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1. Introduction

Three classical inequalities are proved in this article. They can be used in prov-
ing several other inequalities, particularly those appearing as problems in math-
ematical competitions, including International Mathematical Olympiads. Some
problems of this kind are given as examples.

The article is adapted according to our book [7], intended for preparation
of students for mathematical competitions. Its (shortened) Serbian version was
published in Nastava matematike, L, 4 (2005), 22–31.

We start by recalling some well-known notions which will be used in the sequel.
A function f : (a, b) → R is said to be convex if for each two points x1, x2 ∈

(a, b) and each two nonnegative real numbers λ1, λ2 satisfying λ1 + λ2 = 1, the
following inequality is valid

f(λ1x1 + λ2x2) � λ1f(x1) + λ2f(x2).

The function f is concave if the function −f is convex, i.e., if the opposite inequality

f(λ1x1 + λ2x2) � λ1f(x1) + λ2f(x2).

always holds. If, in the previous inequalities (assuming x1 �= x2), the equality takes
place only in the case when λ1 = 0 or λ2 = 0, then the function f is said to be
strictly convex (resp. strictly concave).

It can be easily checked that the function f : (a, b) → R is convex (strictly
convex) if and only if the inequality

(1)
f(x) − f(x1)

x − x1
� f(x2) − f(x)

x2 − x
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(resp.
f(x) − f(x1)

x − x1
<

f(x2) − f(x)
x2 − x

) holds for arbitrary points x1, x2, x from (a, b),

such that x1 < x < x2,. An analogous criterion is valid for concave (strictly
concave) functions.

Let f : (a, b) → R and x, y ∈ (a, b). The quotient

∆f (x, y) =
f(y) − f(x)

y − x

is called the divided difference of the function f at the points x, y. It is clear that
the divided difference is a symmetric function in x, y, i.e., ∆f (x, y) = ∆f (y, x).

Lemma 1. A function f : (a, b) → R is convex (strictly convex) if and only if
its divided difference ∆f (x, y) is increasing (strictly increasing) in both variables.
An analogous assertion is valid for concave (strictly concave) functions.

Proof. Let the function f be convex and let x1, x2 ∈ (a, b) so that x1 < x2.
Choose an arbitrary x ∈ (a, b) such that, for instance, x1 < x < x2 (for other values
x ∈ (a, b) the proof is similar). Applying the previous assertion, the convexity of
the function f implies that the inequality (1) is valid. In other words,

(2) ∆f (x1, x) = ∆f (x, x1) � ∆f (x2, x),

which means that the function ∆f is increasing in its first argument. As far as it
is symmetric, it is increasing in its second argument, as well.

Conversely, if ∆f is increasing in both arguments, then for x1 < x < x2 the
inequality (2) holds, which implies (1), and so the function f is convex on (a, b).

2. Majorization relation for finite sequences
and Karamata’s inequality

Let us introduce a majorization relation for finite sequences of real numbers.

Definition 1. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two (finite)
sequences of real numbers. We say that the sequence a majorizes the sequence b
and we write

a � b or b ≺ a,

if, after a possible renumeration, the terms of the sequences a and b satisfy the
following three conditions:

1◦ a1 � a2 � · · · � an and b1 � b2 � · · · � bn;
2◦ a1 + a2 + · · · + ak � b1 + b2 + · · · + bk, for each k, 1 � k � n − 1;
3◦ a1 + a2 + · · · + an = b1 + b2 + · · · + bn.
The first condition is obviously no restriction, since we can always rearrange

the sequence. The second condition is essential.
Clearly, a � a holds for an arbitrary sequence a.
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Example 1. (a) If a = (ai)n
i=1 is an arbitrary sequence of nonnegative num-

bers, having the sum equal to 1, then

(1, 0, . . . , 0) � (a1, a2, . . . , an) �
( 1

n
,
1
n

, . . . ,
1
n

)
.

