
solving (29) on the circle S1 = {0 ≤ x ≤ 2π} with the end points x = 0 and x = 2π
being thought of as the same point.

The computation (22) shows that if g is in the image of M , that is, if you
can solve (29), then g is orthogonal to the kernel of M∗. The converse is more
complicated.

The details are a bit simpler if we assume we have already made the standard
reduction to a first order system of the form

(30) Lu := u′ + A(x)u = f(x),

where A(x) is a square matrix and f(x) a vector, with all the elements of A and
f being smooth periodic functions (we always assume the period is 2π). We seek
a smooth periodic (vector) solution u. Our short proof uses the existence theorem
for ordinary differential equations.
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One tool we use is the fundamental matrix solution S(x) and the resulting
formula (13) for the general solution of the inhomogeneous equation (knowing one
can find S(x) is the only place we use the existence theorem for ordinary differential
equations). The question thus reduces to finding a constant vector C := u(0) so
that u is periodic, that is, u(2π) = u(0). Using (13) we can write u(2π) = u(0) as

(31) [I − S(2π)]C = S(2π)
∫ 2π

0

S−1(t)f(t) dt.

From (31) it is clear that in the special case where 1 is not an eigenvalue of S(2π),
that is, if the homogeneous equation has no solutions with period 2π, then we can
solve (31) uniquely for C. But 1 might be an eigenvalue of S(2π); we must look
deeper.

Both to treat the general case and to relate this to the homogeneous adjoint
equation L∗v = −v′ + A∗(x)v = 0, we need the observation (18) that the funda-
mental matrix solution of the adjoint operator is S∗−1. Thus the general solution
(not necessarily periodic) of L∗z = 0 is z(t) := S∗−1(t)Z where Z can be any vec-
tor. Consequently z(t), which we have just noted is a solution of the homogeneous
adjoint equation, is periodic with period 2π if and only if S−1∗(2π)Z = S−1∗(0)Z,
that is, if Z ∈ ker[S−1∗(2π)− I].

From here, the reasoning is straightforward. For instance we deduce the Fred-
holm alternative for periodic solutions of (30) follows. Rewrite (31) as

[S−1(2π)− I]C =
∫ 2π

0

S−1(t)f(t) dt.

Let V be the right hand side of this. By linear algebra, one can solve this algebraic
equation for C if and only if V is orthogonal to ker[S−1(2π) − I]∗, that is, to all
vectors Z ∈ ker[S−1∗(2π) − I]. However, V being orthogonal to these vectors Z
means

0 = Z · V =
∫ 2π

0

Z · S−1(t)f(t) dt =
∫ 2π

0

z(t) · f(t) dt,

where Z · V is the usual inner product in Rn Consequently, (30) has a periodic
solution if and only if f is orthogonal in L2(S1) to the periodic solutions of the
homogeneous adjoint equation. This completes the proof.

Another easy consequence of this approach is that the dimension of the space
of 2π periodic solutions of Lu = 0 and of L∗v = 0 are equal. Indeed, from (31),
the dimension of the space of periodic solutions of Lu = 0 is dim ker[I − S(2π)].
Similarly, since S∗−1 is the fundamental matrix for L∗, then the dimension of the
space of periodic solutions of L∗v = 0 is dim ker[I − S∗−1(2π)]. But I − S∗−1 =
−[(I−S)S−1]∗. Thus I−S is just I−S∗−1 multiplied by an invertible matrix and
then taking an adjoint so the dimensions of their kernels are equal.

The reader may wish to use these ideas to prove that the Fredholm alternative
holds for the boundary value problem L := u′′ + c(x)u = f(x) on the interval
0 < x < 1, with the “Dirichlet” boundary conditions u(0) = 0, u(1) = 0 for both
L and L∗.
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All of this has treated linear equations. Understanding obstructions to exis-
tence for nonlinear equations is much more complicated, even in Euclidean space
for real solutions of a system of polynomial equations.

The next example gives the flavor of the issues for a simple nonlinear differential
equation. Recall that the curvature k(x) of a smooth curve y = y(x) is given by

(32) k(x) =
y′′

(1 + y′2)3/2
.

The “inverse curvature problem” is, given a smooth function k(x), 0 < x < 1, to
find a smooth curve y = y(x) having this function as its curvature.

A circle of radius R has curvature 1/R. Thus, if k(x) ≡ 2, then a semi-circle
of radius 1/2 solves our problem. However, if k(x) ≡ 4, then the circle of radius
1/4 supplies a solution for only half the desired interval 0 < x < 1. This leads us
to suspect that if there is a solution, then the curvature can’t be too large for too
much of the interval.

To find an obstruction, note that y′′/(1 + y′2)3/2 = (y′/
√

1 + y′2)′. Thus we
integrate both sides of (32)

(33)
∫ x

0

k(t) dt =
y′(x)√

1 + y′(x)2
− y′(0)√

1 + y′(0)2
.

Let γ = y′(0)/
√

1 + y′(0)2, so |γ| ≤ 1 and∫ x

0

k(t) dt ≤ 1− γ ≤ 2, 0 ≤ x ≤ 1.

This inequality embodies our suspicion that “the curvature can’t be too large for
too much of the interval”. For the case of constant curvature k(x) ≡ c > 0, for x = 1
this condition is c ≤ 2, which is sharp. For non-constant k a necessary and sufficient
condition is that there is a constant γ ∈ [−1, 1] such that

∣∣ ∫ x

0
k(t) dt + γ

∣∣ < 1 for
all 0 < x < 1. If we assume the curve is convex, that is, k(x) > 0, then we
may choose γ = −1 and find that a necessary and sufficient condition is simply∫ 1

0
k(t) dt ≤ 2. The necessity is immediate from (33), while the sufficiency follows

by solving (33) for y′(x) and integrating. Implicitly we have not permitted vertical
tangents (y′(x) = ±∞) inside the interval but do allow them at the boundary
points—as in the case of a semicircle of radius 1/2.

A standard variant of this problem is to impose boundary conditions such as
y(0) = y(1) = 0. I leave you the pleasure of discovering necessary and sufficient
conditions for solving this boundary value problem in the special case of a convex
curve. Assuming existence, is the solution of this boundary value problem unique?

Another variant: For a plane curve (x(s), y(s)) parameterized by arc length,
0 ≤ s ≤ L, one can compute the curvature k(s). Investigate the inverse problem:
given k(s), 0 ≤ s ≤ L, find the curve. What if you require the curve to be a smooth
(simple?) closed curve?

The difficulties here are because this problem is global for the whole interval 0 <
x < 1. If we are satisfied with a local solution, defined only in some neighborhood
of x = 0 then a solution always exists.
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For surfaces z := u(x, y) in R3 one analogue of this uses the mean curvature H:

(34) H(x, y) = ∇ ·
( ∇u√

1 + |∇u|2
)

For instance the mean curvature of a sphere of radius R is 2/R, while the mean
curvature of a right circular cylinder of radius R is 1/R. For a cylindrical surface
where z = u(x) does not depend on y, the mean curvature equals the curvature of
the curve z = u(x).

The inverse mean curvature problem is, “Given H(x, y) and a connected region
Ω ⊂ R2, is there a surface z = u(x, y) having mean curvature H for all (x, y) ∈ Ω?”

