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Abstract. By the use of convenient metrics, the ordered set of natural numbers
plus an ideal element and the partially ordered set of all partitions of an interval plus
an ideal element are converted into metric spaces. Thus, the three different types of
limit, arising in classical analysis, are reduced to the same model of the limit of a
function at a point. Then, the theorem on interchange of iterated limits, valid under
the condition that one of the iterated limits exists and the other one exists uniformly, is
used to derive a long sequence of statements of that type that are commonly present in
the courses of classical analysis. All apparently varied conditions accompanying such
statements are, then, unmasked and reduced to one and the same: one iterated limit
exists and the other one exists uniformly.
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1. Introduction

The simple concept of metric space proves as a convenient setting for a unifica-
tion of different types of convergence and continuity that arise in classical analysis.
For this reason, this concept finds its place in the contents of the first contemporary
courses of mathematical analysis. Particularly, by replacing the absolute value with
a distance function, immediate generalizations of conditions determining classical
concepts of convergence and continuity are obtained.

Due to different terms, the following three types of limit are present in the
classical analysis

lim an, lim f(x), lim σ(f, P ),

being respectively: the limit of a sequence, the limit of a function at a point and the
limit of integral sums. To have them as particular cases of a more general concept
of limit, generalized sequences (nets) or filters are used (and they are not common
topics on the list of themes for the first courses in analysis).

Our idea of integrating these different types of limit is based on the procedure
of introducing metric on the set N of natural numbers together with an ideal point
and on the set of all partitions of an interval together with an ideal point. Then, the
model of the limit at a point of a function mapping a metric space into another one
embraces all three types of limit present in the classical analysis. Then, our main
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objective in this paper is to use (and prove) a theorem on the interchange of two
limits under the condition that one of them exists and the other one exists uniformly.
Relying on this theorem, we derive proofs of a (long) sequence of statements on
interchange of two limits that are commonly present in the analysis courses.

The effects of such an approach are also seen in the fact that an apparent-
ly varied set of conditions associated with these particular statements translates
uniquely into the requirement: one of the two limits exists and the other one exists
uniformly.

Now we turn our attention to the history of the 19th century mathematics
to recall how the concept of uniform convergence, though used explicitly, did not
become a common property for a longer time. In his famous Course d’analyse,
(l821), Cauchy (A-L. Cauchy, 1789–1857) made a misstep with respect to rigor,
stating that the sum of a convergent series of continuous functions is a continuous
function. In 1826, Abel (N. H. Abel, 1802–1829) restricted this statement to the
case of uniform convergence, giving a correct proof of it (Jour. für Math. 1, 311–
339), but not isolating the property of uniform convergence. Both men, Stokes
(G. G. Stokes, 1819–1903) (Trans. Camb. Phil. Soc., 85, 1848) and Seidel (Ph. L.
von Seidel, 1821–1896) (Abh. der Bayer. Akad. der Wiss., 1847/49) recognized the
distinction between uniform and point-wise convergence and the significance of the
former in the theory of infinite series. Further on, from a letter of Weierstrass (K.
Weierstrass, 1815–1897) (unpublished till 1894 (Werke)) it is seen that he must
have drawn this distinction as early as 1841. Nevertheless, Cauchy was the first to
recognize ultimately the uniform convergence as a property assuring the continuity
of the sum of a series of continuous functions (Comp. Rend., 36, 1853). It was
Weierstrass who used first the concept of uniform convergence as a condition for
term by term integration of a series as well as for differentiation under the integral
sign. Through the circle of his students the importance of this concept was made
widely known.

At the end, let us note that, when preparing this paper, we used an unpublished
manuscript of the second author.