(b) The sequences (4, 4, 1) and (5, 2, 2) are incomparable in the sense of the
relation �, i.e., non of the two majorizes the other one. �

The following inequality appears in literature connected with various names—
I. Schur [15], G. H. Hardy, J. I. Littlewood, G. Polya [3], H. Weyl [20], and J. Kara-
mata [8]. Following articles [5], [9] and [13], we shall call it Karamata’s inequality.

Theorem 1. Let a = (ai)n
i=1 and b = (bi)n

i=1 be (finite) sequences of real
numbers from an interval (α, β). If the sequence a majorizes b, a � b, and if
f : (α, β) → R is a convex function, then the inequality

n∑
i=1

f(ai) �
n∑

i=1

f(bi)

holds.

First proof. In this proof we use Abel’s transformation [2].
Denote by ci the divided difference of the function f at the points ai, bi,

ci = ∆f (ai, bi) =
f(bi) − f(ai)

bi − ai
.

Since the function f is convex, the condition 1◦, by Lemma 1, implies that the
sequence (ci) is decreasing.

Further, denote

Ak =
k∑

i=1

ai, Bk =
k∑

i=1

bi, (k = 1, . . . , n); A0 = B0 = 0.

The assumption 3◦ implies that An = Bn. Now, we have
n∑

i=1

f(ai) −
n∑

i=1

f(bi) =
n∑

i=1

(f(ai) − f(bi)) =
n∑

i=1

ci(ai − bi)

=
n∑

i=1

ci(Ai − Ai−1 − Bi + Bi−1) =
n∑

i=1

ci(Ai − Bi) −
n∑

i=1

ci(Ai−1 − Bi−1)

=
n−1∑
i=1

ci(Ai − Bi) −
n−1∑
i=0

ci+1(Ai − Bi) =
n−1∑
i=1

(ci − ci+1)(Ai − Bi).

As mentioned before, ci � ci+1, and by assumption 2◦ it is Ai � Bi for i =
1, 2, . . . , n − 1. Hence, the last sum, and so also the difference

n∑
i=1

f(ai) −
n∑

i=1

f(bi)

is nonnegative, which was to be proved.
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Second proof. In this proof we use Stieltjes’ integral [9]. We shall need the
following lemma.

Lemma 2. [16] Let ψ1, ψ2 : [α, β] → R be two integrable functions, such that
ψ1 � ψ2, in the sense that

∫ x

α

ψ1 dt �
∫ x

α

ψ2 dt for x ∈ [α, β) and
∫ β

α

ψ1 dt =
∫ β

α

ψ2 dt.

Further, let ϕ : [α, β] → R be an increasing (integrable) function. Then
∫ β

α

ϕψ1 dx �
∫ β

α

ϕψ2 dx.

Proof. Put ψ(x) = ψ1(x)−ψ2(x) and g(x) =
∫ x

α
ψ(t) dt. Then, by the hypoth-

esis, g(x) � 0 for x ∈ [α, β] and g(α) = g(β) = 0. Using integration by parts in the
Stieltjes integral, we get

∫ β

α

ϕ(t)ψ(t) dt =
∫ β

α

ϕ(t) dg(t) = ϕ(t)g(t)
∣∣∣β
α
−

∫ β

α

g(t) dϕ(t)

= −
∫ β

α

g(t) dϕ(t) � 0.

Proof of the Theorem. The given function f , being convex, is continuous and
it can be represented in the form f(x) =

∫ x

α
ϕdt for an increasing function ϕ.

Introduce functions A(x) and B(x) by

A(x) =
n∑

i=1

m{[α, x] ∩ [α, ai]}, B(x) =
n∑

i=1

m{[α, x] ∩ [α, bi]},

where mS denotes the measure of the set S. It is easy to see that

A(x) � B(x), A(a1) = B(a1)

and that A′(x) and B′(x) exist everywhere except in a finite set of points. Applying
Lemma 2, we conclude that

(3)
∫ a1

α

f dA(x) �
∫ a1

α

f dB(x).

