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CHAPTER VII. POWER SERIES

1. Polynomials as generating functions

We have often met the fact that some properties of a finite sequence of num-
bers (a0, a1, . . . , an) can be described using the polynomial f(x) = a0 + a1x +
· · · + anxn. The polynomial f(x) is called the generating function of the se-
quence (a0, a1, . . . , an). A very nice example of this kind is the question con-
sidered in Chapter III, when a finite set M was given and ak was the number
of its subsets which contain k elements. If we introduce the generating function
fM (x) = a0+a1x+· · ·+anxn, then the value ak for the subset M1+M2 is expressed
by a very simple formula fM1+M2(x) = fM1(x)fM2(x) (formula (8) in Ch. III).

In the same way, the binomial coefficients Ck
n (k = 0, 1, . . . , n) can be explored

conveniently using the generating function f(x) = (1 + x)n. Many identities for
binomial coefficients can be easily deduced from this fact (see formula (26) of Ch. II
and Problem 5 in Sec. 3 of Ch. II).

We shall now give some more examples of similar kind.
The first example is concerned with properties of natural numbers. We consider

representations of a natural number n as a sum of natural numbers: n = a0 + a1 +
· · · + ak. A representation of this kind will be called a partition of the number n.
Two partitions will be considered equal if their summands (a0, a1, . . . , an) are equal,
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possibly taken in different order. E.g., the representations 6 = 1+1+4 = 1+4+1 =
4 + 1 + 1 will be considered as the same partition of number 6.

Denote by Pk,l(n) the number of partitions of number n into not more than
k summands, each of which does not exceed l. In order to explore the numbers
Pk,l(n) we shall construct a generating function. Define P0,0(0) = 1. Note that if
there exists at least one partition of n satisfying the given conditions then n 6 kl.
Hence, we can form the sum of all expressions Pk,l(n)xn with n = 0, 1, 2, . . . ; only
numbers with n 6 kl will enter this sum, and so it will be a polynomial. We shall
denote this polynomial by gk,l(x):

(1) gk,l(x) = Pk,l(0) + Pk,l(1)x + · · ·+ Pk,l(kl)xkl.

Obviously, g0,l(x) = 1 and gk,0(x) = 1. We now deduce two relations connect-
ing the polynomials gk,l with the polynomials of the same kind but with smaller
indices. Consider the difference Pk,l(n)−Pk,l−1(n). The first summand is equal to
the number of partitions of n to k summands not exceeding l, n = a1 + · · · + aj ,
j 6 k, ai 6 l, and the second—not exceeding l−1. Obviously, the difference is equal
to the number of partitions n = a1+· · ·+aj , where j again does not exceed k, ai 6 l
and at least one of a1, . . . , aj is equal to l, e.g., a1 = l. Eliminating this summand,
we obtain a partition of n− l: n− l = a2 + · · ·+aj , where the number of summands
now does not exceed k − 1, and the summands do not exceed l as before. In this
way, we obtain a one-to-one correspondence between Pk,l(n)−Pk,l−1(n) partitions
of number n and Pk−1,l(n− l) partitions of number n− l. Therefore,

(2) Pk,l(n)− Pk,l−1(n) = Pk−1,l(n− l).

The number Pk−1,l(n − l) is by definition equal to the coefficient of xn−l in
the polynomial gk−1,l(x), and hence to the coefficient of xn in the polynomial
gk−1,l(x)xl. Therefore, relation (2) gives us the equality of coefficients of xn in the
polynomials gk,l − gk,l−1 and gk−1,lx

l. Since it is valid for each n, we obtain that

(3) gk,l(x) = gk,l−1(x) + gk−1,l(x)xl.

The second relation is derived completely analogously. Consider the difference
Pk,l(n) − Pk−1,l(n). The first summand is equal to the number of partitions of n
into no more than k summands not exceeding l, and the second to the number
of partitions of n into no more than k − 1 summands of the same kind. Thus,
the difference expresses the number of partitions n = a1 + · · · + ak into exactly k
natural summands, not exceeding l. If we subtract 1 from each summand, and if
a particular summand is equal to 1, then eliminate this difference. As a result we
obtain the partition n− k = b1 + · · ·+ bj , where j 6 k, bi 6 l− 1 and it is obvious
that the difference Pk,l(n) − Pk−1,l(n) is equal to the number of these partitions.
In other words, we have proved that

Pk,l(n)− Pk−1,l(n) = Pk,l−1(n− k).

As before, it follows that

(4) gk,l(x) = gk−1,l(x) + gk,l−1(x)xk.
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Relations (3) and (4) enable us to find the explicit formula for the polynomial
gk,l(x). It follows from them that

gk,l−1(x) + gk−1,l(x)xl = gk−1,l(x) + gk,l−1(x)xk,

wherefrom gk,l−1(x)(1− xk) = gk−1,l(x)(1− xl), and so

gk,l−1(x) = gk−1,l(x)
1− xl

1− xk
.

Replacing in this relation l by l + 1, we obtain

(5) gk,l(x) = gk−1,l+1(x)
1− xl+1

1− xk
.

Relation (5) can now be applied to the polynomial gk−1,l+1(x), and as a result
we obtain

gk,l(x) = gk−2,l+2(x)
1− xl+1

1− xk

1− xl+2

1− xk−1
.

The process can be repeated k times, and since g0,k+l(x) = 1, we finally obtain the
formula

(6) gk,l(x) =
(1− xl+1)(1− xl+2) · · · (1− xl+k)

(1− xk)(1− xk−1) · · · (1− x)
.

Formula (6) acquires a more symmetrical form if on the right-hand side both the
numerator and the denominator are multiplied by (1−x)(1−x2) . . . (1−xl). If we
denote the polynomial (1− x)(1− x2) · · · (1− xm) by hm(x), formula (6) acquires
the form

(7) gk,l(x) =
hk+l(x)

hk(x)hl(x)
.

The expression on the right-hand side has the structure analogous to the bi-
nomial coefficient Ck

k+l, while polynomial hk(x) is the analogue of the number k!.
Polynomials gk,l(x) defined by equality (7) are called Gauss polynomials. As in the

case of binomial coefficients, it is not immediately clear that the fraction
hk+l(x)

hk(x)hl(x)
is a polynomial. It follows, of course, from the connection of the polynomial gk,l(x)
with partitions, i.e., from its definition by formula (1) (see, however, Problem 3).

We shall deduce now some properties of polynomials gk,l(x) which are anal-
ogous to the known properties of binomial coefficients. It follows obviously from
formula (7) that

(8) gk,l(x) = gl,k(x),

analogously to the property of binomial coefficients Ck
k+l = Cl

k+l (since polynomials
gk,l(x) are analogous to coefficients Ck

k+l). Relations (3) and (4) can be transformed
into each other by application of relation (8). Putting gl,k = gk,l, relation (3)
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gives gl,k = gl,k+1 + gl−1,kxk and then, again using relation (8), gl,k−1 = gk−1,l,
gl−1,k = gk,l−1 and one obtains relation (4) from relation (3). Both of these relations
are analogous to the equality Ck

n = Ck
n−1 + Ck−1

n−1—formula (26) in Ch. II (n has
to replaced by k + l; then Ck

n−1 is obtained from Ck
n replacing l with l − 1 and

Ck−1
n−1 replacing k with k + 1). Finally, a direct connection (and not analogy) with

binomial coefficients follows from the relation

(9) gk,l(1) = Ck
k+l.

Direct substitution x = 1 in (6) is not possible—numerator and denominator would
become 0. We need to divide both the numerator and denominator by (1−x)k, or,
more precisely, divide each factor entering numerator and denominator by 1 − x.

The polynomial 1−xm is divisible by 1−x for each m and
1− xm

1− x
= 1+x+ · · ·+

xm−1 (formula (12) in Ch. I). Hence,
1− xm

1− x
(1) = m. Dividing each factor from

numerator and denominator of formula (6) and substituting x = 1, we obtain

gk,l(1) =
(l + k) · · · (l + 2)(l + 1)

1 · 2 · . . . · k
(we have written down factors in both numerator and denominator in reverse order).
This shows that gk,l(1) = Ck

k+l.
Finally, let us demonstrate an important property of Gauss polynomials gk,l(x)

which does not have an analogue for binomial coefficients. Bearing in mind the fact
that gk,l(x) are polynomials and not numbers, we shall prove that the polynomial
gk,l(x) is reciprocal for each k and l. Recall (Sec. 3, Ch. III) that the polynomial
f(x) = a0 + a1x + · · · + anxn of degree n is called reciprocal if the coefficients
equidistant from the ends are equal, i.e., ak = an−k for k = 0, 1, . . . , n. A polyno-
mial f(x) of degree n is reciprocal if and only if xnf(1/x) = f(x) (this was also
proved in Sec. 3, Ch. III). The polynomial gk,l(x) has degree kl: it follows from
its representation (1) and from Pk,l(kl) > 1: there exists at least one partition of
kl into k summands being equal to l: kl = l + · · · + l (k times) (the same can be
deduced easily from representation (6) if one calculates the powers of numerator
and denominator and subtract the latter from the first). Thus, we have only to
check the relation xklgk,l( 1

x ) = gk,l(x). This follows immediately from (6). Note

that for arbitrary m the equality
(

1− 1
xm

)
= (−1)x−m(1 − xm) is valid. Hence,

the relation of this kind is valid for each factor both in the numerator and in the
denominator on the right-hand side of formula (6). Since the number of factors in
numerator and denominator is the same (it is equal to k), all of the factors (−1)
will cancel out. The factor x−m can be taken out of each factor 1− xm of the de-
gree m. We obtain that gk,l( 1

x ) = x−Ngk,l(x), where N is the difference of degrees
of the numerator and denominator. But this difference is equal to the degree of
the polynomial gk,l(x), i.e., to kl. Hence, N = kl, gk,l( 1

x ) = x−klgk,l(x) and so
xklgk,l( 1

x ) = gk,l(x) and this means that polynomial gk,l is reciprocal.
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The properties of Gauss polynomials we have deduced imply the corresponding
properties of partitions (more precisely, of numbers Pk,l(n), if we pass to their
coefficients using the definition (1)). For example, relation (8) gives the equality

(10) Pk,l(n) = Pl,k(n),

i.e., the number of partitions of n into at most k summands not exceeding l is
equal to the number of its partitions into at most l summands not exceeding k.
Reciprocality of the polynomial pk,l(x) implies that

(11) Pk,l(n) = Pk,l(kl − n).

Relation (9) means that for given numbers k and l the sum of all numbers Pk,l(n)
for n = 0, 1, . . . , kl is equal to Ck

k+l, i.e.,

(12) Pk,l(0) + Pk,l(1) + · · ·+ Pk,l(kl) = Ck
k+l.

Of course, these easy properties of partitions can be proved without using the
generating functions gk,l(x) (see Problems 4, 5, 6). But the easiest way to discover
them is by the use of generating functions.

Finally, note that in Section 3 of Chapter III we considered one more property
of polynomials—unimodality. For a reciprocal polynomial a0 + a1x + · · · + aNxN

unimodality means that ai 6 ai+1 for i + 1 6 N/2. Then from reciprocality it
follows that aj > aj+1 for j > N/2. It turns out that the Gauss polynomials
gk,l(x) have the property of unimodality. By definition it means that

Pk,l(n) 6 Pk,l(n + 1) for n + 1 6 kl

2
.

The only known proof of this fact is based on a connection of numbers Pk,l(n) with
a completely different section of Algebra. Namely, the number Pk,l(n+1)−Pk,l(n)
for n+1 6 kl/2 coincides with the number of elements of a certain finite set, and is
therefore nonnegative. As specialists assure us, there is no known “natural” proof
of this fact, based on the properties of partitions or polynomials gk,l(x). Maybe
some of the readers of this book will succeed in finding such a proof.