2. Iterated limits

Let A be a nonempty subset of a metric space (M1, d1) and B a nonempty
subset of a metric space (M2, d2). Let f : A × B → M be a mapping into a
complete metric space (M,d). Denote by X ′ the set of accumulation points of a
subset X of a metric space. Note that A′ × B′ ⊂ (A × B)′, which follows from

(x0, y0) ∈ A′ × B′

⇐⇒ (∀ε > 0) {[K(x0, ε) \ {x0}] ∩ A �= ∅ and [K(y0, ε) \ {y0}] ∩ B �= ∅}
=⇒ (∀ε > 0) [K(x0, ε) × K(y0, ε) \ {(x0, y0)}] ∩ A × B �= ∅

⇐⇒ (x0, y0) ∈ (A × B)′.
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Let x0 ∈ A′ and y0 ∈ B′. A limit lim
y→y0

f(x, y) = ϕ(x) exists for each x ∈ A if

the following condition holds:

(∀x ∈ A)(∀ε > 0)(∃δ > 0)(∀y ∈ B)(0 < d2(y, y0) < δ =⇒ d(f(x, y), ϕ(x)) < ε);

and one can formulate similarly the condition for the existence of lim
x→x0

f(x, y) =

ψ(y). Let us strengthen this condition demanding that the number δ does not
depend on x. Practically, this means that the quantifier (∀x ∈ A) has to be
placed after the quantifier (∃δ > 0). Thus we obtain that lim

y→y0
f(x, y) = ϕ(x)

exists uniformly in x ∈ A if

(∀ε > 0)(∃δ > 0)(∀x ∈ A)(∀y ∈ B)(0 < d2(y, y0) < δ =⇒ d(f(x, y), ϕ(x)) < ε);

and the condition for the existence of lim
x→x0

f(x, y) = ψ(y), uniformly in y ∈ B is
formulated similarly.

Cauchy condition for the existence of the lim
y→y0

f(x, y) = ϕ(x), uniformly in
x ∈ A is

(∀ε > 0)(∃δ > 0)(∀x ∈ A)(∀y′ ∈ B)(∀y′′ ∈ B)

0 < d2(y′, y0) < δ and 0 < δ2(y′′, y0) < δ =⇒ d(f(x, y′), f(x, y′′)) < ε.

Since the space (M,d) is assumed to be complete, it is clear that this condition
is necessary and sufficient for the existence of lim

y→y0
f(x, y) = ϕ(x), uniformly in

x ∈ A.
Writing formally,

lim
x→x0

ϕ(x) = lim
x→x0

( lim
y→y0

f(x, y)),

lim
y→y0

ψ(x) = lim
y→y0

( lim
x→x0

f(x, y)),

we call these expressions iterated limits (which, of course need not exist). In the
sequel, we shall omit additional parentheses. In this context, the expression

lim
(x0,y0)

f(x, y)

is called double limit (and it may equally be non-existent).
A general connection between the mentioned limits is given by the following

Proposition 1. Let f : A × B → M be a function from a subset A × B ⊂
M1 ×M2 into M and (x0, y0) ∈ A′ ×B′, where M1, M2 and M are metric spaces.
If
(i) lim

(x0,y0)
f(x, y) = α exists,

(ii) for each y ∈ B, lim
x→x0

f(x, y) = ψ(y) exists,

then lim
y→y0

ψ(y) exists and is equal to α.
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Proof. Condition (i) implies that

(∀ε > 0)(∃δ > 0)(∀(x, y) ∈ A × B)

(x, y) ∈ K(x0, δ) × K(y0, δ) \ {(x0, y0)} =⇒ d(f(x, y), α) <
ε

2
.

According to (ii), using the continuity of function d, there exists

lim
x→x0

d(f(x, y), α) = d(ψ(y), α) � ε

2
.

Thus,

(∀ε > 0)(∃δ > 0)(∀y ∈ B) y ∈ K(y0, δ) \ {y0} =⇒ d(ψ(y), α) < ε,

which means that lim
y→y0

ψ(y) = α.

Note that the conditions of the previous proposition are pretty strong, espe-
cially this is the case with condition (i). Therefore, this proposition is of small
practical value. However, it can be used to prove the non-existence of some double
limits.