But, ∫ a1

α

f dA(x) = n

∫ an

α

ϕdx + (n − 1)
∫ an−1

an

ϕdx + · · · +
∫ a1

a2

ϕdx

= f(a1) + f(a2) + · · · + f(an),

and the similar relation holds for the integral on the right-hand side of (3). This
proves Karamata’s inequality.
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Note 1. The condition that Karamata’s inequality holds for every convex
function f on (α, β) is not only necessary, but also sufficient for the relation a � b.
The proof can be found in [4] or [11].

Note 2. If the function f is strictly convex, it can be easily checked that the
equality in Karamata’s inequality is obtained if and only if the sequences (ai) and
(bi) coincide.

Note 3. Jensen’s inequality [6] in the form

f
(x1 + x2 + · · · + xn

n

)
� f(x1) + f(x2) + · · · + f(xn)

n
,

for a Jensen-convex function f , is obtained as a special case of Karamata’s inequal-

ity, by putting b1 = b2 = · · · = bn =
a1 + · · · + an

n
. The general form of Jensen’s

inequality follows from the weighted form of Karamata’s inequality [2]:

n∑
i=1

λif(ai) �
n∑

i=1

λif(bi)

if λi ∈ R+ and (ai) and (bi) satisfy condition 1◦ of Definition 1,
k∑

i=1

λiai �
k∑

i=1

λibi

for k = 1, 2, . . . , n − 1 and
n∑

i=1

λiai =
n∑

i=1

λibi.

Lemma 2 can also be used [9] in proving Steffensen’s inequality [17]:

Corollary 1. Let f, g : [0, a] → R, 0 � g(x) � 1, f be decreasing on [0, a],
and let F (x) =

∫ x

0
f dt. Then

∫ a

0

fg dx � F

(∫ a

0

g dx

)
.

Proof. If we denote c =
∫ a

0
g dx, then 0 < c � a. Let g̃(x) =

{
1, x ∈ [0, c],
0, x ∈ (c, a]

.

Then, it is easy to check that g̃ � g (in the sense of Lemma 2), and so, applying
this Lemma, we obtain Steffensen’s inequality in the form

∫ c

0

f dx =
∫ a

0

fg̃ dx �
∫ a

0

fg dx.

Example 2. [5] Prove that for arbitrary positive numbers a, b and c the
inequality

1
a + b

+
1

b + c
+

1
c + a

� 1
2a

+
1
2b

+
1
2c

holds.
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Solution. Suppose that the numbers a, b and c are such that a � b � c, i.e., the
sequence (a, b, c) is decreasing (this can be done without loss of generality). Then
we have (2a, 2b, 2c) � (a + b, b + c, c + a), and so, applying Karamata’s inequality

to the function f(x) =
1
x

, which is convex on the interval (0,+∞), we obtain the
desired inequality. �

Example 3. [13] Prove that the inequality

cos(2x1 − x2) + cos(2x2 − x3) + · · ·+ cos(2xn − x1) � cos x1 + cos x2 + · · ·+ cos xn

holds for arbitrary numbers x1, x2, . . . , xn from the interval [−π/6, π/6].

Solution. The numbers 2xi − xi+1, i = 1, 2, . . . , n (xn+1 = x1), as well as
the given numbers xi, belong to the interval [−π/2, π/2]. The function f(x) =
cos x is concave on this interval, and so the Karamata’s inequality holds with the
opposite sign. Thus, it is sufficient to prove that the sequences a = (2x1−x2, 2x2−
x3, . . . , 2xn − x1) and b = (x1, x2, . . . , xn), when arranged to be decreasing, satisfy
the conditions of Theorem 1.