As in the previous case, we anticipate that if H is too large in some sense,
then the desired surface will not exist over all of Ω. The obstruction is a (possibly
surprisingly) straightforward extension of (33). Integrate both sides of (34) over
any region ω ⊆ Ω with sufficiently smooth boundary ∂ω. Then by the divergence
theorem ∫∫

ω

H(x, y) dx dy =
∫

∂ω

∇u · ν√
1 + |∇u|2 ds,

where ds is the element of arc length and ν the unit outer normal vector field. Since
|∇u · ν|/

√
1 + |∇u|2 ≤ 1 we have the obstruction

∣∣∣
∫∫

ω

H(x, y) dx dy
∣∣∣ ≤ Length (∂ω).

In particular, if H(x, y) ≥ c > 0 and Ω is a disk of radius R, then c ≤ 2/R (see [K,
p. 37] for a bit more).

Our understanding of obstructions to the existence of a solution of most nonlin-
ear partial differential equation is very incomplete; many of the known obstructions
use Noether’s theorem mentioned in Section 2.7d. The border between existence
and non-existence is still largely uncharted territory.

2.7. Exploit symmetry

a) Simple symmetry. One familiar example of symmetry in algebra occurs
for a polynomial p(z) = anzn+· · ·+a0 with real coefficients. Here the coefficients are
invariant under complex conjugation so for any complex number z we have p(z) =∑

akzk =
∑

akzk = p(z). Thus if z is a complex root, then so is z. Since taking the
complex conjugate a second time brings us back to the original root, we don’t get
even more roots this way (but in the last example in this section, repeatedly using
a symmetry will give us infinitely many integer solutions of x2 − 2y2 = 1). The
nature of complex conjugation as a symmetry is clearer if one uses different (more
cumbersome) notation for the complex conjugation operator, say write T (z) = z.
Thus T 2 = Identity and (Tp)(z) = T (p(z)). For a polynomial with real coefficients
p(z) = p(z) means Tp = pT , that is, T and p commute; it may be clearer if we
write this as TpT−1 = p, so p is fixed under the automorphism T . Galois’ deep
contribution to the theory of solving polynomial equations was to show how to
exploit related symmetries.
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A variant of this reasoning is also useful to solve the equation F (x) = c.
Assume that F commutes with some map T , so TF = FT , and that c is invariant
under T : T (c) = c. If x0 is a solution of F (x) = c, then x0 is not necessarily
invariant, but by the above reasoning T (x0) is also a solution. If you also know
that the solution of F (x) = c is unique, then T (x0) = x0, that is, this solution x0

is invariant under T . Here are three similar instances.

i). Let f be a homeomorphism of the sphere S2 ⊂ R3, and let ϕ : (x, y, z) 7→
(x, y,−z) be a reflection across the equator. Assume that c ∈ S2 is fixed by ϕ,
that is, ϕ(c) = c so c is on the equator z = 0, and assume that f and ϕ commute,
f ◦ ϕ = ϕ ◦ f . If f(p0) = c, then p0 = (x0, y0, z0) is also invariant under ϕ and
hence p0 is also on the equator. Thus f maps the equator onto itself.

ii). The second example is the solution u(x, t) of the wave equation uxx−utt =
0 on the interval −1 ≤ x ≤ 1 with the boundary conditions u(−1, t) = u(1, t) = 0.
If the initial position u(x, 0) and the initial velocity ut(x, 0) are both even functions,
that is, invariant under the map T : x 7→ −x, then so is the solution u(x, t). This
follows as soon as you know the uniqueness of the solution of the wave equation
with given initial conditions.4

Using the linearity of this problem, even if we did not have uniqueness we
could still have obtained an invariant solution by letting ϕ(x, t) be any solution;
since T 2 = I, then the average u := 1

2 (ϕ + Tϕ) is an invariant solution. One
generalizes the construction of u in similar situations by the important procedure
of averaging over the group of symmetries. One application in electrostatics is the
method of images.

iii). A Markov chain example. In an experiment you are placed in a five room
“house” (see Figure 3). Every hour the doors are
opened and you must move from your current room
to one of the adjacent rooms. Assuming the rooms are
all equally attractive, what percentage of the time will
you spend in each room? (The extent to which the ex-
perimental percentage differs from this measures the
desirability of each room).

4 3

21

5

Fig. 3

To solve this problem one introduces the 5 × 5 transition matrix M = (mij)
of this Markov [1856–1922] chain: if you are currently in room j, then mij is the
probability you will next be in room i (caution: some mathematicians interchange
the roles of i and j). For this, we number the rooms, say clockwise beginning in
the upper left corner with p5 referring to the center room. Then, for instance,
m12 = m32 = m52 = 1

3 since if you are in room 2, it is equally likely that you will
next be in rooms 1, 3, or 5, but you won’t be in rooms 2 or 4. Proceeding similarly

4Proof of Uniqueness. Say u and v are both solutions with the same initial position and
velocity, then w := u − v is also a solution with w(x, 0) = wt(x, 0) = 0. Apply conservation of
energy (45) to w(x, t). Since E(0) = 0, then E(t) ≡ 0 for all t. Hence w(x, t) ≡ const. Since
w(x, 0) = 0, then w(x, t) ≡ 0 so u(x, t) ≡ v(x, t).



128 J. L. Kazdan

we obtain

M =




0 1
3 0 1

3
1
4

1
3 0 1

3 0 1
4

0 1
3 0 1

3
1
4

1
3 0 1

3 0 1
4

1
3

1
3

1
3

1
3 0




The elements of M are non-negative and the sum of every column is 1: no matter
where you are now, at the next step you will certainly be in one of the rooms.

It is useful to introduce column probability vectors P = (p1, . . . , p5) with the
property that pj gives the probability of being in the jth room at a given time.
Then 0 ≤ pj ≤ 1 and

∑
pj = 1. If Pnow describes the probabilities of your current

location, then Pnext = MPnow, gives the probabilities of your location at the next
time interval. Thus, if one begins in Room 1, then P0 = (1, 0, 0, 0, 0), and after the
first hour P1 = (0, 1

3 , 0, 1
3 , 1

3 ) = MP0. In the same way, at the end of the second
hour P2 := MP1 = M2P0, and Pk := MPk−1 = MkP0.

For a matrix M arising in a Markov process (non-negative elements and the
sum of each column is one), if λ is any eigenvalue of M∗ (and hence M), then |λ| ≤ 1.
To see this, let v := (v1, . . . , vn) be a corresponding eigenvector, M∗v = λv, with
largest component vk, that is, |vi| ≤ |vk|. Then |(λ −mkk)vk| = |∑i 6=k mikvi| ≤
(
∑

i 6=k mik)|vk|. Since
∑

i mik = 1 then |λ −mkk| ≤ 1 −mkk. Consequently |λ| ≤
|λ−mkk|+ mkk ≤ 1 (this reasoning is a special case of Gershgorin’s theorem).

Moreover, if we assume all the elements of M are positive, then equality |λ| = 1
occurs only if λ = 1 and v1 = v2 = · · · = vn. Thus |λ| < 1 except for the one
dimensional eigenspace corresponding to λ = 1.