Example 1. Consider the following three functions:

f(x, y) =
x − y + x2 + y2

x + y
, g(x, y) =

x sin 1
x + y

x + y
, h(x, y) = x sin

1
y
,

all three defined on the set A × B = (0,+∞) × (0,+∞).
For the function f , lim

y→0
f(x, y) = 1+x, for each x ∈ A and lim

x→0
f(x, y) = −1+y,

for each y ∈ B, and so

lim
x→0

lim
y→0

f(x, y) = 1 �= −1 = lim
y→0

lim
x→0

f(x, y).

The double limit does not exist.

For the function g, lim
y→0

g(x, y) = sin
1
x

, for each x ∈ A and lim
x→0

g(x, y) = 1, for

each y ∈ B. Hence, lim
y→0

lim
x→0

g(x, y) = 1, and both lim
x→0

lim
y→0

g(x, y) and the double

limit do not exist.

For the function h, using that 0 �
∣∣∣∣x sin

1
y

∣∣∣∣ � |x|, we obtain that lim
(0,0)

h(x, y) =

0. On the other hand, lim
y→0

h(x, y) does not exist for any x ∈ A, and so the re-

spective iterated limit does not exist either. The other iterated limit exists and
lim
y→0

lim
x→0

h(x, y) = 0. �

Now we shall modify the conditions of Proposition 1, demanding that one
of the limits lim

x→x0
f(x, y) and lim

y→y0
f(x, y) exists, and that the other one exists

uniformly. We shall conclude that the three limits, both iterated and the double
one, all exist and are equal. Such a statement synthesizes then a series of classical
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results on interchange of limit operations. In terms of generalized sequences it is
called Moore Theorem (E. H. Moore, 1891–1976)1.

Theorem 1. (The theorem on interchange of two limits) Let f : A×B → M
be a mapping into a complete metric space, where A and B are subsets of metric
spaces M1 and M2, respectively, and let x0 ∈ A′ \ A, y0 ∈ B′ \ B. If
(i) lim

x→x0
f(x, y) = ψ(y) exists for each y ∈ B;

(ii) lim
y→y0

f(x, y) = ϕ(x) exists uniformly in x ∈ A,

then the three limits

lim
x→x0

lim
y→y0

f(x, y), lim
y→y0

lim
x→x0

f(x, y), and lim
(x0,y0)

f(x, y)

all exist and are equal.

Proof. Let ε > 0 be arbitrary. According to condition (ii), we have

(1) (∃δ > 0)(∀y ∈ B) 0 < d2(y, y0) < δ =⇒ (∀x ∈ A) d(f(x, y), ϕ(x)) <
ε

6
.

Let y ∈ K(y0, δ) \ {y0}. Using condition (i) we obtain

(2) (∃δ > 0)(∀x ∈ A) 0 < d1(x, x0) < δ =⇒ d(f(x, y), ψ(y)) <
ε

6
.

Let us take a neighborhood of the point (x0, y0) of the form

U = K(x0, δ) × K(y0, δ)

and let points (x′, y′), (x′′, y′′) belong to the set U \ {(x0, y0)}. Using the triangle
inequality, we get

d(f(x′, y′), f(x′′, y′′)) � d(f(x′, y′), ϕ(x′)) + d(ϕ(x′), f(x′, y))

+ d(f(x′, y), ψ(y)) + d(ψ(y), f(x′′, y))

+ d(f(x′′, y), ϕ(x′′)) + d(ϕ(x′′), f(x′′, y′′)).

By (2), the third and the fourth summand on the right-hand side are both less than
ε/6, and by (1), each of the other four summands is less than ε/6. Thus,

(∀(x′, y′) ∈ A × B)(∀(x′′, y′′) ∈ A × B)

(x′, y′), (x′′, y′′) ∈ U \ {(x0, y0)} =⇒ d(f(x′, y′), f(x′′, y′′)) < ε,

and so the function f satisfies Cauchy condition at the point (x0, y0). Therefore,
since the space M is complete, there exists

lim
(x0,y0)

f(x, y) = α.