Let indices m1, . . . , mn and k1, . . . , kn be chosen so that

{m1, . . . ,mn} = {k1, . . . , kn} = {1, . . . , n},
2xm1 − xm1+1 � 2xm2 − xm2+1 � · · · � 2xmn

− xmn+1,(4)

xk1 � xk2 � · · · � xkn
.(5)

Then
2xm1 − xm1+1 � 2xk1 − xk1+1 � xk1

(the first inequality holds because 2xm1 − xm1+1 is, by the choice of the numbers
mi, the greatest of the numbers of the form 2xmi

− xmi+1; the second one follows
by the choice of the numbers ki). By similar reasons,

(2xm1 − xm1+1) + (2xm2 − xm2+1) � (2xk1 − xk1+1) + (2xk2 − xk2+1) � xk1 + xk2 ,

and, generally, the sum of the first l terms of sequence (4) is not less than the
sum of the first l terms of sequence (5), for l = 1, . . . , n − 1. For l = 1, obviously,
the equality is obtained, and so all the conditions for applying the Karamata’s
inequality are fulfilled. �

The following inequality of M. Petrović [14] comes close to these ideas (the
proof is taken from [10]).

Theorem 2. Let f : [0,+∞) → R be a convex function, and (xi)n
i=1, be a

sequence of positive numbers. Then the inequality

f(x1) + · · · + f(xn) � f(x1 + · · · + xn) + (n − 1)f(0)

holds.
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Proof. Denote s =
n∑

i=1

xi and λi =
xi

s
. Then

n∑
i=1

λi = 1 and

xi = (1 − λi) · 0 + λis, i = 1, 2, . . . , n.

The convexity of the function f implies that

f(xi) � (1 − λi)f(0) + λif(s) i = 1, . . . , n,

and hence, summing up, we obtain
n∑

i=1

f(xi) � (n − 1)f(0) + f(s).

The following variations on Petrović’s inequality are also proved in [10].

Corollary 2. (a) Let f : [a, b] → R be a convex function, 0 � a < b and let
(xi)n

i=1 be a sequence of positive numbers, such that x1 + · · · + xn � b − a. Then
the inequality

f(a + x1) + · · · + f(a + xn) � f(a + x1 + · · · + xn) + (n − 1)f(a)

holds.
(b) Let f : [0, b1] → R be a convex function, and b1 � b2 � b3 � 0. Then the

following holds:

(6) f(b1 − b2 + b3) � f(b1) − f(b2) + f(b3).

Proof. (a) Apply Petrović’s inequality to the (convex) function ϕ : [0, b− a] →
R, given by ϕ(x) = f(a + x).

(b) In the inequality (a) put n = 2, b1 = a+x1 +x2, b2 = a+x1 and b3 = a.
An easy consequence is now an inequality of G. Szegö [18].

Corollary 3. Let f : [0, b1] → R be a convex function and b1 � b2 � . . . �
b2n+1 � 0. Then the inequality

f(b1 − b2 + · · · + b2n+1) � f(b1) − f(b2) + · · · + f(b2n+1)

holds.

Proof. For n = 1, the inequality reduces to (6). Assuming that it holds for
n − 1, where n � 1, let us prove that it holds also for n.

Note that b′ = b1 − b2 + · · · + b2n−1 � b2n−1 � b2n � b2n+1. Thus, using (6),
we obtain that

f(b′ − b2n + b2n+1) � f(b′) − f(b2n) + f(b2n+1)

� f(b1) − f(b2) + · · · + f(b2n−1) − f(b2n) + f(b2n+1).
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3. Inequalities of Schur and Muirhead

Definition 2. Let F (x1, x2, . . . , xn) be a function in n nonnegative
real variables. Define

∑!
F (x1, x2, . . . , xn) as the sum of n! summands, obtained

from the expression F (x1, x2, . . . , xn) as all possible permutations of the sequence
x = (xi)n

i=1.
Particularly, if for some sequence of nonnegative exponents a = (ai)n

i=1, the
function F is of the form F (x1, x2, . . . , xn) = xa1

1 · xa2
2 · . . . · xan

n , then, instead of∑!
F (x1, x2, . . . , xn), we shall write also

T [a1, a2, . . . , an](x1, x2, . . . , xn),
or just T [a1, a2, . . . , an] if it is clear which sequence x is used.