In seeking the long-term probabilities, we are asking if the probability vectors
Pk = MkP0, k = 1, 2, . . . converge to some “equilibrium” vector P independent
of the initial probability vector P0. If so, then in particular P = lim Mk+1P0 =
lim MMkP0 = MP , that is, P = MP so P is an eigenvector of M with eigenvalue
1. Moreover, choosing P0 to be any standard basis vector ej and since the jth

column of Mn is Mnej → P , it follows that Mk → M∞ where all the columns
of M∞ are the same eigenvector P . In addition, still assuming convergence to
equilibrium, every eigenvector of M with eigenvalue λ = 1 must be a multiple of P .

Although λ = 1 is always an eigenvalue of M (since it is an eigenvalue of M∗

with eigenvector (1, . . . , 1)), the limit MkP0 does not always exist. For example,
it does not exist for the transition matrix M =

( 0 1

1 0

)
for a two room “house”. If

M = I, then the limit of MkP0 exists but is not independent of P0. However the
limit MkP0 does exist and is independent of the initial probability vector P0 if all
of the elements of M—or some power of M—are positive. If M is diagonalizable,
this follows from the above information on its eigenvalues. For the general case
one must work harder.5 In our case all the elements of M2 are positive since after

5The simplest proof I know for the convergence without assuming M is diagonalizable is
in [Be, p. 257]. One shows that M∗k converges as k → ∞ to a matrix M∗∞ each of whose
rows are the same, so for any given column all the elements are the same. Since the proof does
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two steps there is a positive probability that one will be in each of the rooms. It
remains to find this limiting probability distribution P by solving P = MP .

Here is where we can use symmetry. Since the four corner rooms are identical,
M must commute with the matrices Tij that interchange the probabilities of being
in the corner rooms, pi and pj for 1 ≤ i, j ≤ 4. Since M(TijP ) = TijMP = TijP ,
we see that TijP is also a probability eigenvector with eigenvalue λ = 1. Thus,
by uniqueness of this probability eigenvector, TijP = P so “by symmetry” P
has the special form P = (x, x, x, x, y) with 1 =

∑
pi = 4x + y. The system

of equations P = MP now involves only two unknowns x, y. Its first equation
is x = 1

3x + 1
3x + 1

4y, that is 4x = 3y. Combined with 4x + y = 1 one finds
x = 3

16 , y = 1
4 . Therefore 25% of the time is spent in the center room and 18.75%

in each of the corner rooms. Symmetry turned a potentially messy computation
into a simple one.

Figure 1 at the end of Section 2.3a gives added insight. To exploit symmetry
one seeks changes of variable T so that the old problem P and new problem Q are
identical : P = T−1PT .

b) Translation invariance. If there are families of symmetries, one can
obtain more information. We first discuss this for a linear differential equation
with constant coefficients, Lu = au′′ + bu′ + cu. Here L commutes with all the
translation operators Tα defined by (Tαu)(x) := u(x + α). These translations
Tα are a continuous group of symmetries: TαTβ = Tα+β . The eigenfunctions of
translations are just exponentials: Tαecx = µecx, where µ = ecα. We claim that
these exponentials are also eigenfunctions of L. While this is simple to show directly,
we prove more generally that this is true for any linear map L that commutes with
all translations; some other instances are constant coefficient linear difference and
linear partial differential equations (in this PDE case x, α, and c are vectors and
cx becomes the inner product), and convolution equations.

Write q(x;λ) := Leλx. Since Tαeλx = eλαeλx, we have

TαLeλx = Tα(q(x; λ)) = q(x+α;λ) and LTα(eλx) = eλαLeλx = eλαq(x; λ).

Comparing these at x = 0, we see that if the linear map L commutes with trans-
lations, then q(α;λ) = q(0; λ)eλα for any α. Equivalently, q(x; λ) = q(0; λ)eλx.
Writing Q(λ) := q(0; λ), we conclude

(35) Leλx = Q(λ)eλx.

not seem to be widely known, here is a sketch. Averaging Lemma: If one takes a weighted
average w = c1w1 + c2w2 + · · · + cnwn of real numbers w1, . . . , wn, where 0 < γ ≤ cj and
c1 + · · ·+ cn = 1, then the average lies between the max and min of the wj with the quantitative
estimate γwmax + (1− γ)wmin ≤ w ≤ (1− γ)wmax + γw.

To apply this let γ > 0 be the smallest element of M . Because the sum of the elements in
any row of M∗ is 1, if w is any vector then the elements of z := M∗w are various averages of w.
Thus the above estimate gives the upper bound for zmax ≤ (1− γ)wmax + γwmin and similarly
γwmax + (1 − γ)wmin ≤ zmin. These imply zmax − zmin ≤ (1 − 2γ)(wmax − wmin). Because
0 < 1− 2γ < 1, iterating this contraction proves that each element of the vector M∗kw converges
to the same number. To get the jth column of M∗∞ use the case where w is the jth standard basis
vector.
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Thus eλx is an eigenfunction of L for any λ, and the corresponding eigenvalue is
Q(λ).

Working formally, we apply (35) to find some solution of Lu = f . Write f and
also seek a solution u as linear combinations of exponentials:

f(x) =
∑

fλeλx, u(x) =
∑

uλeλx so Lu =
∑

uλQ(λ)eλx

(or integrate: f(x) =
∫

fλeλx dλ, etc.). To solve the homogeneous equation Lu = 0
use the roots of Q(λ) while for the inhomogeneous equation use (35) and match coef-
ficients to conclude that uλ = fλ/Q(λ). Thus a solution is u(x) =

∑[
fλ

/
Q(λ)

]
eλx.

One recognizes these formulas as the standard Fourier series/integrals and Laplace
transform methods. This is why Fourier series and Fourier and Laplace transforms
are so useful for constant coefficient differential equations. The value of Q(λ) is
determined separately for each problem. Since Q(λ) appears in the denominator
of the solution, its zeros play an important role, especially for partial differential
operators, although we shall not pursue this further here. The point is that just by
using translation invariance we know how to proceed.

As a quick application, return to the special case Lu = au′′ + bu′ + cu, where
a, b and c are constants. Then Leλx = (aλ2 +bλ+c)eλx, so Q(λ) = aλ2 +bλ+c. In
particular, if Q(r) = 0, then u(x) = erx is obviously a solution of the homogeneous
equation Lu = 0, while if Q(r) 6= 0, then u(x) = erx/Q(r) is a particular solution
of the inhomogeneous equation Lu = erx; if Q(r) = 0 but Q′(r) 6= 0, then one
can take the derivative of (35) with respect to λ and evaluate at λ = r to solve
Lu = erx. Similarly, if r is a double root of Q(λ) = 0 then also Q′(r) = 0; here
taking the derivative of equation (35) with respect to λ and evaluating at λ = r
reveals that u(x) = xeλx is also a solution of the homogeneous equation, a fact that
often is bewildering in elementary courses in differential equations.