1See N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publishers, New
York, 1958.
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Using Proposition 1 and condition (i), we have

lim
y→y0

ψ(y) = α = lim
y→y0

lim
x→x0

f(x, y),

and, by (ii),
lim

x→x0
ϕ(x) = α = lim

x→x0
lim

y→y0
f(x, y).

We shall apply the obtained result to a sequence (fn) of functions with domain
A which is a subset of a metric space M0 and codomain which is a metric space
M . Then, we can consider fn(x) as a function of two variables, taking

ϕ(n, x) = fn(x).

Since N can be understood as a subset of the metric space N∗ = N ∪ {∞} with
the metric

d(m,n) =
∣∣∣∣ 1
m

− 1
n

∣∣∣∣ ,

(
1
∞ = 0

)

and since ∞ ∈ N′, for the function ϕ : N × A → M , the fact that for each x ∈ A,
lim

n→∞ϕ(n, x) = f(x) exists, simply means that the sequence (fn) converges to the
function f on the set A.

The fact that lim
n→∞ϕ(n, x) = f(x) exists uniformly in x ∈ A, is equivalent to

the fact that the sequence (fn) converges uniformly on A. The respective condition

(∀ε > 0)(∃δ > 0)(∀n ∈ N)(∀x ∈ A) 0 < d(n,∞) < δ =⇒ d(ϕ(n, x), f(x)) < ε,

can be written as

(∀ε > 0)(∃m ∈ N)(∀n ∈ N)(∀x ∈ A) n > m =⇒ d(fn(x), f(x)) < ε,

taking that d(n,∞) =
1
n

and
[
1
δ

]
= m.

As an example of using such treatment of functional sequences as functions of
two variables, we shall derive now the well-known theorem about continuity of the
limit function.

Corollary 1. Let (fn) be a uniformly convergent sequence of continuous
functions from a metric space M0 into a complete metric space M . Then the limit
function f = lim fn is also continuous.

Proof. If x0 ∈ M0 is an isolated point, the assertion is trivial. Let x0 ∈ M ′
0.

For the function

ϕ(n, x) = fn(x), (M0 ⊂ M0, N ⊂ N∗)

we have also
(i) lim

n→∞ϕ(n, x) exists uniformly in x ∈ M0,

and by the continuity of all the functions fn at the point x0,
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(ii) for each n ∈ N, lim
x→x0

ϕ(n, x) = fn(x0) exists,

and by Theorem 1, it follows that

lim
x→x0

f(x) = lim
x→x0

lim
n→∞ϕ(n, x) = lim

n→∞ lim
x→x0

ϕ(n, x)

= lim
n→∞ fn(x0) = f(x0).

In a similar way, the following assertion on termwise differentiation can be
proved.

Corollary 2. Let (fn) be a sequence of real-valued functions, converging on
[a, b] to a function f , and let
(i) fn be a differentiable function for each n ∈ N,
(ii) the sequence (f ′

n) converges uniformly on [a, b].
Then the function f is differentiable and the equality

f ′(x) = lim
n→∞ f ′

n(x)

holds.

The respective properties of functional series can be derived now as easy con-
sequences.

3. Double sequences

A function a : N × N → R is called a double sequence. As usual, we shall
denote the value of the function a at (i, j) as aij , and this sequence will be denoted
by (aij). The following theorem gives sufficient conditions for the interchange of
the order of summation.

Theorem 2. Let (aij) be a double sequence such that:

(i) (∀i)
∞∑

j=1

|aij | = bi < +∞,

(ii)
∞∑

i=1

bi is a convergent series.

Then ∞∑
i=1

∞∑
j=1

aij =
∞∑

j=1

∞∑
i=1

aij .

Proof. Let fi : N∗ = N ∪ {∞} → R be the function defined by

fi(k) =
k∑

j=1

aij .

For each i, the function fi is continuous on N∗, because

lim
k→∞

fi(k) =
∞∑

j=1

aij = fi(∞).
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The series
∞∑

i=1

fi(k) converges uniformly according to the Weierstrass Test, because

(i) (∀i)|fi(k)| � bi and (ii)
∞∑

i=1

bi converges.