Example 4. T [1, 0, . . . , 0] = (n−1)! ·(x1+x2+ · · ·+xn), and T [ 1
n , 1

n , . . . , 1
n ] =

n! · n
√

x1x2 · · ·xn. Using this terminology, the Arithmetic-Geometric Mean Inequal-
ity can be written as

T [1, 0, . . . , 0] � T

[
1
n

, . . . ,
1
n

]
. �

Let us prove now Schur’s inequality .

Theorem 3. The inequality
T [a + 2b, 0, 0] + T [a, b, b] � 2T [a + b, b, 0]

holds for arbitrary positive numbers a and b.

The previous inequality means that
T [a + 2b, 0, 0](x, y, z) + T [a, b, b](x, y, z) � 2T [a + b, b, 0](x, y, z)

holds for an arbitrary sequence (x, y, z) of positive numbers.
Proof. Let (x, y, z) be a sequence of positive numbers. Using elementary

transformations, we obtain
1
2
T [a + 2b, 0, 0] +

1
2
T [a, b, b] − T [a + b, b, 0]

= xa(xb − yb)(xb − zb) + ya(yb − xb)(yb − zb) + za(zb − xb)(zb − yb).
Assume, without loss of generality, that x � y � z. Then only the second summand
in the last expression is negative. It is sufficient to prove that

xa(xb − yb)(xb − zb) + ya(yb − xb)(yb − zb) � 0,

i.e., (xb − yb)(xa(xb − zb) − ya(yb − zb)) � 0. The last inequality is equivalent to
xa+b − ya+b − zb(xa − ya) � 0. However,

xa+b − ya+b − zb(xa − ya) � xa+b − ya+b − yb(xa − ya) = xa(xb − yb) � 0,

which proves the theorem.

Corollary 4. If x, y and z are nonnegative real numbers, and r � 0, then
the inequality

xr(x − y)(x − z) + yr(y − z)(y − x) + zr(z − x)(z − y) � 0
holds.
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Proof. Transforming, the given inequality can be written as

T [r + 2, 0, 0] + T [r, 1, 1] � 2T [r + 1, 1, 0]

which is a special case of Schur’s inequality for a = r, b = 1.

Example 5. Putting a = b = 1 in Schur’s inequality (or r = 1 in Corollary 4),
we obtain

x3 + y3 + z3 + 3xyz � x2y + xy2 + y2z + yz2 + z2x + zx2. �
For arbitrary sequences a and b, T [a] may be incomparable with T [b], in the

sense that it is not true that either T [a](x) � T [b](x) or T [a](x) � T [b](x) holds for
arbitrary values of the variable sequence x = (xi). It appears that a necessary and
sufficient condition for these two expressions to be comparable is the condition that
one of the sequences a and b majorizes the other one. More precisely, the following
Muirhead’s theorem [12] holds.

Theorem 4. The expression T [a] is comparable with the expression T [b] for
all positive sequences x, if and only if one of the sequences a and b majorizes the
other one in the sense of relation ≺. If a ≺ b then

T [a] � T [b].

The equality holds if and only if the sequences a and b are identical, or all the xi’s
are equal.

Proof. We prove the necessity of the condition first. Taking the sequence x to
be constant, with all the terms equal to c, we obtain that

c
∑

ai � c
∑

bi .

This can hold for arbitrary large, as well as for arbitrary small values of c, only
if the condition 3◦ of Definition 1 is satisfied. Put now x1 = · · · = xk = c and
xk+1 = · · · = xn = 1. Comparing the highest powers of c in the expressions T [a]
and T [b], and taking into account that T [a] � T [b] has to be valid for c arbitrary
large, we conclude that a1 + · · · + ak � b1 + · · · + bk, 1 � k < n.