We will look at this simple example a bit more. Let S(t) be a fundamental
matrix solution of the first order constant coefficient system Lu := u′ + Au = 0,
where A. This system is translation invariant so S(t + α) is also a solution for any
α. Since the general solution has the form S(t)C for some constant matrix C we
know that S(t + α) = S(t)C. Setting t = 0 gives S(α) = C so we deduce that the
general exponential addition formula S(t + α) = S(t)S(α) holds for more than the
special case of u′ − u = 0.6 By writing u′′ + u = 0 as a first order system, one
finds that this general addition formula implies the usual formulas for sin(t + α)
and cos(t + α). Further, since S(t)S(−t) = I, then S−1(t) = S(−t). Thus Green’s
function G(t, τ) = S(t)S−1(τ) = S(t− τ).

There is an interesting cultural difference between the way mathematicians
and physicists usually write the general solution of u′′ + u = 0. Mathematicians
write u(x) = A cos x + B sin x, which emphasizes the linearity of the space of solu-
tions, while physicists write u(x) = C cos(x+α), which emphasizes the translation
invariance.

6Conversely, if the square matrix S(t) is differentiable and satisfies the functional equation
S(t + α) = S(t)S(α) for all α, then differentiating this with respect to t and setting t = 0 we
conclude that S satisfies S′ + AS = 0, where A = −S′(0).
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As an exercise apply translation invariance to develop the theory of second
order linear difference equations with constant coefficients, aun+2 + bun+1 + cun =
f(n). The Fibonacci [c. 1180–1250] sequence un+2 = un+1 + un, with initial con-
ditions u0 = 0, u1 = 1, is a special case.

Invariance under multiplication x 7→ cx is related closely to translation invari-
ance: if we let x = ez, then translating z multiplies x by a constant. With this
hint, one can treat the Euler differential operator Lu = αx2u′′ + βxu′ + γu, where
α, β, γ are constants; this operator commutes with the stretching x 7→ cx. Here the
analog of the Fourier transform is called the Mellin transform.

The Laplace operator in Euclidean space is invariant under translations and
orthogonal transformations; on a Riemannian manifold this property generalizes by
the Laplacian being invariant under all isometries. The wave equation is invariant
under Lorentz transformations (see the end of this Section). The basic point is that
invariance under some large group automatically implies fundamental formulas and
identities.

c) More complicated group invariance. In more complicated problems,
there may be some symmetry but it may not be obvious to find or use. Sophus Lie
[1842–99] created the theory of what we now call Lie groups to exploit symmetries to
solve differential equations. His vision was to generalize Galois theory to differential
equations. The resulting theory has been extraordinarily significant throughout
mathematics. As our first example, observe that the differential equation

dy

dx
=

ax2 + by2

cx2 + dy2
a, b, c, d constants

is invariant if one makes the change of variable (a stretching) x 7→ λx, y 7→ λy
for any value of λ > 0. In other words, if y = ϕ(x) is a solution, then so is
λy = ϕ(λx), that is y = ϕ(λx)/λ. This motivates us to introduce a new vari-
able that is invariant under this stretching: w = y/x. Then w satisfies xw′ =
(a+ bw2)/(c+dw2)−w, which can be solved by separation of variables. The equa-
tion dy/dx = (ax + by + p)/(cx + dy + q) has the symmetry of stretching from the
point of intersection of the lines ax + by + p = 0 and cx + dy + q = 0. Lie showed
that many complicated formulas one has for solving differential equations are but
special instances of invariance under a family of symmetries. His work showed that
a daunting bag of tricks that demoralize undergraduates were merely instances of
exploiting symmetries. The next example is not as simple, so we’ll be a bit more
systematic.

Nonlinear equations of the form ∆u = f(x, u) arise frequently in applications.
For instance the special cases where f(x, u) has the forms |x|aub and |x|ceu arise in
astrophysics (Emden-Fowler equation), complex analysis, and conformal Riemann-
ian geometry. We briefly discuss

(36) ∆u = |x|ceu

in Rn from the view of symmetry. While there are systematic approaches to seek
symmetry, in practice one usually tries to guess; the method is of no help if finding
symmetries is as difficult as solving the original problem.
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For (36) the right side suggests we seek a symmetry group in the form
G : (x, u) 7→ (αx, u + λ), that is, we try the change of variables x̃ = αx, ũ = u + λ,
where α > 0, λ are constants. Let ∆̃ = ∂2/∂x̃2

1 + · · · = α−2∆ be the Lapla-
cian in these new variables. Then ũ(x̃) is a solution of ∆̃ũ = [αc+2eλ]−1|x̃|ceũ.
Thus if we pick αc+2eλ = 1, so λ = −(c + 2) ln α, then ũ(x̃) is a solution of
(36) for any value of α. In other words, if u = ϕ(x) is a solution then so is
u(x)− (c + 2) ln α = ϕ(αx), that is, u(x) = ϕ(αx) + (c + 2) ln α for any α > 0. The
symmetry group is Gα : (x, u) 7→ (αx, u− (c + 2) ln α). This is the identity map at
α = 1.

To go further, recall that the Laplacian is invariant under the orthogonal group:
if u(x) is a solution, so is u(Rx) for any orthogonal transformation R. It thus is
reasonable to seek special solutions u = u(r), where r = |x|, that are also invariant
under the orthogonal group. Writing the Laplacian in spherical coordinates leads
us to consider

u′′ + n−1
r u′ = rceu,

where u′ = du/dr. We know this equation is invariant under the change of variables
(37) r̃ = αr, ũ = u− (c + 2) ln α.

For fixed r and u, as we vary α, (37) defines a curve in the r̃, ũ plane. It is nat-
ural to define new coordinates in which these curves are straight lines, say parallel

to the vertical axis. We want one function s =
s(r̃(r, u, α), ũ(r, u, α)) = s(αr, u − (c + 2) lnα)
that is constant on each of these curves; this
function is used to select which of these curves
one is on. The other function v = v(r̃(r, u, α),
ũ(r, u, α)) = v(αr, u− (c + 2) ln α) is used as a
normalized parameter along these curves, cho-
sen so that the directional derivative of v along
these curves is one; see Figure 4. Thus, the
conditions are

(38)
∂s

∂α

∣∣∣∣
α=1

= 0 and
∂v

∂α

∣∣∣∣
α=1

= 1.
s

v

Fig. 4

By the chain rule these can be rewritten as
(39) rsr − (c + 2)su = 0 and rvr − (c + 2)vu = 1,

where sr etc. are the partial derivatives. Using the tangent vector field V to our
curves,

V :=
∂r̃

∂α

∣∣∣∣
α=1

∂

∂r
+

∂ũ

∂α

∣∣∣∣
α=1

∂

∂u
= r

∂

∂r
− (c + 2)

∂

∂u
,

we can rewrite (39) as
V s = 0 and V v = 1;

V is called the infinitesimal generator of the symmetry. In these new coordinates,
by integrating (38) the invariance (37) is simpler:
(40) s̃ = s and ṽ = v + α.
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An obvious particular solution of the second equation in (39) is v = ln r; an
equally obvious solution is v = −u/(c + 2), which would also work.

The first equation in (39) is straightforward to solve;7 for variety we use an
alternative approach to obtain s(r, u). Eliminate α from the formulas (37) and find
that ũ + (c + 2) ln r̃ = u + (c + 2) ln r. Thus the function s = (c + 2) ln r + u is
constant along each of these curves. Since any function of s has the same property
one can use this flexibility to choose a “simple” s. In these new coordinates, s =
u + (c + 2) ln r, v = ln r. After a computation that is not painless one finds that
v(s) satisfies

v̈ = (n− 2)[1− (c + 2)v̇]v̇2 − esv̇3,

where v̇ = dv/ds and v̈ = d2v/ds2. Since this does not involve v itself,8 the substi-
tution w = v̇ gives a first order equation for w(s), which simplifies significantly if
n = 2, exactly the case of interest in applications.