Therefore,

lim
k→∞

∞∑
i=1

fi(k) =
∞∑

i=1

lim
k→∞

fi(k).

The desired equality follows from

lim
k→∞

∞∑
i=1

fi(k) = lim
k→∞

∞∑
i=1

k∑
j=1

aij = lim
k→∞

k∑
j=1

∞∑
i=1

aij =
∞∑

j=1

∞∑
i=1

aij ,

∞∑
i=1

lim
k→∞

fi(k) =
∞∑

i=1

∞∑
j=1

aij .

4. The Toeplitz Limit Theorem

The following theorem was proved by Toeplitz (O. Toeplitz, 1881–1940) in
Prace mat.-fiz. 22 (1911), 113–119.

Theorem 3. The coefficients of the matrix



a00 a01 . . . a0n . . .
a10 a11 . . . a1n . . .
. . . . . . . . . . . . . . . . . . . . . . . .
ak0 ak1 . . . akn . . .
. . . . . . . . . . . . . . . . . . . . . . . .




are assumed to satisfy the following two conditions:
(a) for each fixed n, akn → 0 as k → ∞,
(b) there exists a constant K such that for each fixed k and any n,

|ak0| + |ak1| + · · · + |akn| < K.

Then, for every null sequence (z0, z1, . . . , zn, . . . ), the numbers

z′k = ak0z0 + ak1z1 + · · · + aknzn + · · ·
also form a null sequence.

Proof. Denote

ϕ(n, k) = ak0z0 + ak1z1 + · · · + aknzn.

The assumption (a) implies that
(a’) lim

k
ϕ(n, k) = 0, for each n.
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On the other hand,

(b’) lim
n

ϕ(n, k) =
∞∑

j=0

akjzj = ψ(k) exists, uniformly in k.

To prove it, observe first that, by (b), the series
∞∑

j=0

akj converges absolutely. Fix
ε > 0. Let j0 be such that

j > j0 =⇒ |zj | <
ε

K
.

Then, for j > j0, we have

|ψ(k) − ϕ(n, k)| =
∣∣∣∣

∞∑
j=n+1

akjzj

∣∣∣∣ �
∞∑

j=n+1

|akj | · max
j

|zj | < K · ε

K
= ε,

and so lim
n

ϕ(n, k) exists uniformly in k.

Now, by Theorem 1, we obtain that

lim
k

z′k = lim
k

lim
n

ϕ(n, k) = lim
n

lim
k

ϕ(n, k) = 0.

Corollary 3. If, in addition to assumption (a) of Theorem 3,

(∀k) ak0 + ak1 + · · · + akn → 1 as n → ∞,

and zn → z0, then z′k → z0 as k → ∞.

5. Integral as a limit

Denote by Π the set of all partitions P of a segment [a, b]. For the partition
P given by a = x0 < x1 < · · · < xn = b, the number

‖P‖ = max{xi − xi−1 | i = 1, 2, . . . , n }
is called the norm of partition P . Let ∞ be an element which does not belong to
Π and let ‖∞‖ = 0. The set Π∗ = Π ∪ {∞}, together with the metric

dΠ(P1, P2) =
{ ‖P1‖ + ‖P2‖, P1 �= P2,

0, P1 = P2,

is a metric space which will be called the partition space and will be denoted by
(Π∗, dΠ). If, for two partitions P1 and P2, ‖P1‖ � ‖P2‖, we say that P1 is smaller
than P2. Note that a finer partition is also smaller, but the converse is not true.