Let us prove now the sufficiency of the condition. The assertion will be a
consequence of the following two lemmas. But first, let us define a linear operation
L which can be applied to sequences b of exponents.

Let bk and bl be two distinct terms of the sequence b, such that bk > bl. We
can write

bk = ρ + τ, bl = ρ − τ (0 < τ � ρ).
Now, if 0 � σ < τ � ρ, define the sequence a = L(b) as follows

ak = ρ + σ =
τ + σ

2τ
bk +

τ − σ

2τ
bl,

al = ρ − σ =
τ − σ

2τ
bk +

τ + σ

2τ
bl,

aν = bν , (ν �= k, ν �= l).

The given definition does not require that either of the two sequences b and a be
decreasing.
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Lemma 3. If a = L(b), then T [a] � T [b], while the equality holds only if the
sequence x is constant.

Proof. We can rearrange the sequence so that k = 1 and l = 2. Then

T [b] − T [a] =
∑!

xb3
3 · · ·xbn

n (xρ+τ
1 xρ−τ

2 + xρ−τ
1 xρ+τ

2 − xρ+σ
1 xρ−σ

2 − xρ−σ
1 xρ+σ

2 )

=
∑!

(x1x2)ρ−τxb3
3 · · ·xbn

n (xτ+σ
1 − xτ+σ

2 )(xτ−σ
1 − xτ−σ

2 ) � 0.

The equality holds only if all the xi’s are equal to each other.

Lemma 4. If a ≺ b, but a differs from b, then a can be obtained from b
applying the transformation L finitely many times.

Proof. Denote by m the number of differences bν − aν which are not equal to
zero. m is an integer, and we shall prove that we can apply the transformation L
in such a way, that after each application the number m strictly decreases (which
means that the procedure will stop after finitely many steps). Since

∑
(bν−aν) = 0,

and not all of the differences are equal to zero, both positive and negative differences
exist, but the first of them is positive. We can choose k and l in such a way that

ak < bk, ak+1 = bk+1, . . . , al−1 = bl−1, al > bl

hold (bl − al is the first among the negative differences, and bk − ak is the last
among the positive differences preceding it). Let bk = ρ + τ and bl = ρ − τ and
define σ by

σ = max{|ak − ρ|, |al − ρ|}.
At least one of the following two equalities holds:

al − ρ = −σ, ak − ρ = σ,

since ak > al. It is also σ < τ , since ak < bk and al > bl. Let

ck = ρ + σ, cl = ρ − σ, cν = bν (ν �= k, ν �= l).

We shall consider now the sequence c = (ci) instead of the sequence b. The number
m has decreased at least by 1. It can be easily checked that the sequence c is
decreasing and that it majorizes a.

Applying this procedure several times, the sequence a can be obtained, which
proves Lemma 4, and so also the theorem as a whole.

Example 6. The Arithmetic-Geometric Mean Inequality is now a trivial con-
sequence of Muirhead’s inequality (see Example 4). �

Example 7. (Yugoslav Federal Competition 1991) Prove that

1
a3 + b3 + abc

+
1

b3 + c3 + abc
+

1
c3 + a3 + abc

� 1
abc

holds for arbitrary positive numbers a, b and c.
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Solution. Multiplying both sides of the inequality by

abc(a3 + b3 + abc)(b3 + c3 + abc)(c3 + a3 + abc),

we obtain that the given inequality is equivalent to

3
2
T [4, 4, 1] + 2T [5, 2, 2] +

1
2
T [7, 1, 1] +

1
2
T [3, 3, 3] �

� 1
2
T [3, 3, 3] + T [6, 3, 0] +

3
2
T [4, 4, 1] +

1
2
T [7, 1, 1] + T [5, 2, 2]

which holds, since from Muirhead’s theorem it follows that T [5, 2, 2] � T [6, 3, 0]. �
Example 8. (International Mathematical Olympiad 1995) Let a, b and c be

positive real numbers such that abc = 1. Prove that

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

� 3
2
.