As the second example we shall consider some well known properties of nat-
ural numbers which can be deduced in an elegant way with the use of generating
functions. We are talking about the ability to write down all natural numbers in a
number system with the given base.

Let us start with the binary system. For an arbitrary natural number n, one
can find the largest power of 2 dividing this number, and so it can be represented
in the form n = 2km, where m is odd. As m has the form 2r + 1, n can be
represented as n = 2k + 2k+1r. Now the same reasoning can be applied to number
r, and continuing the process we finally represent n in the form of a sum of distinct
powers of 2: n = 2k1 + 2k2 + · · ·+ 2km , where k1 > k2 > · · · > km. In other words,
we represent n in the form

(13) n = a0 + a12 + a222 + · · ·+ aN2N ,
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where the coefficients a0, a1, . . . , aN can take values 0 and 1. Eliminating the terms
for which ai = 0, we return to the representation of n as the sum of distinct powers
of 2. The representation (13) is called the binary representation of the number n,
or the representation of n in the binary system. Let us prove that representation
(13) is, for the given number n, unique. Let n = b0 + b12 + · · ·+ bM2M be another
representation. Then a0 = b0 because if n is odd, then a0 = b0 = 1, and if n is
even, then a0 = b0 = 0. Hence, in the second representation we can put b0 = a0

and obtain that n−a0
2 = a1 + a22+ · · ·+ aN2N−1, n−a0

2 = b1 + b22+ · · ·+ bM2M−1.
Since n−a0

2 6 n
2 < n, we obtained two different representations for the number

n−a0
2 which is smaller than n. Using induction, we could assume that our assertion

was valid for n−a0
2 , and so a1 = b1, a2 = b2, etc. (Besides, the reader had probably

proved this before, solving Problem 5 of Sec. 1, Ch. I).
For the given value of N , we obtain the largest number n in representation

(13) when the numbers ai take the largest possible value, i.e., when all ai = 1 and

n = 1 + 2 + · · ·+ 2N =
2N+1 − 1

2− 1
= 2N+1 − 1. Hence, for the given value of N , all

numbers smaller than 2N+1, and just them, can be written in the form (13), and
the corresponding representation is unique.

On the other hand, consider the product

(14) (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2N

).
Expanding the brackets, we have to take one term from each bracket, i.e., from
(1 + x2i

) we take either 1 or x2i

. As a result, we obtain the term in xn, where n is
the sum of distinct powers of 2, i.e., sum of numbers 2i for certain i 6 N . As we
have seen, each number n 6 2N+1 − 1 can be obtained in this way and, moreover,
each number exactly once. Hence, expanding the brackets in the product (14), we
obtain all terms xn with n 6 2N+1 − 1 with coefficient 1. In other words, the
assertion that each number n 6 2N+1 − 1 has a unique binary representation gives
us the identity

(15) (1 + x)(1 + x2)(1 + x4) · · · (1 + x2N

) = 1 + x + x2 + x3 + · · ·+ x2N+1−1.

One can easily verify that our reasoning can be followed in reverse order, i.e.,
identity (15) implies the existence of unique binary representations for all numbers
n 6 2N+1 − 1.

How can we show directly that relation (15) is valid and so prove again the
existence and uniqueness of binary representation? The right-hand side of equality
(15) can be transformed using the familiar formula

1 + x + x2 + x3 + · · ·+ x2N+1−1 =
1− x2N+1

1− x
.

Thus, in order to prove identity (15), it is sufficient to check the identity

(1− x)(1 + x)(1 + x2)(1 + x4) · · · (1 + x2N

) = 1− x2N+1
.

But this is obvious! Multiplying the first two factors, we obtain 1−x2. Multiplying
(1− x2) by (1 + x2), we obtain 1− x4, etc., until, finally, multiplying (1− x2N

) by
(1 + x2N

) we obtain 1− x2N+1
.
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Consider now a completely analogous case of the decimal system. Divide with
remainder an arbitrary natural number n by 10: n = 10n1 + a0, where 0 6 a0 6 9.
Then, divide with remainder n1 by 10: n1 = 10n2 + a1, where 0 6 a1 6 9.
Substituting, we obtain that n = 102n2 + 10n1 + a0. Continuing this process, we
obtain for some k that n = 10kak + 10k−1ak−1 + · · ·+ 10a1 + a0, where 0 6 ai 6 9
for all ai. This is our usual decimal representation of the number n. It is unique.
Really, writing down the same formula in the form n = 10(10k−1ak + 10k−2ak−1 +
· · ·+ a1) + a0, i.e., n = 10m + a0, where m = 10k−1ak + 10k−2ak−1 + · · ·+ a1, we
see that a0 is the remainder of division of n by 10. But, division with remainder is
unique (Theorem 4, Ch. I). Therefore, if distinct decimal representations existed,
all of them would have at least the same a0—it is equal to the remainder of division
of number n by 10. If n = 10lbl + 10l−1bl−1 + · · ·+ 10b1 + b0 were another decimal
representation, where 0 6 bi 6 9 for all bi, then we could assert that a0 = b0. Thus,

10kak + 10k−1ak−1 + · · ·+ 10a1 = 10lbl + 10l−1bl−1 + · · ·+ 10b1.

Dividing by 10, we obtain that

10k−1ak + 10k−2ak−1 + · · ·+ a1 = 10l−1bl + 10l−2bl−1 + · · ·+ b1,

i.e., we have two decimal representations of the number m =
n− a0

10
. Since m 6

n

10
< n, we can, using induction, assume that m has a unique decimal representa-

tion, and this means that a1 = b1, a2 = b2, etc.
It is clear that the number n with the decimal representation n = 10kak +

10k−1ak−1 + · · · + 10a1 + a0 does not exceed 9(10k + 10k−1 + · · · + 10 + 1) (since

all ai 6 9), and the last number is equal to 9 · 10k+1 − 1
10− 1

= 10k+1 − 1. Thus, all

the numbers not exceeding 10k+1− 1 (i.e., being less than 10k+1) have the decimal
representation of the form 10kak + 10k−1ak−1 + · · · + 10a1 + a0 with the given k,
and they are the only numbers that have this property. Let us write down this
fact as an identity between polynomials. Consider the product (1 + x + x2 + · · ·+
x9)(1 + x10 + x20 + · · · + x90) · · · (1 + x10k

+ x2·10k

+ · · · + x9·10k

). Removing the
brackets, we have to take from the first bracket a factor xa0 , where a0 takes one
of the values 0, 1, . . . , 9; from the second bracket—a factor x10a1 , where a1 takes
one of the same values, and similarly for the rest of the brackets. As a result, we
obtain the term xa0+10a1+···+10kak , and this is, as we have seen, an arbitrary term
xn, where n is any number not exceeding 10k+1 − 1—this is just the assertion of
the existence of decimal representation. Each term of this kind will be obtained
just once, i.e., with the coefficient 1. Thus, the existence and uniqueness of decimal
expansion of the form n = 10kak + 10k−1ak−1 + · · · + 10a1 + a0 for all numbers
n 6 10k+1 − 1 imply the identity

(16) (1 + x + x2 + · · ·+ x9)(1 + x10 + x20 + · · ·+ x90) · · ·
· · · (1 + x10k

+ x2·10k

+ · · ·+ x9·10k

) = 1 + x + x2 + · · ·+ x10k+1−1.

As in the case of binary representation, the whole argument can be made in the
reverse order, and so, conversely, identity (16) implies the existence and uniqueness
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of decimal representation. Let us try to prove identity (16) directly, and hence to
prove again the existence and uniqueness of decimal representation. This is very
easy. Apply again the formula

1 + x + x2 + · · ·+ x10k+1−1 =
x10k+1−1

x− 1

to the right-hand side of relation (16). Transform each factor in the brackets on
the left-hand side in an analogous manner:

1 + x + x2 + · · ·+ x9 =
x10 − 1
x− 1

,

1 + x10 + x20 + · · ·+ x90 =
x100 − 1
x10 − 1

,

. . . . . .

1 + x10k

+ x2·10k

+ · · ·+ x9·10k

=
x10k+1 − 1
x10k − 1

.

Relation (16) then takes the form

x10 − 1
x− 1

x100 − 1
x10 − 1

· · · x
10k+1 − 1
x10k − 1

=
x10k+1 − 1

x− 1
.

This is completely obvious: on the left-hand side the numerator of each factor

cancels out with the denominator of the next factor and there only remains
1

x− 1
(from the first factor) and x10k+1 − 1 (from the last one).

Number systems with other bases can be considered in the same way.

Problems

1. Find the explicit form of polynomials gk,1(x), starting from their definition
and from formula (6).

2. Find the explicit form of polynomials gk,2(x). (It is a bit more complicated
than Problem 1.)

3. Let the rational expressions gk,l(x) be defined by formula (7). Prove that
they satisfy relations (3) and (4) and hence prove that they are polynomials (not
using formula (1) and its connection with the theory of partitions).

4. Prove that Pk,l(n) = Pl,k(n) without using properties of Gauss polynomials.
[Hint : The partition n = a1 + · · ·+ aj , a1 > a2 > · · · > aj , can be represented by a
table of points, having a1 points in the first row, a2 points in the second, etc. For
example, the partition 13 = 7 + 3 + 1 + 1 + 1 can be represented by the first table
in the next figure
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• • • • • • •
• • •
•
•
•

• • • • •
• •
• •
•
•
•
•

Correspond to each table the “turned” table, rows of which are columns of the
original one. E.g., to the previous table, there will correspond the second one in
the previous figure.]

5. Prove that Pl,k(n) = Pl,k(kl − n) without using properties of Gauss poly-
nomials. [Hint : Correspond to the partition n = a1 + · · ·+ aj , j 6 k, ai 6 l, of the
number n, the partition kl − n = (l − a1) + (l − a2) + · · ·+ (l − aj) + l + · · ·+ l of
the number kl − n, where the summand l − ai is eliminated if it is equal to 0, and
the number of summands equal to l is equal to k − j.]

6. Prove that Pl,k(0)+Pl,k(1)+ · · ·+Pl,k(kl) = Ck
k+l without using properties

of Gauss polynomials. [Hint : Correspond to the partition a1 + · · · + aj , j 6 k,
ai 6 l, of a number not exceeding kl, the subset {a1 + 1, a2 + 2, . . . , aj + j} of the
set {1, 2, . . . , k + l}.]

7. Prove that each weight of a whole number of kilograms and smaller than 2n,
can be determined using n weights of 1, 2, 22, . . . , 2n−1 kilograms (the measured
object is placed on one side of the scales and weights on the other side).

8. It is allowed to put weights on both sides of the scales in this. Prove that
an arbitrary weight of a whole number of kilograms and smaller than 3n−1

2 can be
determined using n weights of 1, 3, . . . , 3n−1 kilograms. [Hint : Prove the existence
and uniqueness of ternary representation of the form m = a0+a13+· · ·+an−13n−1,
where a0, a1, . . . , an−1 take values 1, 0 or −1, for all integers m between − 3n−1

2

and 3n−1
2 . Which identity corresponds to the assertion of the problem? Prove this

identity directly.]

2. Power series

In the previous Section we have seen examples of how properties of a finite
sequence of numbers (a0, . . . , an) can be explored considering the polynomial f(x) =
a0 + a1x + · · · + anxn—the generating function of the sequence. But what is the
situation if the sequence is infinite—e.g., if it is the sequence of natural numbers
or Bernoulli’s numbers? Even for an infinite sequence (a0, a1, . . . , an, . . . ) one can
write:

(17) f(x) = a0 + a1x + · · ·+ anxn + · · · .

But what does the expression on the right-hand side mean? Let us return to the
case of finite sequences and polynomials. To deduce properties of various sequences
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in Sec. 1 we used identities about polynomials. In order to do that it was not
necessary to answer such a general questions as “what is a polynomial?”, but we
had only to know when two polynomials are equal and how to carry out operations
with polynomials. We shall answer these questions in connection with the expres-
sions appearing in formula (17) and we shall show then how, using corresponding
properties, one can obtain unexpected properties of infinite sequences.