For a partition P , let
◦
P be the partition which has as partitioning points all

the points of partition P and, moreover, all the midpoints of segments of P . Then

‖
◦
P‖ = 1

2‖P‖.
Let P0 be the partition with a = x0 < x1 = b. Let us define a sequence (Pn)

of partitions, taking Pn+1 =
◦
Pn. Then ‖Pn‖ =

b − a

2n
, and so

lim
n→∞ dΠ(∞, Pn) = lim

n→∞
b − a

2n
= 0,

wherefrom it follows that ∞ is an accumulation point of the set Π in the space Π∗.
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Let f : [a, b] → R be a bounded function, s(f, P ) and S(f, P ) be its lower and
its upper sum, with respect to the partition P . These sums can be considered as
functions

s : Π → R, S : Π → R

from the space of partitions into R. The limit lim∞ s(f, P ) = α exists if the condition

(∀ε > 0)(∃δ > 0)(∀P ∈ Π) 0 < dΠ(P,∞) < δ =⇒ |α − s(f, P )| < ε

holds, or, equivalently, if the condition

(∀ε > 0)(∃δ > 0)(∀P ∈ Π) ‖P‖ < δ =⇒ |α − s(f, P )| < ε

holds. The following proposition associates this limit with the lower (upper) integral
of the function f .

Proposition 2. Let f : [a, b] → R be a bounded function. Then lim∞ s(f, P )

(resp. lim∞ S(f, P )) exists and is equal to supP s(f, P ) (resp. infP S(f, P )).

Proof. Let supP s(f, P ) = I. Since the function f is bounded, there exists a
constant M > 0, such that for each x ∈ [a, b], |f(x)| � M . Let ε > 0. There exists
a partition P1 with partitioning points a = x0 < x1 < · · · < xk = b, such that

I − s(f, P1) <
ε

2
.

Let δ =
ε

8Mk
. Let P ∈ Π be such that ‖P‖ < δ. Denote by P the superposition

of partitions P and P1. We have now

s(f, P ) − s(f, P ) =
∑

∆∈P

m∆v(∆) − ∑
∆∈P

m∆v(∆),

where m∆ = inf{ f(x) | x ∈ ∆ } and v(∆) is the length of segment ∆.

Since partition P is finer than partition P , for each ∆ ∈ P there exists a unique
∆′ ∈ P such that ∆ ⊂ ∆′. Let m′

∆ = m∆′ , and so
∑

∆∈P

m∆v(∆) =
∑

∆∈P

m′
∆v(∆).

Now,
s(f, P ) − s(f, P ) =

∑
∆∈P

(m∆ − m′
∆)v(∆).

We have m∆ −m′
∆ = 0 when ∆ has no endpoints belonging to partition P1, except

points a and b, and m∆ − m′
∆ �= 0 when an endpoint of segment ∆ belongs to the

set {x1, . . . , xk−1}, and this endpoint does not belong to P . The number of such
segments is at most 2(k − 1). Since |m∆ − m′

∆| � 2M , we have

s(f, P ) − s(f, P ) � 2(k − 1) · 2M · ‖P‖ < 2(k − 1) · 2M · ε

8Mk
=

ε

2
.
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Hence, when ‖P‖ < δ, we have

I − s(f, P ) � (I − s(f, P ) + (s(f, P ) − s(f, P )) <
ε

2
+

ε

2
= ε,

because P is also finer that P1 and so

I − s(f, P ) � I − s(f, P1) <
ε

2
.

This completes the proof that lim∞ s(f, P ) = I.

The equality lim∞ S(f, P ) = I = infP S(f, P ) can be proved in a similar way.

If the function f is integrable, then

lim∞ s(f, P ) = lim∞ S(f, P ) =
∫ b

a

f(x) dx.

For a partition P , let ξP be a choice function, i.e., let ξP (∆) ∈ ∆. The sum

σ(f, P ) =
∑{ f(ξP (∆))v(∆) | ∆ ∈ P }

is called the integral sum of the function f , corresponding to the partition P . Since

s(f, P ) � σ(f, P ) � S(f, P ),

for each ξP , we have

lim∞ σ(f, P ) =
∫ b

a

f(x) dx,

for each integrable function f .
We shall consider now the question of interchanging a limit and an integral.

First, we need an auxiliary statement.

Lemma 1. Let f : [a, b] → R and g : [a, b] → R be two functions, such that

(∀x ∈ [a, b]) |f(x) − g(x)| < k.

Then, for each nonempty set S ⊂ [a, b], the inequalities

| inf
x∈S

f(x) − inf
x∈S

g(x)| < 2k, | sup
x∈S

f(x) − sup
x∈S

g(x)| < 2k.

hold true.