Solution. In order to apply Muirehead’s theorem, the expressions have to be
homogeneous. So, divide the right-hand side by (abc)4/3 = 1 and multiply both
sides by a3b3c3(a+b)(b+c)(c+a)(abc)4/3. The inequality becomes equivalent with

2T

[
16
3

,
13
3

,
7
3

]
+ T

[
16
3

,
16
3

,
4
3

]
+ T

[
13
3

,
13
3

,
10
3

]
� 3T [5, 4, 3] + T [4, 4, 4].

The last inequality can be obtained by summing up the following three inequalities
which follow directly from Muirhead’s theorem:

2T

[
16
3

,
13
3

,
7
3

]
� 2T [5, 4, 3],

T

[
16
3

,
16
3

,
4
3

]
� T [5, 4, 3],

T

[
13
3

,
13
3

,
10
3

]
� T [4, 4, 4].

Equality holds if and only if a = b = c = 1. �

4. Problems

1. (Yugoslav International Selection Test 1969) Real numbers ai, bi (i = 1, 2, . . . , n)
are given, such that

a1 � a2 � . . . � an > 0,

b1 � a1,

b1b2 � a1a2,

. . . . . . . . .

b1b2 · · · bn � a1a2 · · · an.

Prove that b1 + b2 + · · · + bn � a1 + a2 + · · · + an.
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Hint. Apply the following variant of Karamata’s inequality [19] to the function
f(x) = ex.

Let (ai)n
i=1 and (bi)n

i=1 be two sequences of real numbers satisfying:

1◦ a1 � a2 � · · · � an, b1 � b2 � · · · � bn;

2◦
k∑

i=1

ai �
k∑

i=1

bi for all k ∈ {1, 2, . . . , n}.
If f : R → R is an increasing convex function, then the inequality

n∑
i=1

f(ai) �
n∑

i=1

f(bi)

holds.

2. [13] Prove that the inequality

a3
1

a2
+

a3
2

a3
+ · · · + a3

n

a1
� a2

1 + a2
2 + · · · + a2

n

holds for arbitrary positive numbers a1, a2, . . . , an.

Hint. Similarly as in Example 3, applying Theorem 1 to the convex function
f(x) = ex, prove that the inequality

e3x1−x2 + e3x2−x3 + · · · + e3xn−x1 � e2x1 + e2x2 + · · · + e2xn

holds, and substitute xi = log ai, i = 1, . . . , n.

3. Prove that the inequality

(a + b − c)(b + c − a)(c + a − b) � abc

holds for arbitrary positive numbers a, b, c.

Hint. Apply Corollary 4 of Schur’s inequality T [3, 0, 0]+T [1, 1, 1] � 2T [2, 1, 0]
or Karamata’s inequality to the concave function f(x) = log x.

4. Let a, b, c be positive numbers such that abc = 1. Prove that

1
a + b + 1

+
1

b + c + 1
+

1
c + a + 1

� 1.

Hint. Using the condition abc = 1, the given inequality can be written in a
homogeneous form

1
a + b + (abc)1/3

+
1

b + c + (abc)1/3
+

1
c + a + (abc)1/3

� 1
(abc)1/3

.

Substituting a = x3, b = y3, z = c3, it becomes the inequality from Example 7.