The expression in formula (17) will be called a power series. The coefficient
a0 is called the constant term. What do we mean by equality of power series? For
polynomials, we had two notions of equality which, as was shown in Ch. II, were
equivalent. One of them meant that, after cancelling constant terms, the coefficients
of the same powers of x were equal. The other notion of equality meant that two
polynomials took the same values for the same values of the variable x. The second
definition of equality, applied to power series, would need an explanation of what the
value of a power series for a particular value x = α means. This would then require
an explanation of what is the sum of infinite number of terms anαn. Definitions
of this kind can be introduced, although not in every case. But this method is
too involved for our purposes. However, if we accept the first notion of equality,
then there are no difficult questions. We shall simply say that two power series
f(x) = a0+a1x+a2x

2+· · ·+anxn+· · · and g(x) = b0+b1x+b2x
2+· · ·+bnxn+· · ·

are equal if a0 = b0, a1 = b1, and, generally, an = bn for each n. This definition
will be sufficient for our purposes.

If the expansion of a polynomial in powers of x is analogous to the represen-
tation of a natural number in the decimal system (we pointed out that analogy at
the beginning of Ch. II), then a power series is an analogue of an infinite decimal
expansion. This remark was made by Newton.

Let us consider now operations with power series. We shall define them exactly
in the same manner as for polynomials—by removing the brackets and collecting
like terms. The sum of the power series f(x) = a0 + a1x + a2x

2 + · · ·+ anxn + · · ·
and g(x) = b0 + b1x + b2x

2 + · · ·+ bnxn + · · · will be the power series (a0 + b0) +
(a1 +b1)x+(a2 +b2)x2 + · · ·+(an +bn)xn + · · · . We define the product of these two
series by expanding the brackets in the expression (a0 + a1x + a2x

2 + · · ·+ anxn +
· · · )(b0+b1x+b2x

2+ · · ·+bnxn + · · · ) and collecting like terms. In other words, one
has to collect similar terms appearing among expressions anbmxn+m. Hence, the
coefficient of xl in the new power series will be the sum a0bl + a1bl−1 + · · ·+ alb0.
Note that this is a finite sum, i.e., there will only be finitely many similar terms
among all the anbmxn+m, so that we are able to multiply power series and always
obtain a completely determined answer.

We have thus defined operations of addition and multiplication of arbitrary
power series. They are defined by the same formulae as for polynomials. Moreover,
these operations can also be defined using operations with polynomials themselves.
In order to do that, call the polynomial a0 +a1x+ · · ·+anxn, obtained from power
series (17) by eliminating all terms with degrees greater than n, the n-th partial sum
of this series. Note that, for the evaluation of the terms with degrees not exceeding
n in the sum or the product of two series, it is necessary to know just the terms
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with degrees not exceeding n of the two given series. Thus, in order to find the n-th
partial sum of the sum or of the product of two series, it is enough to take the n-th
partial sums of these series, carry on the respective operation with them (addition
or multiplication) and eliminate in the obtained polynomial all terms with degrees
exceeding n. Since operations with power series reduce to respective operations
with polynomials, they possess the same properties: commutativity, associativity,
distributivity. In other words, for power series f(x), g(x), h(x) the following are
valid:

f(x) + g(x) = g(x) + f(x),

(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)),

f(x)g(x) = g(x)f(x),

(f(x)g(x))h(x) = f(x)(g(x)h(x)),

(f(x) + g(x))h(x) = h(x)(f(x) + g(x)) = f(x)h(x) + g(x)h(x).

All this long explanation was necessary in order to operate freely with power series,
in the same way as with polynomials. This was exactly the point of view of math-
ematicians of the XVIII century, particularly Euler, who thought of a power series
as a polynomial whose degree appeared to be infinite, but the main properties were
unchanged. That is the reason we include the Chapter about power series into the
theme concerning polynomials (“polynomials with infinite degree”).

We can now pass to properties of power series. We shall see that some of the
operations with power series can be realised even when the corresponding operations
with polynomials cannot.

THEOREM 1. An arbitrary power series f(x) = a0 + a1x + · · · , such that the
constant term a0 is different from 0, has the inverse power series f(x)−1.

In order to prove the Theorem, we have to find a power series g(x) = b0 +
b1x + · · · , such that f(x)g(x) = 1. Multiplying power series f(x)g(x) using the
rule discussed above, we obtain the power series a0b0 + (a1b0 + a1b0)x + · · · +
(a0bn + a1bn−1 + · · ·+ anb0)xn + · · · . Since this series should to be equal to 1, it is
necessary that a0b0 = 1, and that the remaining coefficients are equal to 0. Thus,
we obtain the equation a0b0 = 1 and b0 = a−1

0 ; a−1
0 exists since a0 6= 0 by the

assumption. The next equation (coefficient of x) gives a0b1 + b0a1 = 0, wherefrom
b1 = −a−1

0 b0a1 = −a−2
0 a1. In the same way we can recurrently determine the

coefficients b2, b3, . . . from the following equations. Suppose that, considering the
coefficients of 1, x, x2, . . . , xn−1, we have already determined b0, b1, . . . , bn−1.
Equating the coefficient of x of f(x)g(x) to 0 gives the equation

a0bn + a1bn−1 + · · ·+ anb0 = 0,

wherefrom bn = −a−1
0 (a1bn−1 + · · · + anb0). Since b0, b1, . . . , bn−1 have already

been determined, this gives us the value of bn. The Theorem is proved.
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In particular, we can see that each polynomial f(x) = a0+a1x+· · ·+anxn with
the constant term different from 0 has the inverse power series f(x)−1. Hence, each

rational expression
g(x)
f(x)

, where f(x) and g(x) are polynomials and the constant

term of the polynomial f(x) is different from 0, can be represented as a power
series.

We shall check our conclusion on the simplest possible example. The polyno-
mial 1 − x should have the inverse power series (1 − x)−1. Let us prove that this
series coincides with the series 1 + x + x2 + x3 + · · · ,which has all the coefficients
equal to 1. We have to prove that (1−x)(1+x+x2 +x3 + · · · ) = 1. The left-hand
side of the equality is equal to 1 + x + x2 + x3 + · · · − x(1 + x + x2 + x3 + · · · ). We
see that all the terms except 1 cancel out. The equality that we have obtained can
be written as

(18)
1

1− x
= 1 + x + x2 + x3 + · · ·+ xn + · · · .

Replacing x by −x, we obtain

(19)
1

1 + x
= 1− x + x2 − x3 + · · ·+ (−1)nxn + · · · .

Recall that in Section 3 of Chapter II we corresponded to each sequence a =
(a0, a1, a2, . . . ) two new sequences: Sa = (b0, b1, . . . ) and ∆a = (c0, c1, . . . ), where
b0 = a0, b1 = a0 + a1, b2 = a0 + a1 + a2, . . . ; c0 = a0, c1 = a1 − a0, c2 = a2 − a1,
. . . The power series f(x) = a0 + a1x + a2x

2 + · · · will be called the generating
function of the sequence a, by analogy with finite sequences in Sec. 1. How can
the generating functions of the sequences Sa and ∆a be found? Denote the power
series 1+x+x2+· · ·+xn+· · · by s(x). The coefficients of the power series s(x)f(x)
are in fact equal to a0, a0 + a1, a0 + a1 + a2, . . . , i.e., it is the generating function
of the sequence Sa. It is even more obvious that the coefficients of the power series
(1− x)f(x) are equal to a0, a1 − a0, a2 − a1, . . . , i.e., it is the generating function
of the sequence ∆a. Since s(x) = (1− x)−1, the operations of multiplying a power
series by s(x) and by 1− x are mutually inverse. It makes the property proved in
Sec. 3, Ch. II—that the operations S and ∆ are mutually inverse—visually obvious.

We shall pass now to another operation with power series.
THEOREM 2. If the power series f(x) = a0+a1x+a2x

2+· · · has the constant
term different from 0 which has a root of order k, then the whole series f(x) has
a root of order k in the form of a power series. This series is uniquely determined
by its constant term which can take any value of k

√
a0.

The Theorem states that under the given assumptions there exists a power
series b0 + b1x + b2x

2 + · · · , such that bk
0 = a0 and

(20) a0 + a1x + a2x
2 + · · · = (b0 + b1x + b2x

2 + · · · )k.

We shall prove this by determining successively the coefficients b0, b1, b2, . . . so that
on both sides of relation (20) the terms of degree 0, 1, 2, etc, coincide. Comparing
the terms of degree 0, we obtain for b0 the condition bk

0 = a0. The existence of this
number is guaranteed by the assumption. Note also that, since a0 6= 0, we have
b0 6= 0.
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Compare the terms of degree 1. On the right-hand side we can eliminate all
the terms of degree greater than 1: b2x

2 etc., since their multiplication cannot
give a term of degree 1. Therefore, the term of degree 1 will be the same as in
(b0 +b1x)k. If we use the binomial formula, we see that the term of degree 1 will be
kbk−1

0 b1x. The equality of the terms of degree 1 in relation (20) gives a1 = kbk−1
0 b1.

Since we have already determined b0 and it is different from 0, we deduce that
b1 = 1

k b
−(k−1)
0 a1. The terms of degrees 0 and 1 in relation (20) will coincide for

these values of b0 and b1.
Obviously, we can continue in the same manner. Suppose that coefficients b0,

b1, . . . , bn have already been determined so that the terms of degrees 0, 1, . . . , n
in relation (20) coincide. Let us prove that bn+1 can be chosen so that the terms
of degree n + 1 in (20) coincide. Denote by u(x) the n-th partial sum of the power
series f(x), i.e., the polynomial b0 + b1x + · · ·+ bnxn, and by v(x) the power series
bn+2x

n+2 + · · · . Then the right-hand side of equality (20) takes the form (u(x) +
bn+1x

n+1 + v(x))k. The power series v(x) contains only terms of degree greater
than n+1, so their multiplication cannot produce terms of degree n+1 . Therefore,
this summand can be eliminated: the terms of degree n + 1 on the right-hand side
of (20) will be the same as in the polynomial (u(x) + bn+1x

n+1)k. Multiplying out
the last expression using the binomial formula, we see that terms of degree n+1 can
appear only from the summands u(x)k + ku(x)k−1bn+1x

n+1. The term of degree
n+1 entering the polynomial u(x)k depends only on coefficients of this polynomial,
which are already known. Denote this term by F (b0, b1, . . . , bn)xn+1. The term of
degree n + 1 in the polynomial ku(x)k−1bn+1x

n+1 comes from the constant term
of polynomial u(x), and so it has the form kbk−1

0 bn+1. Thus, the term of degree
n + 1 on the right-hand side of equation (20) has the form (F (b0, b1, . . . , bn) +
kbk−1

0 bn+1)xn+1. The equality of terms with degree n + 1 in (20) means that

an+1 = F (b0, b1, . . . , bn) + kbk−1
0 bn+1.

This relation is satisfied if bn+1 = − 1
k b
−(k−1)
0 (an+1 − F (b0, b1, . . . , bn)). Thus,

successively determining coefficients bn, we can satisfy equality (20). The Theorem
is proved.

For example, if a0 > 0, then for the power series f(x) = a0 + a1x + a2x
2 + · · ·

there exists, according to Theorem 2, a unique power series k
√

f(x) with a positive
constant term, which can be written down as f(x)1/k. Raising it to an arbitrary
power m, we obtain the power series f(x)m/k, i.e., f(x)α, where α is an arbitrary
positive rational number. Applying Theorem 1, we can also write down f(x)−α in
the form of power series, and so a power series f(x)α exists for each rational number
α—positive or negative. Some intriguing questions can be posed in connection
with this. For example: how can the power series for (1 + x)α, α rational, be
found explicitly? In other words, can the binomial formula be extended to rational
exponents? We derived in Sec. 3, Ch. II the binomial formula for integer exponents,
using properties of the derivative of a polynomial. In order to make analogous
reasoning in this case, it is necessary to introduce the notion of the derivative of a
power series.
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We have at our disposal an explicit formula for the derivative of a polynomial
(formula (15), Ch. II), which can also be applied to power series. So, for the power
series f(x) = a0 + a1x + a2x

2 + · · · + anxn + · · · , we shall define its derivative as
the power series

(21) f ′(x) = a1 + 2a2x + · · ·+ nanxn−1 + · · · .