It is a useful exercise to repeat this analysis for ∆u = |x|aub in Rn and notice
that the resulting equation simplifies dramatically when (a+2)/(b−1) = (n−2)/4,
again exactly the situation of applications to physics and geometry. By using
symmetry one can solve some problems that are otherwise impenetrable.

One impressive application of symmetry was G. I. Taylor’s [1886–1975] compu-
tation of the energy in the first atomic explosion just by exploiting symmetry and
taking measurements from publicly available photographs. For “security reasons”
he did not have access to any technical data (see [B-K, Chapter 1] for an exposi-
tion). The monographs [B-K] and [Ol] show how to apply and exploit symmetry
for ordinary and partial differential equations (it would be nice if there were a more
accessible, less general, treatment).

Before the next example we should point out that in applications, invariance
under the stretching x 7→ λx arises frequently—since one uses stretchings to change
to “dimensionless” variables (this is because the basic equations for any phenomena
should be invariant if one changes from one set of units of measurement to another,
say from “feet” to “meters”). Here is a small but useful mathematical application.
For a bounded open set Ω ⊂ Rn say, generalizing the usual space C1 (see also
Section 3.2 below), for smooth functions u, which we assume have compact support
in Ω, we define a similar norm using the Lp norm of the first derivatives:

‖u‖H1,p(Ω) :=
[∫

Ω

|∇u(x)|p dx

]1/p

, p ≥ 1,

and ask when the following inequality holds:

(41) sup
z∈Ω

|u(z)| ≤ c(p, n, Ω) ‖u‖H1,p(Ω),

7To solve a(x, y)ψx + b(x, y)ψy = 0 for ψ(x, y), solve the ordinary differential equation
dy/dx = b/a and write its solution in the form ψ(x, y) = C, where C is the constant of integration.
This ψ(x, y) is a solution of the partial differential equation, as is any function of it. In our
application the solution of du/dr = −(c+2)/r is u = −(c+2) ln r +C so ψ(r, u) = u+(c+2) ln r.

8Note that because of the invariance (40) in these variables, we knew in advance that this
equations would not involve v.
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with the constant c independent of u (one should think of (41) as a version of the
mean value theorem).

Since the left side of the inequality is invariant under stretching while, for most
values of p the right side is not, we try a stretching to see what information it yields.
For simplicity, say Ω contains the origin, so it contains some disk {|x| < a} ⊂ Rn,
and let ϕ(x) be a fixed smooth function that is zero for |x| > a (but not identically
zero). Then let u(x) = ϕ(λx) where λ ≥ 1 is a constant. Computing both sides of
(41) with this function we obtain

sup
Ω
|ϕ| ≤ c(p, n, Ω)λ(p−n)/p ‖ϕ‖H1,p(Ω).

Since this is to hold for any λ ≥ 1, we see that if p−n < 0, there is a contradiction if
we let λ →∞. Thus, we conclude that p ≥ n is a necessary condition for inequality
(41) to be valid. If p ≥ n then in fact the inequalities (41) do hold; they are called
Sobolev inequalities. If p = n this H1,p norm is invariant under stretchings, a fact
that results in important and interesting properties.

d) Noether’s Theorem. Most “natural” differential equations arise as Euler-
Lagrange equations in the calculus of variations. Many believe one should always
formulate fundamental equations using variational principles. E. Noether’s [1882–
1935] theorem shows how symmetry invariance of a variational problem implies
basic identities, including conservation laws. While shorter direct proofs of these
conservation laws might be found after one knows what to prove, there is a view
that the symmetry is considerably deeper and more basic. Moreover, symmetry
gives a way of finding new conservation laws.

To give a taste of the procedure we will deduce the standard “conservation of
energy” for the vibrating string Ω = {a < x < b}. A function u(x, t) gives the
displacement of a point x ∈ Ω at time t. The wave equation utt = c2uxx, governs
the motion; here c is the speed of sound. For simplicity we assume that c = 1.
To eliminate the possibility of energy being added at the ends of the string, we
will assume the string is fixed at the boundary, so u(a, t) = u(b, t) = 0, t ≥ 0, as
is typical for violin strings. In (15) we saw that the wave equation is the Euler-
Lagrange equation for the functional

(42) J [u] =
1
2

∫

Ω

∫ β

α

(u2
t − u2

x) dx dt.

If we make the change of variables t̃ = t + ε, since the integrand does not
contain t explicitly, the functional J is invariant. Thus dJ [u]

/
dε

∣∣
ε=0

= 0. By an
explicit computation we will show that this obvious fact implies conservation of
energy.

With an eye toward generalization, it is useful to think of this as a change
of variable in all the variables: t̃ = t + ε, x̃ = x, ũ = u from (x, t, u) space to
(x̃, t̃, ũ) space. This translation of t by ε takes the graph u = u(x, t) into the graph
ũ = ũ(x̃, t̃; ε), thus J [ũ(x̃, t̃; ε)] = J [u(x, t)]. Because of this invariance, we clearly
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have dJ [ũ]
/
dε

∣∣
ε=0

= 0. Now

(43) 0 =
dJ [ũ]
dε

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

1
2

∫

Ω

∫ β+ε

α+ε

[
ut̃(x, t̃− ε)2 − ux(x, t̃− ε)2

]
dx dt̃

=
1
2

∫

Ω

[
ut(x, t)2 − ux(x, t)2

]
dx

∣∣∣∣
t=β

t=α

+
∫

Ω

∫ β

α

(−ututt + uxuxt) dx dt.

To go further, observe that in this last term ututt = (u2
t )t − ututt and uxuxt =

(uxut)x − uxxut. Since we assumed u(x, t) is an extremal of this functional, it
satisfies the wave equation; thus the final integrand above is

−ututt + uxuxt = −(u2
t )t + (uxut)x + (utt − uxx)ut = −(u2

t )t + (uxut)x.

We use this to simplify the last integral in (43) by evaluating the t integral in the
first term and the x integral in the second:

∫

Ω

∫ β

α

[−ututt + uxuxt] dx dt =
∫

Ω

∫ β

α

[−(u2
t )t + (uxut)x] dx dt(44)

= −
∫

Ω

ut(x, t)2 dx

∣∣∣∣
t=β

t=α

+ 0

where in the last term we used that u(x, t) = 0 for x on the boundary of Ω (the
ends of the string), so the velocity ut(x, t) = 0 on the boundary of Ω.

Substituting (44) in (43) we conclude that

0 = −1
2

∫

Ω

[
ut(x, t)2 + ux(x, t)2

]
dx

∣∣∣∣
t=β

t=α

.

Thus the function

(45) E(t) :=
1
2

∫

Ω

(u2
t + u2

x) dx ≡ constant

is constant as a function of time. Since E(t) is the energy, this formula is called
“Conservation of Energy”.