5. If a, b and c are positive real numbers, prove that the inequality

a3

b2 − bc + c2
+

b3

c2 − ca + a2
+

c3

a2 − ab + b2
� 3

ab + bc + ca

a + b + c

holds.
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Hint. Combine the following four consequences of Muirhead’s inequality:

1. T [9, 2, 0] � T [7, 4, 0], 2. T [10, 1, 0] � T [7, 4, 0],

3. T [6, 5, 0] � T [6, 4, 1], 4. T [6, 3, 2] � T [4, 4, 3],

with the consequence T [4, 2, 2] + T [8, 0, 0] � 2T [6, 2, 0] of Schur’s inequality, which
can be, multiplying by abc written as

5. T [5, 3, 3] + T [9, 1, 1] � 2T [7, 3, 1].

6. (Shortlisted problem for IMO’98) Let a, b, c be positive numbers such that
abc = 1. Prove that

a3

(1 + b)(1 + c)
+

b3

(1 + c)(1 + a)
+

c3

(1 + a)(1 + b)
� 3

4
.

7. (International Mathematical Olympiad 1984) Let x, y and z be nonnegative
real numbers satisfying the equality x + y + z = 1. Prove the inequality

0 � xy + yz + zx − 2xyz � 7
27

.

Hint. The inequality on left-hand side is easy to prove. The right-hand one is
equivalent to

12T [2, 1, 0] � 7T [3, 0, 0] + 5T [1, 1, 1].

This inequality is true since it can be obtained by summing up the inequalities
2T [2, 1, 0] � 2T [3, 0, 0] and 10T [2, 1, 0] � 5T [3, 0, 0]+5T [1, 1, 1] (the first one follows
from Muirhead’s theorem, and the second one is Schur’s inequality for a = b = 1).

8. (International Mathematical Olympiad 1999) Let n be a fixed integer, n � 2.

(a) Determine the minimal constant C such that the inequality

∑
1�i<j�n

xixj(x2
i + x2

j ) � C

( ∑
1�i�n

xi

)4

is valid for all real numbers x1, x2, . . . , xn � 0.

(b) For the constant C found in (a) determine when the equality is obtained.

Solution. As far as the given inequality is homogeneous, we can assume that
x1 + x2 + · · · + xn = 1. In this case the inequality can be written as

x3
1(1 − x1) + x3

2(1 − x2) + · · · + x3
n(1 − xn) � C.

The function f(x) = x3(1−x) is increasing and convex on the segment [0, 1/2]. Let
x1 be the greatest of the given numbers. Then the numbers x2, x3, . . . , xn are not
greater than 1/2. If x1 ∈ [0, 1/2] as well, then from (x1, x2, . . . , xn) ≺ ( 1

2 , 1
2 , 0, . . . )

using Theorem 1, we obtain that

f(x1) + f(x2) · · · + f(xn) � f
(1

2

)
+ f

(1
2

)
+ (n − 2)f(0) =

1
8
.
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If, to the contrary, x1 > 1/2, then it is 1 − x1 < 1/2 and we have that
(x2, x3, . . . , xn) ≺ (1 − x1, 0, . . . , 0). Applying Karamata’s inequality once more,
we obtain that

f(x1) + f(x2) · · · + f(xn) � f(x1) + f(1 − x1) + (n − 2)f(0) = f(x1) + f(1 − x1).

(Alternatively, in this case Petrović’s inequality can be applied to obtain the same
result.) It is easy to prove that the function g(x) = f(x) + f(1 − x) has the
maximum on the segment [0, 1] equal to g(1/2) = 1/8. Thus, in this case also,
f(x1) + f(x2) + · · · + f(xn) � 1/8 follows.

Equality holds, e.g., for x1 = x2 = 1/2, which proves that C = 1/8.
9. (International Mathematical Olympiad 2000) Let x, y, z be positive real num-

bers, such that xyz = 1. Prove that(
x − 1 +

1
y

) (
y − 1 +

1
z

) (
z − 1 +

1
x

)
� 1.

Solution. The condition xyz = 1 implies that the numbers x, y and z can be

written in the form x =
a

b
, y =

b

c
and z =

c

a
for some a, b, c > 0. Using the new

variables, the given inequality reduces to our Problem 3.
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