Note that the power series f(x) = a0 + a1x + a2x
2 + · · · + anxn + · · · is equal to

the sum of the polynomial p(x) = a0 + a1x + a2x
2 + · · · + anxn of the degree not

exceeding n (its n-th partial sum), and the power series u(x) = an+1x
n+1 + · · · ,

containing terms just of degrees greater than n. Formula (21) shows that the terms
of degree less than n in the derivative will be the same as in polynomial p′(x). In
other words, f ′(x) = p′(x) + v(x), where v(x) is a power series containing only
terms with degrees greater than n. That is, the (n− 1)-st partial sum of the series
f ′(x) is equal to the derivative of the n-th partial sum of the series f(x). This rule
shows which terms of degree less than n are contained in the derivative. Since it is
valid for each n, it determines the derivative uniquely.

Using the given rule, one can easily show that the properties of derivative,
proved in Sec. 2, Ch. II for polynomials, are valid for power series as well. These
are the relations

(22)

(f1 + f2)′ = f ′1 + f ′2, (f1 + · · ·+ fn)′ = f ′1 + · · ·+ f ′n,

(f1f2)′ = f ′1f2 + f1f
′
2, (f1 · · · fk)′ = f ′1f2 · · · fk + · · ·+ f1f2 · · · f ′k,

(fk)′ = kfk−1f ′.

Let us show, for example, how the properties of the derivative of a product can
be deduced. Represent each of the power series f1 and f2 as the sum of its n-
th partial sum and the series containing only terms of degrees greater than n:
f1 = p1 + u1, f2 = p2 + u2. Then f1f2 = p1p2 + (p1u2 + p2u1 + u1u2) = p1p2 + v,
where v contains only terms of degrees greater than n. Hence, the n-th partial sum
p of the series f1f2 can be obtained from p1p2, eliminating the terms of degrees
greater than n, i.e., p = p1p2 + w, where w is a polynomial containing only terms
of degrees greater than n. Using the given rule, we deduce that the (n − 1)-st
partial sum of the series (f1f2)′ is equal to p′ = (p1p2)′ + w′ = p′1p2 + p1p

′
2 + w′

(here we have also used formulae b) and c) from Sec. 2, Ch. II for derivatives of
polynomials). Hence, the (n−1)-st partial sum of the series (f1f2)′ is obtained from
the polynomial p′1p2 + p1p

′
2 by eliminating the terms of degrees greater than n− 1.

On the other hand, f ′1 = p′1 +u′1, f ′2 = p′2 +u′2, f ′1f2 +f1f
′
2 = p′1p2 +p1p

′
2 +ϕ, where

ϕ = p′1u2 +p2u
′
1 +u′1u2 +p′2u1 +p1u

′
2 +u1u

′
2 contains only terms of degrees not less

than n (even 2n− 3). Thus, the (n− 1)-st partial sum of the series f ′1f2 + f1f
′
2 is

also obtained from the polynomial p′1p2 + p1p
′
2 by eliminating the terms of degrees

greater than n − 1, and hence it coincides with the (n − 1)-st partial sum of the
series (f1f2)′. Since this is valid for each n, it follows that (f1f2)′ = f ′1f2 + f1f

′
2.

The remaining formulae (22) concerning derivatives of products and powers are
obtained from the one we have proved, by induction, similarly as for polynomials.
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Formulae for the derivatives of sums are completely obvious—we leave their proofs
to the reader.

We are now ready to deduce the formula for the power series for (1 + x)α,
where α is a rational number. We shall consider only the case of positive α. Let
α = p/q, where p and q are natural numbers. According to Theorem 2, there exists
a power series f(x) = 1 + a1x + · · · , such that

(23) f(x)q = (1 + x)p.

This series will be denoted by f(x)p/q. Consider the derivatives of both sides of
equality (23). Using the properties (22) of derivatives of power series that we have
found, and corresponding properties for polynomials ((17), Ch. II), we obtain

qf ′(x)f(x)q−1 = p(1 + x)p−1.

Multiplying both sides of this equality by (1 + x)f(x), we obtain

qf ′(x)f(x)q(1 + x) = p(1 + x)pf(x).

Using now equality (23), we can divide the left-hand side by f(x)q and the right-
hand side by (1 + x)p. Recalling that p/q = α, we obtain

(24) f ′(x)(1 + x) = αf(x).

Let f(x) = 1 + a1x + · · · + anxn + · · · . Equating coefficients of xn−1 on both
sides of equality (24) and taking into account that, by definition (21), f ′(x) =
a1 + 2a2x + · · ·+ nanxn−1 + · · · , we obtain that

nan + (n− 1)an−1 = αan−1,

wherefrom an =
α− n + 1

n
an−1. Using this formula several times, we obtain

an =
(α− n + 1)(α− n + 2) · · · (α− n + r)

n(n− 1) · · · (n− r + 1)
an−r.

Since a0 = 1, for r = n we get an =
α(α− 1) · · · (α− n + 1)

n!
. In other words,

(25) (1 + x)α = 1 + αx +
α(α− 1)

2
x2 + · · ·+ α(α− 1) · · · (α− n + 1)

n!
xn + · · · .

Note that if α = m is an integer, all coefficients of this series starting from the
(m + 1)-st vanish, and we obtain the usual binomial formula. Formula (25) is valid
for negative α, too (Problem 7). In fact, formula (25) should be called Newton’s
binomial formula, since it was Newton who derived it (even for real exponents α);
the formula for natural exponents was known much earlier, e.g., to Pascal.

As a conclusion of this Section we consider an application of the generalized
binomial formula (25) to the so called Catalan numbers. They are connected with
various problems of partitions of numbers. Suppose, for example, that we wish to
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calculate the product of n numbers a1, a2, . . . , an, taken in a prescribed order,
but we want to find that product by using successive multiplications of just two
numbers at a time. In order to do that, we have to put brackets into the product
a1 · · · an so that in each bracket there are always two factors, which may themselves
be expressions in brackets. The number of ways that the brackets can be arranged
is the Catalan number cn. We shall put c1 = 1. Obviously, c2 = 1. For a product
of three numbers a1a2a3, two ways of inserting brackets are possible: (a1a2)a3 and
a1(a2a3), so that c3 = 2. For n = 4 the possibilities are ((a1a2)a3)a4, (a1a2)(a3a4)
and a1(a2(a3a4)), so that c4 = 3.

Catalan numbers satisfy an important relation. The last product that we
find when calculating a1 · · · an determines an arrangement of brackets (a1 · · · ak)×
(ak+1 · · · an). Inside each of the brackets we can arrange other brackets in an
arbitrary manner, i.e., in ck ways in the first, and in cn−k ways in the second one.
In total, there will be ckcn−k arrangements. The total number of all arrangements
is equal to the sum of all these numbers for k = 1, 2, . . . , n − 1 . In other words,
the following relation is valid

(26) cn = c1cn−1 + c2cn−2 + · · ·+ cn−1cn, for n > 2.

The right-hand side of relation (26) looks like the formula for coefficients of
the product of two power series, and so it suggests to consider the power series

f(x) = c1x + c2x
2 + · · ·+ cnxn + · · ·

(the generating function for Catalan numbers). The right-hand side in (26) is
equal to the coefficient of xn in the series (f(x))2. Relation (26) shows that the
coefficients of the series f(x) and (f(x))2 will be the same for all terms of degree
2 and higher. But, f(x) has the term x of degree 1, while (f(x))2 has no such
term. Hence, (f(x))2 = f(x) − x. Thus our series satisfies the quadratic equation
y2 − y + x = 0 and can be found explicitly:

f(x) =
1
2
(1−√1− 4x).

We take the “minus” sign because the series
√

1− 4x has a constant term (1), and
f(x) has no such term.

According to formula (25),

√
1− 4x = 1+

1
2
(−4x)+

1
2 ( 1

2 − 1)
2

(−4x)2+· · ·+
1
2 ( 1

2 − 1) · · · ( 1
2 − n + 1)

n!
(−4x)n+· · · .

Hence, cn = −1
2

1
2 ( 1

2 − 1) · · · ( 1
2 − n + 1)

n!
(−4)n. The formula can be simplified fur-

ther:

cn = −1
2

(−1)(−3) · · · (−2n + 3)
n!

(−2)n =
1 · 3 · 5 · . . . · (2n− 3)

n!
2n−1.

Multiply both numerator and denominator of the last expression by (n − 1)! and
combine each factor from 1 · 2 · · · (n− 1) with one of the factors 2. We obtain the
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product of all even natural numbers not exceeding 2n−2. In the numerator there is
already the product of odd numbers smaller than 2n− 2. Together, these products
give (2n− 2)!. As a result we obtain

cn =
(2n− 2)!
n! (n− 1)!

.

Since Cn−1
2n−2 =

(2n− 2)!
(n− 1)! (n− 1)!

, the last formula can also be written as

cn =
1
n

Cn−1
2n−2.

Problems

1. Find the coefficients of the power series
1

(1− x)2
by squaring the series

1
1− x

.

2. Find a formula for the coefficients of the power series
1

(1− x)n
. [Hint :

Use induction on n and the connection between multiplying a series by
1

1− x
and

applying operation S to its coefficients.]

3. Find the coefficients of the power series
1

(1− ax)(1− bx)
.

4. Prove the formula
(

f(x)
g(x)

)′
=

g(x)f ′(x)− f(x)g′(x)
g(x)2

, where f and g are
polynomials or power series.

5. Prove that the series 1 + x +
x2

2!
+ · · ·+ xn

n!
+ · · · and 1− x +

x2

2!
+ · · · +

(−1)n xn

n!
+ · · · are mutually inverse.

6. Find the formula for the derivative of
1

(1− x)n
. Use this formula to deter-

mine the coefficients of the power series
1

(1− x)n
(using induction on n).

7. Find all power series f(x) for which f ′(x) = f(x).

8. Prove that formula (25) is also valid for negative α. [Hint : Put α = −p/q,
where p and q are natural, f(x) = (1 + x)α and use the relation f(x)q(1 + x)p = 1.
Check that for negative integers α the result coincides with the result of Problems
2 and 6.]

9. In how many ways can a convex (n+1)-gon be divided into triangles by its
diagonals, not intersecting inside the polygon? Prove that this number is equal to
the Catalan number cn.

10. Let f(x) be a polynomial of degree n. Prove that the coefficient of xk in

the power series
f(x)
1− x

is equal to f(1), if k > n.
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11. Let fn(x) = x + 2nx2 + 3nx3 + · · · . Prove that fn(x) =
un(x)

(1− x)n+1
,

where un(x) is a polynomial of degree n + 1 satisfying the relation un+1(x) =
x(1 − x)u′n(x) + (n + 1)xun(x). [Hint : Prove that xf ′n(x) = fn+1(x). Find f0(x)
and use induction.]

12. Prove that

nn − C1
n(n− 1)n + C2

n(n− 2)n + · · ·+ (−1)n−1Cn−1
n · 1 = n!.

[Hint : Use Problems 10 and 11. Prove that in Problem 11, un(i) = n!.]

3. Partitio Numenorum

The Latin term partitio numenorum—partition of numbers—is the name given
by Euler to the part of Mathematics investigating partitions of natural numbers
using power series. As an introduction, we gave in Sec. 1 examples of problems
with partitions which can be solved using polynomials.