Similarly, for any functional of the form J [u] = 1
2

∫
Ω

∫ β

α
F (x, u, ut, ux) dx dt,

where the integrand does not depend explicitly on t, identical reasoning gives∫
Ω
(Futut − F ) dx = const. For more on Noether’s Theorem see the references

[G-F], [G-H], [B-K], and [Ol].

e) Using symmetry for Pell’s equation. Here is another way to use sym-
metry. We want all the integer solutions of

(46) x2 − 2y2 = 1.

By experimentation you quickly find the solution x = 3, y = 2. Are there any
others? Can you find all the solutions? They are the integer lattice points on the
hyperbola (46).

Writing X := (x, y) and Q(X) := x2 − 2y2, seek a symmetry of the hyperbola
Q(X) = 1 as a linear change of variables R : (x, y) 7→ (ax + by, cx + dy) defined by
the matrix R =

(
a b

c d

)
. We want R to have the property Q(RX) = Q(X); in more
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formal language, we want the group of automorphisms R of the quadratic form Q.
If we can find R, and if we have one solution X1 = (x1, y1) of Q(X) = 1, then
X2 := RX1 = (ax1 + by1, cx1 + dy1) is another solution since Q(X2) = Q(RX1) =
Q(X1) = 1. Thus, knowing R enables us to construct new solutions from old ones.

These automorphisms R embody the symmetries of the polynomial Q(X),
much as the rotations T (orthogonal transformations) embody the symmetries of
the more familiar polynomial P (X) := x2 + y2 since P (TX) = P (X). If X1 is a
point on a circle centered at the origin, then X2 := TX1 is another point on the
same circle.

For our quadratic polynomial the obvious symmetries are x 7→ ±x and y 7→ ±y.
We want more. Since

Q(RX) = (ax + by)2 − 2(cx + dy)2 = (a2 − 2c2)x2 + 2(ab− 2cd)xy + (b2 − 2d2)y2,

the condition Q(RX) = Q(X) means a2−2c2 = 1, ab−2cd = 0, and (b2−2d2) = −2.
If we pick a and c to satisfy the first of these, which is just the original equation
(46), then the other two conditions imply d = ±a and b = ±2c. This yields all the
symmetries R of our quadratic polynomial.

For our purposes it is enough to use the solution (3, 2) we found of (46) so
a = 3, c = 2, b = 4, d = 3, and R =

( 3 4

2 3

)
. We began with the solution X1 :=

(x1, y1) = (3, 2). Using this we find the solutions X2 = RX1 = (17, 12), X3 =
RX2 = (99, 70), etc. of (46). Since detR = 1 and the elements of R are integers,
both the symmetry R and its inverse R−1 take integer lattice points to integer
lattice points.

The mapping R has two basic geometric properties. To describe them take
two points V1 := (x1, y1) and V2 := (x2, y2) both on the right (x > 0) branch of
the hyperbola x2 − 2y2 = 1. Call this right branch Γ, and say that V1 is below V2

(and write V1 ≺ V2) if y1 < y2. The geometric properties are:
• R preserves the branch: if a point V is on Γ, then so is RV .
• R preserves the order on Γ: If V1 ≺ V2 then RV1 ≺ RV2.

Note that R−1 also has these properties. Since R is a continuous map from the
hyperbola to itself, by connectedness, it maps the right branch, Γ, either to itself or
to the left branch. Checking the image of one point, say (1, 0) we see that the image
is in Γ. Moreover, since R is invertible as a map of the whole plane, its restriction
to Γ is invertible. Therefore it is either monotonic increasing or decreasing as a
function of the y coordinate on Γ. Again checking the image of (1, 0), we conclude
that the restriction of R to Γ is an increasing function of the y coordinate. This
implies that R preserves the order on Γ.

Our particular solution X1 := (3, 2) is the positive integral solution with the
smallest possible positive value for y1. Writing X0 = (1, 0), this means X0 ≺ X1

and there is no other integral solution between X0 and X1. Since Q(RX1) =
Q(X1) = 1 we see that X2 := RX1 = (17, 12) is also a solution of (46). Similarly
Xk := (xk, yk) = RXk−1 = RkX0 are all positive integer solutions for any positive
integer k. These solutions are distinct since their y coordinates are increasing, so
Xk ≺ Xk+1.
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Moreover, these are all the positive integral solutions. If there were another,
Z, then for some k we have Xk ≺ Z ≺ Xk+1. Therefore R−1Z is yet another
solution and because R preserves the order of the points on the hyperbola,

Xk−1 = R−1Xk ≺ R−1Z ≺ R−1Xk+1 = Xk.

Continuing, we obtain a solution R−kZ between X0 and X1 since

X0 = R−kXk ≺ R−kZ ≺ R−kXk+1 = X1.

This contradicts the fact that X1 = (x1, y1) = (3, 2) was the positive solution
whose second coordinate was as small as possible. We conclude that Xk = RkX0,
that is, the orbit of X0 after repeated action by R, are all of the integer solutions.

The matrix Rk can be computed explicitly by first diagonalizing it. This gives
Rk = SΛkS−1, where Λ is the diagonal matrix of eigenvalues 3 ± 2

√
2 of R and

S is the matrix whose columns are the corresponding eigenvectors (±√2, 1); these
vectors also determine the asymptotes of the hyperbola. Thus Xk = RkX0 has the
formula

(47) Xk =

(
(3 + 2

√
2)k + (3− 2

√
2)k

2
,

(3 + 2
√

2)k − (3− 2
√

2)k

2
√

2

)
,

which shows that explicit formulas may be more complicated—and possibly less
desirable—than you might anticipate. Perhaps of greater value, this formula leads
us to define Rt, −∞ < t < ∞, by the rule Rt = SΛtS−1, so Rs+t = RsRt. If we let
X(t) = RtX0, and write X(t) = (x(t), y(t)), then from (47) with k replaced by t

we see that x(t) = 1
2 (αt + α−t) and, y(t) = 1

2
√

2
(αt−α−t), where α = 3 + 2

√
2. By

a straightforward computation one can verify that x(t)2 − 2y(t)2 = 1, that is, the
points X(t) are all on our hyperbola. It is now evident that x(t) ≥ 1 and dy/dt > 0
so the “orbit” of X(t) is the entire right branch Γ of the hyperbola with y(t) an
increasing function of t. Thus X(s) ≺ X(t) if and only if s < t. As a bonus, we
see that every symmetry of the right branch of the hyperbola x2− 2y2 = 1 has the
form Rt for some real t.

One can use this to find all integer solutions of x2 − 2y2 = k for integers k:
assuming one has some solution one gets all solutions. Moreover this works for all
“Pell” equations: x2 − Dy2 = k with D > 0 not a perfect square. For a given
k, once one finds some particular solution (x, y) all the others can be found using
the solutions of x2 − Dy2 = 1. For our example we found the particular solution
by trial and error; in general there may not be any solution; for instance, there is
no solution of x2 − 2y2 = 3 since there is no non-trivial solution in the integers
mod 3. One constructive approach that always works for the special case x2 −
Dy2 = 1 uses continued fractions (see [Da], [N-Z-M]), another (non-constructive)
uses Minkowski’s [1864–1909] geometry of numbers (see [Art]).