Proof. Let x ∈ S be a point, such that f(x) < mS(f) + k, where mS(f) =
inf
x∈S

f(x). Then,

mS(f) > f(x) − k > g(x) − 2k � mS(g) − 2k,

where mS(g) = inf
x∈S

g(x). Similarly,

mS(g) > mS(f) − 2k,

which proves that |mS(f) − mS(g)| < 2k.
The proof of the other part of the proposition is similar.
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Theorem 4. Let (fn) be a sequence of functions, integrable on the segment
[a, b], and let (fn) converges uniformly to a function f . Then, the function f is
integrable and the equality

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx

is valid.

Proof. Let ε > 0 be given. Since the sequence (fn) converges uniformly to the
function f , there exists an m ∈ N such that

(∀n ∈ N)(∀x ∈ [a, b]) n � m =⇒ |fn(x) − f(x)| <
ε

2(b − a)
.

The lower sum of the function fn for the partition P ,

s(fn, P ) =
∑{mn(∆)v(∆) | ∆ ∈ P },

is a function from N × Π ⊂ N∗ × Π∗ into R. For n � m and each P , we have

|s(f.P ) − s(fn, P )| �
∑

∆∈P

|mn(∆) − m(∆)|v(∆).

Applying Lemma 1, we obtain

|s(f, P ) − s(fn, P )| < 2 · ε

2(b − a)
(b − a) = ε,

and so lim
n→∞ s(fn, P ) = s(f, P ) exists uniformly in P . For each n ∈ N,

lim
P→∞

s(fn, P ) =
∫ b

a

fn(x) dx

exists, because fn is an integrable function. Applying Theorem 1, it follows that
both iterated limits exist and are equal. Hence, we have

lim
P

lim
n

s(fn, P ) = lim
P

s(f, P ) =
∫
¯

b

a

f(x) dx,

lim
n

lim
P

s(fn, P ) = lim
n

∫ b

a

fn(x) dx,

and ∫
¯

b

a

f(x) dx = lim
n

∫ b

a

fn(x) dx,

Repeating the previous arguments and using upper sums, the equality

¯∫ b

a

f(x) dx = lim
n

∫ b

a

fn(x) dx

can also be proved.
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Note that the previous theorem remains valid when the domain of the given
functions is an arbitrary set A ⊂ R, which is Jordan measurable (C. M. E. Jordan,
1838–1922). Namely, such a set A is bounded and there exists a segment [a, b] such
that A ⊂ [a, b]. If the functions fn : A → R are integrable, so are the functions

fn : [a, b] → R given by fn(x) =
{

fn(x), x ∈ A,

0, x ∈ [a, b] \ A.

If the sequence (fn) converges uniformly to the function f : A → R, then the
sequence (fn) converges uniformly to the function

f(x) =
{

f(x), x ∈ A,

0, x ∈ [a, b] \ A,

which is also integrable. According to the previous theorem, we have

lim
n→∞

∫
A

fn(x) dx = lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx =
∫

A

f(x) dx.

Assuming that the limit function of a convergent sequence (fn) is integrable,
the assumption of uniform convergence can be weakened. First, we formulate and
prove an auxiliary statement, which is of interest on its own. Let (fn) be a sequence
of real functions, converging to a function f on a set A ⊂ R. Let A be the closure of
the set A in R∗. We shall say that (fn) converges uniformly around a point x0 ∈ A
if there exists an open neighborhood U of the point x0, such that (fn) converges
uniformly on the set U ∩ A.

Proposition 3. Let fn, n ∈ N, be real functions with domain A ⊂ R. The
sequence (fn) converges uniformly in x ∈ A if and only if it converges uniformly
around each point of the set A ⊂ R∗.

Proof. If the sequence (fn) converges uniformly in x ∈ A, then it obviously
converges uniformly around each point of the set A.