For more general cases we need infinite sums of power series. Let fn(x), n =
0, 1, 2, . . . , be an infinite sequence of power series, such that each series fn(x) starts
with a certain power of x, which increases when n increases. In other words, for
each exponent N , the term axN will be distinct from 0 for only finitely many series
fn(x). Then, when evaluating the coefficient of xN in the infinite sum f0(x)+f1(x)+
· · ·+ fn(x) + · · · we have to sum up only a finite number of series: f0(x) + f1(x) +
· · ·+ fm(x). Hence, the whole N -th partial sum of the resulting series will coincide
with the N -th partial sum of the finite sum of series f0(x) + f1(x) + · · · + fm(x).
Because of that, the evaluation of the infinite sum (i.e., its partial sums) always
reduces to the evaluation of partial sums of certain finite sums of series. Thus the
rules that we deduced in Sec. 2 for finite sums of series are valid also for infinite
sums (if the series fn(x) satisfy the formulated condition). As a matter of fact,
only after these explanations can we say that a power series f(x) is the sum of its
terms—in this case fn(x) = anxn.

The same remarks apply also for infinite products of the form

(27) (1 + f0(x))(1 + f1(x))(1 + f2(x)) · · · (1 + fn(x)) · · · ,

where the power series fn(x) satisfy the same condition: fn(x) starts with a power
of x which increases unboundedly when n increases. Then for each exponent N ,
the series fk(x) do not contain terms with degree N , starting from some number
m+1, i.e., for k > m. Therefore, the terms with a fixed exponent N in the product
(27) are obtained from the finite product (1 + f0(x)) · · · (1 + fm(x)).

Using these observations, we can now find the generating functions for numbers
of partitions of various kinds.

For example, the numbers of partitions to summands not exceeding m, have
the generating function

(1 + x + x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · ) · · · (1 + xm + x2m + x3m + · · · ).
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In this partition of number n, the number 1 appears a1 times, number 2 a2 times,
. . . , number m am times: n = 1 · a1 + 2 · a2 + · · · + m · am (some of the numbers
ai may be equal to 0). To this partition there corresponds the term obtained by
multiplying the term xa1 form the first bracket, x2a2 from the second, . . . , xmam

from the m-th brackets. It means that the coefficient of xn is equal to the total
number of all partitions of n into summands not exceeding m. Taking into account
formula (18) we can write this series in the form

(28)
1

(1− x)(1− x2) · · · (1− xm)
.

In a completely analogous way, the number of partitions of number n into arbitrary
natural summands has the generating function

(29)
1

(1− x)(1− x2) · · · (1− xm) · · · .

The number of partitions into odd summands has the generating function

(30)
1

(1− x)(1− x3)(1− x5) · · · (1− x2m+1) · · · ,

and into even summands:

1
(1− x2)(1− x4) · · · (1− x2m) · · · .

If we are interested only in partitions into distinct summands, then the gener-
ating function is

(31) (1 + x)(1 + x2)(1 + x3) · · · (1 + xm) · · · .

Here we allow partitions in which 1 appears a1 times, 2 appears a2 times, . . . , m
appears am times, but ai can be only 0 or 1. But the factors of product (31) contain
exactly those terms xa1 (a1 = 0 or 1) in the first factor, x2a2 (a2 = 0 or 1) in the
second one, etc.

These formulae have several applications.

THEOREM 3. The number of partitions of number n into distinct summands
is equal to the number of its partitions into odd summands (some of them possibly
equal to each other).

For example, number 6 has 3 partitions into distinct summands: 6 = 1 + 5 =
1+2+3 = 2+4 and also 3 partitions into odd summands: 6 = 1+5 = 1+1+1+3 =
3 + 3.

In terms of generating functions, the Theorem means that power series (30)
and (31) coincide. In order to prove this, write series (31) in the form

(1 + x)(1 + x2)(1 + x3) · · · = 1− x2

1− x

1− x4

1− x2

1− x6

1− x3
· · · .
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In the numerator there is the product of all factors 1−x2n, and in the denominator
of all 1 − xm. The factors 1 − xm from the denominator with even m give the
expression appearing in the numerator and so after cancelling there remains the
product of factors 1− xm with odd m, i.e., the series (30).

The next property concerns the number of partitions of a natural number n
into arbitrary natural summands. Denote the number of all such partitions by p(n).
As we have already seen, the series 1 + p(1)x + p(2)x2 + · · ·+ p(n)xn + · · · is given
by formula (29).

THEOREM 4. For each n > 2, the following inequality holds

p(n)− 2p(n− 1) + p(n− 2) > 0.

In other words, if we draw the points with coordinates (n, p(n)), n = 1, 2, . . . ,
in the plane, then each point lies below the segment joining the two neighbouring
ones, Fig. 1. That is, if we knock small nails into the plane and span a string, we
shall obtain a convex infinite polygon. The first 10 values of the sequence p(n) are:
p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15, p(8) = 22,
p(9) = 30, p(10) = 42. You can check the Theorem for these values experimentally.
The convexity of the obtained polygon is connected with the fact that numbers
p(n) increase very fast: p(50) = 204 226.

Fig. 1

Before proving the Theorem, we make one remark. We corresponded in Sec. 3,
Ch. II to each sequence a = (a0, a1, a2, . . . ) the sequence ∆a = (a0, a1 − a0, a2 −
a1, . . . ). Apply to the last sequence the same operation once more. We obtain the
sequence b = ∆∆a = (a0, a1−2a0, a2−2a1 +a0, . . . ). The term bn of this sequence
has the form an−2an−1+an−2 for n > 2. On the other hand, if f(x) = a0+a1x+· · ·
is the generating function of sequence a, then, as we saw in Sec. 2, the generating
function of the sequence ∆a will be (1−x)f(x). Hence, the sequence ∆∆a has the
generating function (1− x)2f(x) and we arrive at the identity

(1−x)2f(x) = a0+(a1−2a0)x+(a2−2a1+a0)x2+· · ·+(an−2an−1+an−2)xn+· · ·
if f(x) = a0 + a1x + a2x

2 + · · · .
We can now proceed to the proof of the Theorem. Taking the last remark

into account, it asserts that the coefficients of the series (1 − x)2(p(0) + p(1)x +
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· · ·+ p(n)xn + · · · ), starting with that of x2, are nonnegative. Since p(0) + p(1)x +
p(2)x2 + · · · = (1−x)−1(1−x2)−1(1−x3)−1 · · · , we have to prove that coefficients
of the series (1 − x)(1 − x2)−1(1 − x3)−1 · · · are nonnegative starting with the
coefficient of x2.

Put g(x) = (1 − x3)−1(1 − x4)−1 · · · . The series we are interested in has the

form (1− x)(1− x2)−1g(x). Since (1− x)(1− x2)−1 =
1− x

(1− x)(1 + x)
= (1 + x)−1,

this series is equal to (1 + x)−1g(x). Arguing in the same manner as with series
(28), (29) and (30), we can convince ourselves that g(x) is the generating function
for numbers of partitions into summands not exceeding 3. Denoting by q(n) the
number of partitions of n of this kind, we find that g(x) = 1+ q(1)x+ q(2)x2 + · · · .
Since (1+x)−1 = 1−x+x2−x3+· · · , the coefficient of xn in the series (1+x)−1g(x)
is equal to q(n)− q(n− 1) + q(n− 2)− · · ·+ (−1)n (we only have to remember the
rule for multiplication of power series: each term of the first one is multiplied by
each term of the second, and then similar terms are reduced). Thus, it remains to
prove the inequality

(32) q(n)− q(n− 1) + q(n− 2)− · · ·+ (−1)n > 0.

This follows from the obvious inequality q(n) > q(n− 1): really, enlarging by 1 the
largest summand of a certain partition of the number n− 1, we obtain a partition
of number n. If the former consisted of summands greater than 2, then the latter
would have the same property. From this inequality, it follows that sum (32) splits
into n

2 nonnegative differences q(n− 2k)− q(n− 2k− 1) (for n odd) and one extra
summand equal to 1 (for n even). This proves the Theorem.

Up to now we have considered properties of numbers of partitions practically
starting from nothing—just using multiplication of power series. It was Euler who
found a more subtle method for calculating coefficients of some products, using the
so called functional equations that these products satisfy. We shall illustrate this
method on an example.

Consider the question of partitions of a natural number into a given number of
distinct summands. In order to do this, Euler proposed to introduce a new variable
z and the series G(x, z) = (1 + z)(1 + xz)(1 + x2z)(1 + x3z) · · · . Expanding this
series in powers of z, we obtain the equality

(33) G(x, z) = 1 + u1(x)z + u2(x)z2 + · · ·+ um(x)zm + · · · ,

where ui(x) is a power series in variable x. Here the term um(x)zm contains the
terms obtained by multiplying m terms xiz from the product G(x, z), and so the
coefficient of xnzm is equal to the number of partitions of n into m distinct sum-
mands. In other words, um(x) is exactly the generating function of such partitions.

If we replace z in the product G(x, z) by xz, we obtain all the factors of G(x, z)
except the first one. Therefore

(34) G(x, z) = (1 + z)G(x, xz).
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This is a functional equation for the series G(x, z). On the other hand, replacing z
by xz in the series (33), we see that

G(x, xz) = 1 + u1(x)xz + u2(x)x2z2 + · · ·+ um(x)xmzm + · · · .

Multiplying this expression for G(x, xz) by 1+z, we obtain that um(x) = um(x)xm+
um−1(x)xm−1, wherefrom

(35) um(x) =
xm−1

1− xm
um−1(x).

Applying the same relation to um−1(x) and substituting into equality (35), we
obtain that

um(x) =
x(m−1)+(m−2)

(1− xm)(1− xm−1)
um−2(x).

Repeating this operation m times and taking into account that u0(x) = 1, we find
for um(x) the expression

(36) um(x) =
x(m−1)+(m−2)+···+1

(1− xm)(1− xm−1) · · · (1− x)
=

x
m(m−1)

2

(1− x)(1− x2) · · · (1− xm)
.

But we have already met the series
1

(1− x) · · · (1− xm)
(see formula (28)). This

is the generating function for the numbers of partitions into summands not ex-
ceeding m. Formula (36) shows that the number of partitions of number n into m

distinct summands is equal to the number of partitions of number n− m(m− 1)
2into arbitrary summands not exceeding m.

In connection with the generating function (29) Euler considered a logically
easier product

(37) (1− x)(1− x2)(1− x3) · · · .

This is a very interesting expression. We mentioned in Sec. 1 the analogy between
Gauss polynomials gk,l(x) and binomial coefficients. The analogy was based on
formula (7) in which the polynomial hm(x) was analogous to m!. Recall that

hm(x) = (1− x)(1− x2) · · · (1− xm).

From this point of view, product (37) is analogous to “factorial of infinity”. This
expression has no meaning for numbers or for polynomials, but it describes a com-
pletely determined expression if we use power series.

Euler expanded this expression up to the term x51 and obtained the expression

(1− x)(1− x2)(1− x3) · · · =
= 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + x51 + · · ·

He was shocked by the regularity he noticed: all coefficients are equal to 0, +1 or
−1. Moreover, the exponents of terms with nonzero coefficients form a sequence
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that was known to Euler: these are numbers of the form
n(3n + 1)

2
for n = −1, 1,

−2, 2, −3, 3, −4, 4, −5, 5, −6. These numbers attracted interest at the time, in
connection with the so called “figured numbers”, known from ancient times. For
example, a triangular number is the number of dots in a regular triangle with n+1
equally spaced dots along each side and height n (Fig. 2). Thus, these are the

numbers: 1, 3, 6, 10, . . . ,
n(n + 1)

2
, . . . . A square number is a number of equally

spaced dots in a square of side n (Fig. 3). In other words, these are simply exact
squares: n2.