An essentially identical computation to finding the symmetries of x2 − 2y2

yields all linear changes of variable x′ = αx + βt, t′ = γx + δt that preserve the
wave operator ∂2/∂t2 − c2∂2/∂x2, where c is a constant (the speed of sound or
light). By the chain rule,

utt − c2uxx = (δ2 − c2γ2)ut′t′ + 2(βδ − c2αγ)ux′t′ + (β2 − c2α2)ux′x′ .
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Thus we want δ2− c2γ2 = 1, βδ− c2αγ = 0, and β2− c2α2 = −c2. First pick γ and
δ so that δ2 − c2γ2 = 1, and then let β = ±c2γ, α = ±δ. To preserve orientation
we use the + signs. Since c2α2−β2 = c2 and cosh2 σ− sinh2 σ = 1, it is traditional
to write α = coshσ, β = c sinhσ. For any real σ the transformation

(48)
x′ = (cosh σ) x + (c sinh σ) t

t′ = (
1
c

sinhσ)x + (cosh σ) t

preserves the wave operator. This is called a Lorentz transformation. Lorentz
[1853–1928] transformations also preserve arc length ds2 := dx′ 2− c2 dt′ 2 = dx2−
c2 dt2 in space-time and are fundamental in the study of the wave operator and
special relativity.

In special relativity it is enlightening to replace the parameter σ in (48) by
one that is physically more meaningful. If the x-axis moves with constant velocity
V relative to the x′-axis, for an observer on the x′-axis, x′/t′ = V is the constant
velocity of the origin x = 0 of the x-axis. But from (48) with x = 0

V =
x′

t′
= c tanh σ,

so sinh σ = (V/c)/
√

1− (V/c)2 and cosh σ = 1/
√

1− (V/c)2. We can use this to
rewrite the Lorentz transformation (48) in terms of the velocity V as

x′ =
x + V t√
1− (V/c)2

t′ =
(V/c2)x + t√

1− (V/c)2
.

It is physically obvious that to get the inverse transformation just replace V by −V .

3. Some Procedures To Prove Existence

Existence of a solution of an equation may be approached in different ways.
One should first try to find a “simple” expression for the solution, perhaps using
some of the procedures discussed already. The following discussion assumes this
has been used as much as possible.

There are two types of existence procedures: those that construct a specific
solution, and those that merely prove a solution exists. As examples, I present
one constructive approach and two purely existential approaches to proving the
existence of a solution. Recall Hermann Weyl’s [1885–1955]: “Whenever you can
settle a question by explicit construction, be not satisfied with purely existential
arguments.” In the light of this dictum it is useful to reflect on the constructive and
non-constructive approaches discussed in Section 2.2 for solving ax ≡ b (mod m ).

3.1. Iteration methods

A frequent procedure is to begin with a simpler problem that one knows how to
solve and use that to solve nearby more complicated problems. Physicists and engi-
neers call this “perturbation theory.” Within mathematics the standard examples
of these are iterative proofs of the implicit and inverse function theorems, and the
existence of a solution of an ordinary differential equation. Often mathematicians
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refer to this method as finding a fixed point of a “contracting map”—but when one
examines the proof, the essence is a simple iteration procedure (see [K-F]).

Although iterative methods were developed primarily for nonlinear problems,
they can be important even in finite dimensional linear algebra. Here is an example.
Say you know the inverse of a matrix A and someone gives you a matrix B that
is almost the same as A. One suspects that B−1 will be near A−1. This situation
arises in models of the economy where the matrix A = (aij) may be very large, say
with 10,000 rows and columns. Perhaps one identifies the 10,000 most significant
ingredients in the economy, say steel, oil, wheat, electricity, cotton, the average
hourly wage of a worker, etc. Then aij may represent the effect of increasing the
cost of the ith ingredient on the cost of the jth ingredient. For instance, if one
increases the cost of oil by $1 per barrel, this will increase the cost of steel a certain
amount. The matrix B may be the version A obtained from the next month’s data.

This linear algebra problem is so large that it is best treated using analysis.
The first step is to use the idea in Section 2.3: find a simpler equivalent problem.
Write

B = A− (A−B) = A[I −A−1(A−B)] = A(I − C),

where C = A−1(A − B) is presumably small since we assumed that B is near A.
Then B−1 = [I − C]−1A−1, so all we need to do is compute the inverse of I − C,
that is, we want a matrix D so that (I − C)D = I. Thus we have reduced to
the special case when A is the identity matrix and B = I − C. Since C is small,
we rewrite (I − C)D = I as D = I + CD and use the successive approximations
Dk+1 = I + CDk, with the initial guess D0 = I. This gives

D1 = I + C, D2 = I + C + C2, D3 = I + C + C2 + C3, etc.

If C is small, then by picking k large Dk is an approximation to (I − C)−1. This
should not surprise us since we know the Taylor series for 1/(1− x) for small x.

In computational problems, one may be able to use a different iteration method
that converges faster. Newton’s method is an example. For instance, with the usual
method taught in schools for finding square roots (really just a version of preceding
iteration method), you get one additional decimal place at each iteration, while with
Newton’s method you get double the number of decimal places with each iteration
(see [D-B, Sec. 6.3]).

3.2. Variational methods

An example illustrates the issues vividly. Say we want to solve the system of
equations

x3 + 2xy − 3y cosxesin x = −7

y5 + x2 − 3 esin x = 5

Is there a solution? Without further insight this may not be obvious. But these
two equations state that the gradient of the function

u(x, y) := 1
4x4 + 1

6y6 + x2y − 3y esin x + 7x− 5y
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is zero. Thus, the solutions of our equation correspond to the critical points of
u(x, y). It is obvious that as one goes far from the origin then u becomes large.
Thus, there is some point (x0, y0) where u takes on its minimum value. This
minimum gives one solution of our equations. To determine if there are others
would require a more detailed investigation.

This approach is a useful technique for proving that certain differential equa-
tions always have at least one solution. The method is called the “direct method
in the calculus of variations.” By the method of Section 2.2 a critical point of the
functional

(49) J(u) =
1
2

∫∫

Ω

(u2
x + u2

y) dx dy.

with u = f on the boundary of Ω is a solution of the Laplace Equation ∆u = 0 in
a region Ω.

Following the example at the beginning of this section, to find a solution of
∆u = 0, we can seek a minimum u of J . Since the functional J is non-negative,
this leads one to assert that it attains its minimum at some function u, and proves
the existence of a solution of ∆u = 0 with the prescribed boundary values. This
assertion is called Dirichlet’s Principle.

After Riemann [1826–66] dramatically applied this reasoning in his work on
complex analysis, Weierstrass [1815–96] pointed out this “principle” is false since
he exhibited a similar functional J that only has an infimum and does not attain
a minimum value in the class of admissible functions. Nonetheless, everyone—
including Weierstrass—believed that Riemann’s results were essentially correct.
This forced mathematicians to develop the concept of compactness in function
spaces, where is it considerably more subtle than in Euclidean space. The gap
remained until Hilbert’s work in 1901 and 1909. In this context, it is interesting
to note Nietzsche’s remark: “Great men’s errors are to venerated as more fruitful
than little men’s truths”.