Conversely, suppose that (fn) converges uniformly around each point of A.
Then (fn) is certainly point-wise convergent to a function f . If A contains one of
the elements −∞, +∞ (or both of them), choose a respective neighborhood U−∞
or U+∞ (or both of them), such that (fn) converges uniformly on A ∩ U−∞, resp.
A ∩ U+∞. For any other point x ∈ A, let Ux be a neighborhood such that (fn)
converges uniformly on Ux ∩A. The set A \ (U−∞ ∪U+∞) (if −∞ or +∞ does not
belong to A, then U−∞, resp. U+∞ is an empty set) will be compact. Hence, there
exist finitely many neighborhoods

Ux1 , Ux2 , . . . , Uxk

covering the set A \ (U−∞ ∪ U+∞). Adding U−∞ and/or U+∞ to them, we obtain
finitely many subsets of A, such that (fn) converges uniformly on them. Since each
point of the set A belongs to one of the sets Uξ ∩A, ξ ∈ {x1, x2, . . . , xk,−∞,+∞},
the sequence (fn) converges uniformly on A.
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Roughly speaking, more points are there around which the sequence (fn) is not
uniformly convergent, less regular is the convergence of (fn). On the other hand,
Proposition 3 can be formulated as follows: The sequence (fn) does not converge
uniformly in x ∈ A if and only if it does not converge uniformly around a point
x ∈ A. Hence, nonuniform convergence can always be spotted locally.

The following is the Lebesgue theorem (H. L. Lebesgue, 1875–1941) on bounded
convergence for the Riemann integral (G. F. B. Riemann, 1826–1866).

Theorem 5. Let (fn) be a sequence of functions, integrable on [a, b], converg-
ing to a function f . If
(i) the function f is integrable,
(ii) (∃M ∈ R)(∀n ∈ N)(∀x ∈ [a, b]) |fn(x)| � M ,
(iii) the set

A = {x ∈ [a, b] | (fn) does not converge uniformly around x }
is a closed set of Lebesgue measure 0,

then

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx.

Proof. Let ε > 0 be given. According to (iii), there exists a sequence (∆i)i∈N

of open intervals covering the set A, such that
∑{ v(∆i) | i ∈ N } <

ε

4M
.

The set A is closed and bounded, and so, by Borel-Lebesgue Theorem (F. E. J. E.
Borel, 1871–1956), there exist finitely many intervals ∆i1 , . . . , ∆ik

which cover A,
as well. Let

D = ∆i1 ∪ · · · ∪ ∆ik
.

The set D is Jordan measurable and

m(D) � v(∆i1) + · · · + v(∆ik
) <

ε

4M
.

The sequence (fn) converges uniformly around each point of the set [a, b] \ D, and
so, by Proposition 3, it converges uniformly on [a, b] \ D. Hence, there exists an
n0 ∈ N such that

(∀n ∈ N)(∀x ∈ [a, b] \ D) n � n0 =⇒ |fn(x) − f(x)| <
ε

2(b − a)
.

Now, for n � n0, we have∣∣∣∣
∫ b

a

f(x) dx −
∫ b

a

fn(x) dx

∣∣∣∣ �
∫

D

|f(x) − fn(x)| dx +
∫

[a,b]\D

|f(x) − fn(x)| dx

< 2M · ε

4M
+

ε

2(b − a)
· (b − a) = ε,

which proves the theorem.
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Example 2. The sequence of functions

fn(x) =
nx

1 + (nx)2
, x ∈ [0, 1],

converges to the function 0: [0, 1] → R, and it does not converge uniformly only
around the point 0. The set A = {0} is closed and of measure 0, while

(∀n ∈ N)(∀x ∈ [a, b])
∣∣∣∣ nx

1 + (nx)2

∣∣∣∣ � 1
2
.

Hence, we have

lim
n→∞

∫ 1

0

nx

1 + (nx)2
dx = 0. �

At the end, let us remark that we have not included several other cases of
interchange of two limits: cases of differentiation and integration of integrals de-
pending on parameter, equality f ′′

xy = f ′′
yx, etc., which can be treated in the same

way.
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