Fig. 2 Fig. 3 Fig. 4

Pentagonal numbers are obtained starting from a regular pentagon. Put a
dot in one vertex, call it A, and add four dots to create a regular pentagon of
side 1. Then extend the two sides starting from A and complete a regular pentagon
of side 2. The n-th pentagonal number is equal to the number of dots after the
completion of the regular pentagon of side n − 1, Fig. 4. Consequently, the n-th
pentagonal number is equal to the sum of the arithmetic progression: 1 + 4 + 7 +

· · · + (3n − 2) =
3n2 − n

2
. By analogy, the numbers of the same kind but with

n = −m, i.e. the numbers
3m2 + m

2
, are also called pentagonal numbers.

Euler proposed for the product (1 − x)(1 − x2)(1 − x3) · · · an expression in

the form of a power series with terms (−1)nx
n(3n−1)

2 + (−1)nx
n(3n+1)

2 for n =
0, 1, 2, . . . . He referred to this as “an important observation which at this time I
cannot prove with geometric rigor”. We call such an observation a hypothesis. This
hypothesis was stated by Euler in 1741. He found the proof nine years later, in
1750. Because of its connection with pentagonal numbers, it is now called Euler’s
Pentagonal Theorem. Its proof is a bit more involved than arguments we have seen
so far, so we postpone it to the Appendix.

Euler’s Pentagonal Theorem gives new properties of numbers of partitions.
First of all, the product (1 − x)(1 − x2)(1 − x3) · · · is also a generating function.
Namely, analogously to expanding the product (31), each term xn is obtained from
some partition of n into distinct summands. But now this term enters with the
sign “+” if the number of summands is even, and with the sign “−” if this number
is odd. Thus, the coefficient of xn is equal to the difference between the number
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of partitions of n into even and odd number of distinct summands. Therefore, the
Pentagonal Theorem states:

The number of partitions of a natural number n into an even number of distinct
summands is equal to the number of its partitions into an odd number of distinct
summands, unless n is a pentagonal number, in which case the difference between

these two numbers is equal to (−1)m if n has the form
m(3m− 1)

2
for a positive

or negative integer m.
Another corollary of the Pentagonal Theorem is the following. Recall that

product (29) coincides with the series 1 + p(1)x + p(2)x2 + · · · , and the inverse

product (37) is, by Euler’s Theorem, the sum of terms of the form (−1)nx
n(3n±1)

2 .
Multiply these two series term by term (“terms of the first series are multiplied
by terms of the second one and similar terms are reduced”). The product is equal
to 1, i.e., to the series having all coefficients equal to 0, except the constant term
which is equal to 1. Write down the coefficient of xn (for n > 0) in the product
and equate it to 0. We obtain the relation

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + · · · = 0.

The terms of this sum are (−1)n(p(n−m1)+ p(n−m2)), where m1 =
m(3m− 1)

2
,

m2 =
m(3m + 1)

2
, including only those values of m1 and m2 that do not exceed

n, and p(0) is taken equal to 1. The relation expresses p(n) in terms of p(n′)
with values n′ < n and it gives a suitable method of evaluating the numbers p(n)
recurrently. For instance,

p(10) = p(9) + p(8)− p(5)− p(3),

p(9) = p(8) + p(7)− p(4)− p(2),

p(8) = p(7) + p(6)− p(3)− p(1),

p(7) = p(6) + p(5)− p(2)− 1,

p(6) = p(5) + p(4)− p(1),

p(5) = p(4) + p(3)− 1,

p(4) = p(3) + p(2),

p(3) = p(2) + p(1),

p(2) = p(1) + 1,

p(1) = 1,

wherefrom, going up from the bottom line, we obtain p(1) = 1, p(2) = 2, p(3) = 3,
p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15, p(8) = 22, p(9) = 30, p(10) = 42.

Problems

1. Denote by an the number of ways in which the sum of n cents can be formed
using 1, 5, 10 and 50 cent coins. Prove that the power series 1 + a1x + a2x

2 + · · ·
is equal to

1
p(x)

, where p is a polynomial, and find this polynomial.



Selected chapters from algebra 25

2. Do the same for the number an of ways in which a number n can be
decomposed into summands equal to given numbers k1, . . . , kr.

3. Prove that if in Problem 2 partitions that differ in the order of summands
are considered different, then the number of partitions of n into m summands is
equal to the coefficient of xn in (xk1 + · · · + xkr )m. Solve Problem 2 under these
new conditions.

4. Prove that each natural number n can be represented in 2n−1 ways as a
sum of natural summands, if partitions that differ in the order of summands are
considered different.

5. How many distinct monomials of degree m in n variables x1, . . . , xn

are there? [Hint : Represent the sum of all the monomials xr1
1 · · ·xrn

n in the form
1

p(x1, . . . , xn)
, where p(x1, . . . , xn) is a polynomial, and then put x1 = · · · = xn =

y.]

6. Put Fm =
1

(1− x)(1− x2) · · · (1− xm)
. The obvious relation Fm(1−xm) =

Fm−1 implies the equality Fm = Fm−1 + xmFm. Deduce that the number of
partitions of a number n into summands 1, . . . , m is equal to the sum of numbers
of such partitions of number n−m and the number of partitions of n to summands
1, 2, . . . , m− 1. What relation holds for n = m?

Note that the number of partitions of n into summands 1, 2, . . . , m is equal
to Pn,m(n) in the notation of Sec. 1. Hence, the relation obtained is a consequence
of equality (2) of Sec. 1 (for which values of k, l, n?). But this time it is obtained
without any arguments about partitions, but using exclusively properties of power
series.

7. Euler was attracted to the theory of partitions by a German mathematician
called Node. In a letter Node asked: how can the number of partitions for an
arbitrary large number n be determined? For example, what is the number of
partitions of 50 into summands not exceeding 7? Or into 7 summands? Euler
answered Node’s question in 2 weeks, showing the connection of this problem with
power series. He published his results half a year later. In particular, he deduced the
relation mentioned in Problem 6, and found the sequence of numbers of partitions,
starting from small n and m, up to n = 69 and m = 11.

Try to reconstruct Euler’s argument and make a table for numbers of partitions
of 1, 2, . . . , 49, 50 into summands not exceeding 1, 2, . . . , 7. Prove that the number
of partitions of 50 into summands not exceeding 6 is equal to 18138, and that the
number of partitions of 50 into 7 distinct summands is 522. [Hint : Use also a
relation following from formula (36).]

8. Prove that the number of partitions of n in which only odd summands can
be equal to each other is equal to the number of partitions in which each sum-
mand appears at most 3 times. [Hint : Represent both numbers of partitions using
generating functions which are expanded into infinite products of prime factors.]
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9. Represent the product (1 + xz)(1 + x2z)(1 + x2z)(1 + x8z) · · · as a series
1 + u1(x)z + u2(x)z2 + · · · and find uk(x).

10. Represent the power series (1 − xz)−1(1 − x2z)−1(1 − x3z)−1 · · · in the
form 1 + v1(x)z + v2(x)z2 + · · · and find vk(x). [Hint : Use a functional equation
for this series.]

Use the obtained result to deduce a relation between numbers of partitions, as
it was done with formula (36).

APPENDIX I

Euler’s Pentagonal Theorem

There are several different proofs of Euler’s theorem, and he we shall present
two of them. We start with the proof derived by Euler himself. It is a remarkable
piece of pure algebra. It does not use anything but multiplying brackets and group-
ing the terms, but these operations have to be so finely combined that Euler himself
found the proof nearly ten years after he formulated the Theorem as a hypothesis.

The idea of the proof is very natural. We shall expand, step by step, the
product

(1) (1− x)(1− x2)(1− x3) · · · (1− xn) · · · ,

representing it in each step as a sum of a polynomial of degree N and an expression
divisible by xN+1, where N increases with each step. Thus, we shall evaluate partial
sums of the expansion of product (1) into a power series.

Let us start with a finite product (1− a1)(1− a2) · · · (1− an). Removing the
last bracket, we shall write it in the form

(1− a1)(1− a2) · · · (1− an) =

= (1− a1)(1− a2) · · · (1− an−1)− an(1− a1)(1− a2) · · · (1− an−1).

Now the same method can be applied to the first summand, and it divides into
the product of n− 2 factors (1− a1)(1− a2) · · · (1− an−2) and the term −an−1×
(1 − a1)(1 − a2) · · · (1 − an−2). Next, the term (1 − a1)(1 − a2) · · · (1 − an−2) is
transformed in the same manner, and we can produce n− 1 such transformations,
until we finish with the term (1− a1). As a result we obtain the identity

(2) (1− a1)(1− a2) · · · (1− an) = 1− a1 − a2(1− a1)−
− a3(1− a1)(1− a2)− · · · − an(1− a1)(1− a2) · · · (1− an−1).

Identity (2) can be applied to the infinite product (1 − u1) · · · (1 − un) · · · ,
where ui(x) are power series, starting with larger and larger degrees of x: we shall
apply such reasoning to the case when un = xn, so that the “series” starts with the
term of degree n (and finishes with it). We obtain the identity
(3)
(1−u1)(1−u2) · · · (1−un) · · · = 1−u1−u2(1−u1)−· · ·−un(1−u1) · · · (1−un−1)−· · · .
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Really, if we consider the terms of degree not exceeding n, then on the left-hand
side we can eliminate all factors starting from the (n+1)-st, and on the right-hand
side all the summands starting from the (n+1)-st, since they do not contain terms
of degree not exceeding n. But then we obtain identity (2) with ai = ui. That is,
the terms of degree not exceeding n on the left and on the right coincide. Since it
holds for each n, identity (3) is true.

Substituting in relation (3) ui = xi, we obtain the equality

(4) (1− x)(1− x2) · · · (1− xn) = 1− x− x2(1− x)−
− x3(1− x)(1− x2)− · · · − xn(1− x) · · · (1− xn−1)− · · · .

This is the first step in our chain of transformations. Denote the product
(1− x) · · · (1− xn) · · · by P0, take out x2 from all the terms except the first two in
equality (4), and put

P1 = 1− x + x(1− x)(1− x2) + · · ·+ xm(1− x) · · · (1− xm+1) + · · · .

Then the equality (4) takes the form

(5) P0 = 1− x− x2P1.

Transform now P1. Write it in the form

P1 = Q0 + Q1 + . . . Qk + · · · ,

where Qk = xk(1−x)(1−x2) · · · (1−xk+1). Remove the first bracket in the product
Qk. We obtain the equality which can be written as Qk = Ak −Bk, where

Ak = xk(1− x2)(1− x3) · · · (1− xk), A0 = 1,

Bk = xk+1(1− x2)(1− x3) · · · (1− xk+1), B0 = x.

Expression P1 can be written as

(6) P1 = A0 −B0 + A1 −B1 + · · ·+ Ak −Bk + · · · .

Note now that, for k > 2, the expression Ak − Bk−1 can be written more
simply:

Ak −Bk−1 = xk(1− x2) · · · (1− xk+1)− xk(1− x2) · · · (1− xk) = −x2k+1Ck−2,

where Ck = (1− x2) · · · (1− xk+2), k > 2, C0 = 1− x2, and so

Ck−2 = (1− x2)(1− x3) · · · (1− xk).

Writing the expansion (6) in the form

P1 = A0 −B0 + A1 + (−B1 + A2) + (−B2 + A3) + · · ·+ (−Bk−1 + Ak) + · · · ,

we obtain the representation P1 = 1−x+x(1−x2)−x5C0−x7C1−· · ·−x2k+5Ck−· · · .
This can also be written as

(7) P1 = 1− x3 − x5P2,
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where P2 = C0 + x2C1 + · · ·+ x2kCk + · · · , or, in expanded form,

P2 = 1− x2 + x2(1− x2)(1− x3) + · · ·+ x2k(1− x2)(1− x3) · · · (1− xk+2) + · · · .

The main part of the proof is now finished. Equalities (5) and (7) give us a basis
for inductively expanding product (1) and finding partial sums with greater and
greater degrees. It remains to formulate the process of passing from the n-th step
to the (n + 1)-st and to write down the result.