3.3. Fixed point methods

Another example. Say you want to solve the system of equations

3x− 5y =
2x + ye2−sin xy

7 + x2 + y4
− 13

2x + 71y = 9− cos(xy + 19ex−5y)

Is there at least one solution? Again, to most people this is not immediately
obvious. You look at the equations . . . The equations look at you.

Eventually you may be led to write this in the form LX = F (X), where
X = (x, y), L is the 2×2 matrix on the left side, and F (X) is the nonlinear right side.
The key observation is that the vector function F (X) is bounded independently of
X. In fact ‖F (X)‖ ≤ 100 (the size of the bound is unimportant for us). Moreover,
the matrix L is invertible, so we can rewrite our equations in the symbolic form

X = T (X) where T (X) = L−1F (X).
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If we view T (X) as a map from the plane R2 to itself, then the equation X = T (X)
means that the solution X we seek is a fixed point of the map T . Since ‖F (X)‖ ≤
100, we know that ‖T (X)‖ ≤ R for some constant R that is independent of X (we
can let R = 10, 000, but that is irrelevant for our immediate concerns). Thus we
have found the a priori inequality: if a solution of our equation exists, it must lie
in the closed disk B = {‖X‖ ≤ R}. Since T maps any point X into B, in particular
it maps B into B.

Now we can invoke the Brouwer [1881–1966] fixed point theorem, a result
customarily proved in topology courses (see [doC, p. 75] for a slick proof using
Stokes’ theorem). It asserts that any continuous map of a closed disk to itself must
have at least one fixed point. This fixed point is the solution we seek.

The Schauder fixed point theorem generalizes the Brouwer theorem to infi-
nite dimensional spaces. This generalization requires an additional compactness
assumption. If B is a Banach space and S ⊂ B, then a continuous map T : S → B
is compact if for any bounded set Q ⊂ S the closed set f(Q) is compact. For
example, consider the Banach spaces C(S1) and C1(S1) of 2π-periodic continuous
functions and periodic continuously differentiable functions on the circle S1 with
the usual norms

‖u‖C(S1) = max
0≤x≤2π

|u(x)| and ‖u‖C1(S1) = max
0≤x≤2π

|u(x)|+ max
0≤x≤2π

|u′(x)|.
We should (but will not) write Cperiodic to emphasize the periodicity. The Arzelá-
Ascoli theorem implies that the identity map id : C1(S1) ↪→ C(S1) is compact. The
Schauder fixed point theorem says that if S ⊂ B is a closed, convex, bounded set
and if T : S → S is a compact map, then T has a fixed point (see [13, p. 32]).
Schauder devised it specifically for partial differential operators. As an application
we prove the existence of at least one periodic solution u(x) with period 2π of

u′ + u = F (x, u),
assuming only that F (x, s) is a smooth function, periodic with period 2π in x and
uniformly bounded, |F (x, s)| ≤ k, where the constant k is independent of x and s.

A key observation is that the linear equation Lu = u′+ u = f(x) has a unique
2π periodic solution for any smooth periodic function f(x). A direct computation
gives

u(x) =
1

e2π − 1

∫ 2π

0

et−xf(t) dt +
∫ x

0

et−xf(t) dt

(solve for u(x) as usual—see (13)—and then pick the constant of integration, u(0),
to force the periodicity: u(2π) = u(0)). This formula also yields the inequality
‖u‖C(S1) ≤ ‖f‖C(S1) = ‖Lu‖C(S1). However |u′| = |Lu − u| ≤ |Lu| + |u| so we
obtain the estimate
(50) ‖u‖C1(S1) ≤ 3‖Lu‖C(S1).

This asserts that L−1 : C(S1) → C1(S1) is a continuous map. Rewrite our problem
as u = L−1F (x, u). Thus we seek a fixed point of the map T (u) := L−1F (x, u).
Since we defined T as the composition

C(S1) F−→ C(S1) L−1

−→ C1(S1)
id

↪−→ C(S1),
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it is a compact map. Because F (x, s) is bounded, then for some constant K,

‖T (u)‖C(S1) ≤ K for all u ∈ C(S1).

This proves a priori that any solution u of this problem must satisfy

‖u‖C(S1) = ‖T (u)‖C(S1) ≤ K.

Thus let B be the ball

B := {u ∈ C(S1) : ‖u‖C(S1) ≤ K}.
The Schauder theorem shows there is at least one periodic solution u ∈ B and
u ∈ C1(S1). Using a bootstrap argument, if F (x, s) is smooth, then so is this
solution u.

There is a similar result for Lu := −∆u + cu = F (x, u) with various boundary
conditions, assuming L is invertible and F is bounded. However one must use more
complicated function spaces, such as Sobolev spaces, to prove an analogue of the
fundamental inequality (50).

4. An Open Question

One is not surprised to see a seemingly elementary unsolved problem in number
theory. It is less well-known that there are many interesting and simple-looking
nonlinear partial differential equation about which little is known. Let f(x, y) be a
smooth function. Is there always at least one solution u(x, y) of the Monge-Ampère
equation (Monge [1746-1818], Ampère [1775–1836])

(51) uxxuyy − u2
xy = f(x, y)?

This is a modest question. We seek some solution in a possibly small neighborhood
of the origin; no additional conditions such as initial or boundary conditions are
imposed. Yet we still do not know the answer. Many cases have been treated.
If f(x, y) has a power series expansion, we can invoke the Cauchy-Kowalewskaya
theorem to get a power series solution. If f(0, 0) > 0, we can use the theory
of elliptic partial differential equations to prove that a solution exists, while if
f(0, 0) < 0 we appeal to the theory of hyperbolic equations. The difficult case is
when f(0, 0) = 0. This case has also been treated if either f(x, y) ≥ 0 near the
origin, or if ∇f(0, 0) 6= 0, [Lin1], [Lin2]. Nothing more is known. Perhaps there are
smooth functions with f(0, 0) = 0 for which no solutions exist.

A similar differential equation arises in geometry. Locally, an abstract two
dimensional surface with a Riemannian metric is a neighborhood of the origin in
the u, v plane where one specifies the element of arc length

(52) ds2 = E(u, v) du2 + 2F (u, v) du dv + G(u, v) dv2

of curves in that neighborhood. You always get an arc length of this form if you
consider the curves u(t), v(t) on a two-dimensional surface with local coordinates
u, v in Rn. Does this give all possible abstract Riemannian metrics for the special
case of surfaces in R3? In other words, given any arc length ds2 of the form (52),
locally can one always find a surface x = x(u, v), y = y(u, v), z = z(u, v) in R3
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having this as its arc length? More briefly, can every abstract two-dimensional
Riemannian manifold be locally isometrically embedded in R3? One can show
that there is a surface in R4 having this arc length, but the more interesting R3

case is still open. In one approach, the partial differential equation to be solved is
essentially (51). Here the Gauss curvature K(x, y) plays the role of the function
f(x, y), so we know there is a local embedding if K(0, 0) 6= 0. The difficult case
remaining is when K(0, 0) = 0.

Problems such as this are challenges for the future.

I find that the harder I work, the more luck I seem to have.
Thomas Jefferson (1743-1826)

When I am working on a problem I never think about beauty. I
only think about how to solve the problem. But when I have finished,
if the solution is not beautiful, I know it is wrong.

Buckminster Fuller (1895–1983)
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