Put

Pn = 1− xn + xn(1− xn)(1− xn+1) + x2n(1− xn)(1− xn+1)(1− xn+2)

+ · · ·+ xkn(1− xn)(1− xn+1) · · · (1− xn+k) + · · · .

Transform this expression in the same way as we have done with P1. Put xkn(1−
xn)(1− xn+1) · · · (1− xn+k) = Qk. Then P0 = Q0 + Q1 + · · ·+ Qk + · · · . Expand
in the product Qk the first bracket: Qk = Ak −Bk,

Ak = xnk(1− xn+1) · · · (1− xn+k), Bk = xn(k+1)(1− xn+1) · · · (1− xn+k).

Consider the difference Ak −Bk−1 for k > 2:

Ak −Bk−1 = xnk(1− xn+1) · · · (1− xn+k−1)(−xn+k)

= −xnk+n+k(1− xn+1) · · · (1− xn+k−1) = (−xnk+n+k)Ck−2,

where Ck = (1−xn+1) · · · (1−xn+1+k), k > 0. The exponent nk+n+k of the power
of x that divides Ck−2 can be written in the form nk+n+k = (n+1)(k−2)+3n+2.
Hence, Pn can be written as

Pn = A0 −B0 + A1 + (−B1 + A2) + · · ·+ (−Bk−1 + Ak) + · · ·
= A0 −B0 + A1 + (−x3n+2)(C0 + xn+1C1 + x2(n+1)C2 + · · · ).

The sum

C0 + C1 + C2 + · · · =
= 1−xn+1+xn+1(1−xn+2)+· · ·+xk(n+1)(1−xn+2)(1−xn+3) · · · (1−xn+1+k)+· · ·
coincides, by definition, with Pn+1. A0−B0+A1 = 1−xn+xn−x2n+1 = 1−x2n+1.
As a result we obtain the relation

(8) Pn = 1− x2n+1 − x3n+2Pn+1.

Our process of expanding product (1) into a series has been completely de-
scribed. It remains to see what comes out as a result. Express Pn−1 in terms of
Pn, and substitute expression (8) for Pn. We obtain

Pn−1 = 1− x2n−1 − x3n−1(1− x2n+1 − x3n+2Pn+1).

In the same manner express Pn−2 in terms of Pn−1 and substitute the above ex-
pression for Pn−1. We obtain

Pn−2 = 1− x2n−3 − x3n−4(1− x2n−1 − x3n−1(1− x2n+1 − x3n+2Pn+1)).
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In n steps we come to P0 and obtain an expression containing pairs of summands
1 − x2n+1 with alternating signs, while the expression 1 − x2n+1 enters with the
sign (−1)n. Each expression of this kind has to be multiplied by a certain power
of x. Namely, when passing from Pn to Pn−1 there appears the factor x3n−1, when
passing from Pn−1 to Pn−2—the factor x3n−4, etc. As a result, the sum 1− x2n+1

will enter into the expression for P0 with the factor x2+5+···+(3n−1). The exponent of

this power is the sum of an arithmetic progression 2+5+ · · ·+(3n−1) =
3n2 + n

2
.

Thus, product (1) is equal to the sum of terms (−1)nx
3n2+n

2 (1 − x2n+1). We

see that
3n2 + n

2
is the pentagonal number corresponding to the value n, and

3n2 + n

2
+ 2n + 1 =

3(n + 1)2 − (n + 1)
2

is the pentagonal number corresponding
to the value −(n + 1). Therefore the product (1) is equal to the sum of terms

(−1)nx
3n2+n

2 for n = 0,−1, 1,−2, 2, etc. This is exactly the assertion of Euler’s
Theorem.

Note that we could skip deducing the expression for P1 by the use of P2 (i.e.,
formula (7)) and only deduce formula (8), since formula (7) is its special case for
n = 1. We made the same argument twice, just to make the logic of our reasoning
clearer.

We shall present now the second proof of the Pentagonal Theorem. It is based
on an identity found in XIX century by Gauss and Jacobi. It is concerned with
evaluating the infinite product

(9) (1 + xz)(1 + xz−1)(1 + x3z)(1 + x3z−1) · · · (1 + x2n−1z)(1 + x2n−1z−1) · · · ,

where the powers of x run through all odd numbers. This is an expression of a
more complicated nature than we met earlier, because there are negative, as well
as positive powers of z in it. We shall first convince ourselves that this expression
has a meaning in the same manner as an infinite product of power series. If we
consider the first n factors in product (9), then we obtain the expression

(10) (1 + xz)(1 + xz−1)(1 + x3z)(1 + x3z−1) · · · (1 + x2n−1z)(1 + x2n−1z−1),

being a usual algebraic fraction. Removing all parentheses, we obtain terms of the
form xmzr, where m takes positive values, and r both positive and negative. If we
consider the following factors of product (9), then after removing the parentheses
there will appear only terms containing x with powers greater than 2n. Thus, the
coefficient of zr will be a power series in x, and to evaluate its terms with degrees
not exceeding 2n, it is sufficient to consider the finite product (10). Hence, after
expanding, infinite product (9) will be a sum of expressions Ar(x)zr, where Ar(x)
are power series in x, and r takes all integer values. But, taking into account the
symmetry of expression (9) with respect to z and z−1, the expression obtained after
expanding will also be symmetric, and so the coefficient Ar(x)zr of zr, r > 0, will
be equal to the coefficient A−r(x) of z−r. As a result, the whole product (9) can
be written in the form

(11) A0(x) + A1(x)(z + z−1) + · · ·+ Ar(x)(zr + z−r) + · · · .
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Our task is in fact to evaluate the power series A0(x), A1(x), . . . We shall do this
in two steps.

The first step is completely analogous to the reasoning used in Sec. 3. Denote
product (9) by F (z) and replace z with x2z, i.e., consider F (x2z). Each factor
1+x2k−1z or 1+x2k−1z−1, when z is replaced by x2z, will give a factor 1+x2k+1z
or 1+x2k−3z−1 of similar kind. Thus, factors in F (z) only change their places and
this product will not change, except that:

a) there will be no factor 1 + xz (all factors 1 + x2k+1z will have exponents
2k + 1 > 3);

b) from the factor 1+xz−1 there will appear a factor 1+x−1z−1 which wasn’t
there before.

All this can be written as one formula

F (x2z)
1 + xz

1 + x−1z−1
= F (z).

But, obviously,
1 + xz

1 + x−1z−1
= xz and we can write this formula as

(12) F (x2z)xz = F (z).

Recall now that we can consider the product F (z) in the form (11) and apply
relation (12) to this representation. We obtain

(A0(x) + A1(x)(x2z + x−2z−1) + · · ·+ Ar(x)(x2rzr + x−2rz−r) + · · · )xz =

= A0(x) + A1(x)(z + z−1) + · · ·+ Ar(x)(zr + z−r) + · · · .

Equate the terms containing zr. On the left-hand side they are obtained from the
term containing zr−1, after multiplying by xz. That is, from the term
Ar−1(x)x2(r−1)zr−1 after multiplying by xz. On the right-hand side—from the
term containing zr, i.e., from Ar(x)zr. As a result we obtain that

Ar−1(x)x2r−1 = Ar(x).

We see that all series Ar(x) are expressed in terms of each other. In particular,
(13)

Ar(x) = x2r−1Ar−1(x) = x2r−1+2r−3Ar−2(x) = · · · = x2r−1+2r−3+···+1A0(x).

In the exponent of x, there is the sum of the first r odd numbers, 1 + 3 + · · · +
(2r − 1) = r2. So, we can rewrite relation (13) as

Ar(x) = xr2
A0(x).

It is possible to prove that considering the terms with negative powers of z gives
the relation of the same kind, but we shall not do that here.

We see that the factor A0(x) can be taken out of the whole expression (11)
and we obtain for our product (9) a very elegant expression
(14)
(1 + xz)(1 + xz−1)(1 + x3z)(1 + x3z−1) · · · (1 + x2r−1z)(1 + x2r−1z−1) · · · =

= A0(x)(1 + x(z + z−1) + · · ·+ xr2
(zr + z−r) + · · · ),

but the factor A0(x) in it still remains undetermined.
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The given argument follows completely the method applied in Sec. 3 for eval-
uating product (33). But there we had a (constant) term known in advance and
all other terms could be expressed in terms of it. In the present case there is no
such term and so there appears the factor A0(x) in formula (14) which still has to
be determined.

So we pass now to the second step of our proof—evaluating the series A0(x).
Recall that, in order to find the terms of that series not exceeding 2n, it is enough
to consider finite product (10). Some of the coefficients in it can be found explicitly.
For example, the coefficient of zn is obtained if the summand x2r−1z is taken from
all parentheses of the form 1+x2r−1z, and the summand 1 is taken from parentheses
1+x2r−1z−1. As a result we obtain the term x1+3+···+(2n−1)zn = xn2

zn. Applying
the same method as in the first step of the proof, we can express all terms using
this one, and so A0(x) can be expressed in the same terms. This is in fact our plan
of proof.

Denote product (10) (for some fixed n) by f(z) and replace again z by x2z. We
obtain more changes this time than with the same transformation of product (9).
Namely, there appear, as before, changes in the beginning of the product: there
will be no factor 1 + xz in f(x2z) and there is a new factor 1 + x−1z−1 which did
not appear in f(z). Moreover, there will be changes at the end of product (11):
a new factor 1 + x2n−1 · x2z = 1 + x2n+1z appears, and the factor 1 + x2n−1z−1

vanishes (after the substitution of x2z instead of z, the exponent of x gets smaller).
The rest of the factors in f(x2z) and f(z) will be the same. We again obtain a
relation between them, only this time a little bit more complicated:

(15) f(x2z)
1 + xz

1 + x−1z−1

1 + x2n−1z−1

1 + x2n+1z
= f(z).

As we have seen,
1 + xz

1 + x−1z−1
= xz, xz(1+x2n−1z−1) = xz +x2n and relation (15)

acquires the form

(16) f(x2z)(xz + x2n) = f(z)(1 + x2n+1z).

Represent now f(z) in the form of a power series in z and z−1:

(17) f(z) = a0(x) + a1(x)(z + z−1) + · · ·+ an(x)(zn + z−n),

and substitute this expression into relation (16):

(a0(x) + a1(x)(x2z + x−2z−1) + · · ·+ an(x)(x2nzn + x−2nz−n))(xz + x2n) =

= (a0(x) + a1(x)(z + z−1) + · · ·+ an(x)(zn + z−n))(1 + x2n+1z).

Equate coefficients of zr on both sides of the equality (taking r > 1). On the left-
hand side, such term is obtained from the term containing zr−1, after multiplying
by xz and from the term containing zr after multiplying by x2n. On the right-
hand side such term is obtained from the term containing zr−1 after multiplying
by x2n+1z, and from the term containing zr after multiplying by 1. As a result we
obtain the relation

ar−1(x)x2r−1 + ar(x)x2r+2n = ar−1(x)x2n+1 + ar(x).
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Written in another way,

(18) ar−1(x)x2r−1(1− x2n−2r+2) = ar(x)(1− x2n+2r).

Relation (18) gives enables us to express coefficients ar(x) in terms of each other.
For example,

ar(x) =
ar−1(x)x2r−1(1− x2n−2r+2)

1− x2n+2r
.

Replacing in (18) r by r − 1, we express in the same manner ar−1(x), and substi-
tuting it we obtain

ar(x) =
ar−2(x)x2r−1+2r−3(1− x2n−2r+2)(1− x2n−2r+4)

(1− x2n+2r)(1− x2n+2r−2)
.

Repeating the process r times, we obtain in the numerator the power of x equal to
x(2r−1)+(2r−3)+···+1 = xr2

. Therefore,

ar(x) = a0(x)xr2 (1− x2n−2r+2)(1− x2n−2r+4) · · · (1− x2n)
(1− x2n+2r)(1− x2n+2r−2) · · · (1− x2n+2)

.

Since we know the coefficient an(x) (it is equal to xn2
), we put in the last relation

r = n:

xn2
= a0(x)xn2 (1− x2)(1− x4) · · · (1− x2n)

(1− x2n+2) · · · (1− x4n)
.

This can be written in the form

(19) a0(x) =
(1− x2n+2) · · · (1− x4n)

(1− x2)(1− x4) · · · (1− x2n)
.

Recall now how we have started deducing this result: in order to find the
coefficients by powers of x not exceeding 2n in product (9), it is sufficient to find
these terms in the finite product (10). In particular, it relates to the terms entering
A0(x): for exponents not exceeding 2n they coincide with the respective terms
in a0(x). But, in the numerator of formula (19) all powers of x are greater than
2n. Hence, when evaluating the terms with degrees not exceeding 2n, they can be
eliminated, and we see that in the series A0(x) the terms with powers not exceeding
2n are the same as in the series

1
(1− x2)(1− x4) · · · (1− x2n)

.

Our conclusion is valid for each n. This proves that

A0(x) =
1

(1− x2)(1− x4) · · · (1− x2n) · · · ,

where in the denominator binomials 1−x2n with all natural n are multiplied. Taken
together with formula (14) it determines product (9) completely. Multiplying by
the denominator and rearranging (the legitimacy of this operation was discussed in
Sections 2 and 3), we obtain the relation

(20) (1 + xz)(1 + xz−1)(1− x2) · · · (1 + x2n−1z)(1 + x2n−1z−1)(1− x2n) =

= 1 + x(z + z−1) + x4(z2 + z−2) + · · ·+ xn2
(zn + z−n) + · · · ,

which is in itself very elegant.
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The Pentagonal Theorem is a consequence of identity (20). Really, put x = y3,
and z = −y. Then, on the left, 1 − x2n = 1 − y6n, 1 + x2n−1z = 1 − y6n−2,
1−x2n−1z−1 = 1−y6n−4, i.e., on the left-hand side of identity (20) products 1−yn

with all even natural n appear. On the right, the term xn2
zn gives (−1)ny3n2+n,

and the term xn2
z−n gives (−1)ny3n2−n. We obtain, both on the left and on the

right, series containing just even powers of y. Thus, we can put y2 = t. As a result,
on the left we obtain the product of all factors 1 − tn with natural n, and on the

right the sum of terms (−1)nt
3n2±n

2 . This equation is the Pentagonal Theorem.

Problems

1. Find the representation of the product

(1− x)2(1− x2)(1− x3)2(1− x4) · · · (1− x2n+1)2(1− x2n+2) · · ·
as a series.

2. Do the same for the product

(1 + x)2(1− x2)(1 + x3)2(1− x4) · · · (1 + x2n+1)2(1− x2n+2) · · · .

3. Prove the identity

(1−x2)(1+x)(1−x4) · · · (1+xn)(1−x2n+2) · · · = 1+x+x3+x6+· · ·+x
n(n+1)

2 +· · · .

4. Prove the identity

(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x3)(1− x5) · · · = 1 + x + x6 + · · ·+ x

n(n+1)
2 + · · · .

APPENDIX II

The generating function for Bernoulli numbers

Consider a remarkable power series

(1) e(x) = 1 +
x

1!
+

x2

2!
+ · · ·+ xn

n!
+ · · · .

It is possible to prove that numbers can be substituted for x, an hence define an
important function: it is possible to prove that e(x) = ex, where e is the base of the
natural logarithm. We shall stay with the purely algebraic theory of power series.
Nevertheless, we shall show that the series e(x) possesses some properties of the
exponential function. Introduce a new variable y and consider the series e(y) and
e(x + y). We shall prove the identity

(2) e(x + y) = e(x)e(y).
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Really, replace x by x + y in formula (1). The term of degree n will have the form
1
n! (x + y)n. Expand (x + y)n using the binomial formula and use the expressions
for binomial coefficients that we found in Sec. 3, Ch. II (formula (24)):

1
n!

(x + y)n =
xn

n!
+

xn−1

(n− 1)!
y

1!
+

xn−2

(n− 2)!
y2

2!
+ · · ·+ yn

n!
.

This is the sum of expressions of the form
xk

k!
yn−k

(n− k)!
for k = n, n − 1, . . . , 0,

i.e., the sum of products of the term of degree k in the series e(x) and the term
of degree n − k in the series e(y). But, this is exactly the term of degree n in the
series e(x)e(y). This proves formula (2).

Essentially, formula (2) is equivalent to the binomial formula and it contains
in itself all binomial formulas for all values of n.

Using this important property of the series e(x) we can construct new types
of generating functions. Let a be a sequence (α0, α1, . . . , αn, . . . ). Introduce the
series

e(ax) = α0 +
α1x

1!
+

α2x
2

2!
+ · · ·+ αnxn

n!
+ · · · .

It is called the factorial generating function of the sequence a. If addition of
sequences is defined term by term, i.e., if for a = (α0, α1, . . . , αn, . . . ) and b =
(β0, β1, . . . , β, . . . ), a + b = (α0 + β0, α1 + β1, . . . , αn + βn, . . . ), then,

(3) e((a + b)x) = e(ax) + e(bx).

We extend to power series notation introduced in the Appendix to Chapter II.
Namely, if f(t, x) = f0(t) + f1(t)x + · · · + fn(t)xn + · · · is a power series whose
coefficients are polynomials, and a is a sequence, put

f(a, x) = f0(a) + f1(a)x + · · ·+ fn(a)xn + · · · .

The meaning of the expression f(a) when f(t) is a polynomial was defined in the
Appendix of Ch. II: if f(t) = a0 + a1t + · · · + amtm and a = (α0, α1, . . . , αn, . . . ),
then f(a) = a0 + a1α1 + · · · + amαm. In this notation, the factorial generating
function of a sequence a is written as e(ax). It is easy to see that an analogue of
relation (2) holds:

(4) e((α + a)x) = e(αx) · e(ax).

Here α is a number, a = (α0, α1, . . . , αn, . . . ) a sequence, and α + a denotes the
sequence (α0 +α, α1 +α, . . . , αn +α, . . . ). The proof is the same as for relation (2).

The term of degree n on the left-hand side is by definition equal to
1
m!

(α + a)m,

i.e., to the sum of terms
1
m!

m!
k! (m− k)!

αkαn−kxn =
1
k!

αkxk 1
(n− k)!

αn−kxn−k.

But this is the product of the term of degree k in e(αx) with the term of degree
n − k in e(ax). By the definition of multiplication of power series, the sum of
all these terms is the term of degree n in the product e(αx)e(ax). This proves
relation (4).
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Let us find, using the above formulae, the factorial generating function for the
sequence of Bernoulli numbers B = (B0, B1, . . . , Bn, . . . ). Recall that Bernoulli
numbers are defined by the relation
(5) (B + 1)m −Bm = m, m = 1, 2, . . .

Consider the factorial generating functions of the three sequences entering rela-
tion (5). These are the sequence (1 + B)m, the sequence Bm and the sequence
(0, 1, . . . , n, . . . ) (formed by the right-hand sides). Denote the last sequence by N .
Using property (3), we can write down all relations (5) in the form
(6) e((1 + B)x)− e(Bx) = e(Nx),
and using property (4), e((1 + B)x) = e(x)e(Bx). It remains to find the series
e(Nx). Its term of degree n is equal to n

n!x
n = 1

(n−1)!x
n−1 · x. Therefore, e(Nx) =

xe(x) and relation (6) acquires the form e(Bx)(e(x)− 1) = xe(x), wherefrom

(7) e(Bx) =
xe(x)

e(x)− 1
.

This is the form of the factorial generating function for Bernoulli numbers. Note
that in the denominator there is the series e(x)− 1, with the constant term equal
to 0. The factor x can be taken out of this series, and then cancelled with the same
factor in numerator, and the remaining power series has the constant term equal
to 1 and so it has the inverse by Theorem 1 (Sec. 2).

All the properties of Bernoulli numbers can be easily deduced from this form
of the generating function. Let us prove, for example, that all Bernoulli numbers
with odd indices are equal to 0, except for B1 (Problem 3 in Appendix to Ch. II).
As we know, B1 = 1/2 (this follows easily from formula (6)). Thus, our assertion
means that the series e(Bx) − x

2 contains just terms with even powers of x. If we
replace x in a power series f(x) by −x, then the terms with even powers of x do
not change, and the terms with odd powers change sign. The fact that there are
only terms with even degrees in the power series f(x) is equivalent to the fact that
f(−x) = f(x).

Thus, we have to convince ourselves that the series e(Bx)− x
2 does not change

when x is replaced by −x. Using expression (7) for the series e(Bx), we obtain that
our assertion is equivalent to the identity

xe(x)
e(x)− 1

− x

2
=
−xe(−x)
e(−x)− 1

+
x

2
.

This equality can be cancelled by x and 1
2 can be transferred to the left-hand side.

Denote e(x) by u. According to identity (2), e(−x) = u−1. Our equality acquires

the form
u

u− 1
− 1 =

u−1

u−1 − 1
, which is evident.

Let us now demonstrate a connection between Bernoulli numbers and the sums
of powers of consecutive natural numbers Sm(n) = 1m + 2m + · · · + nm. In the
Appendix to Ch. II the formula Sm(n) = 1

m+1 ((B + n)m+1 −Bm+1) was obtained,
which, replacing m by m− 1, can be written as

(8) Sm−1(n) =
1
m

((B + n)m −Bm).

Let us show this in a different way.
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Consider the factorial generating function of the sequence (B + n)m − Bm

(for fixed n). Using property (3) it can be written in the form e((B + n)x) −
e(Bx). According to identity (4), this series is equal to e(Bx)e(nx) − e(Bx) =
e(Bx)(e(nx) − 1). It follows from property (3) (by induction on n) that e(nx) =
e(x)n. Substituting this value into expression (7) for e(Bx), we can write our series

in the form xe(x)
e(x)n − 1
e(x)− 1

. According to identity (12) of Ch. I we have

e(x)n − 1
e(x)− 1

= 1 + e(x) + · · ·+ e(x)n−1

and therefore

xe(x)
e(x)n − 1
e(x)− 1

= x(e(x) + · · ·+ e(x)n).

Replacing again e(x)k by e(kx) for all k = 1, . . . , n (by property (3)), we obtain

xe(x)
e(x)n − 1
e(x)− 1

= x(e(x) + e(2x) + · · ·+ e(nx)).

Let us find the coefficient of xm in the series on the right. It is equal to the
coefficient of xm−1 in the series e(x) + e(2x) + · · ·+ e(nx). In e(kx), the coefficient

of xm−1 is equal to
km−1

(m− 1)!
, and in the whole sum, to the expression

1
(m− 1)!

+
2m−1

(m− 1)!
+ · · ·+ nm−1

(m− 1)!
=

Sm−1(n)
(m− 1)!

.

Put αm = (B + n)m −Bm and denote the sequence (α0, α1, . . . , αn, . . . ) by a. We

have proved that the coefficient of xm in the series e(ax) is equal to
Sm−1(n)
(m− 1)!

. By
the definition, it is equal to

αm

m!
. Therefore

αm

m!
=

Sm−1(n)
(m− 1)!

,

wherefrom identity (8) follows immediately.

Problems

1. Define the sequence B′
n, where B′

1 = − 1
2 , B′

n = Bn for n > 2. Prove that

the factorial generating function of the sequence B′
n has the form e(B′t) =

t

et − 1
.

Prove for the sequence B′
n the relation (B′ + 1)m = B′

m for m > 2.

2. Check the relation e((B − 1
2 )x) = 2e(B x

2 )− e(Bx).

3. Prove that for m even, Bernoulli polynomial Bm(x) has a root x = − 1
2 .

[Hint . Use Problems 2 and 3 in Appendix of Ch. II.]
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