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Abstract. How to introduce the concept of the Markov Property in an elemen-
tary Probability Theory course? From this author’s teaching experience, it appears
that the best way that gives a natural intuitive flavor and preserves the mathematical
rigor, is to use concepts of entropy and information from the classical Shannon Infor-
mation Theory, as suggested in the brilliant monograph of A. Rényi [5]. Following this
path, the connection between Entropy and Markov Property is presented.
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1. Introduction

Anyone who has taught a Probability Theory course at any level encountered
a quandary as how to introduce the concept of Markov property in such a way as to
convey to students its intuitive meaning, while preserving fully the mathematical
rigor that defines this concept. While teaching a course on Markov Processes on
a graduate level, it appears that introduction of the Markov property in its most
rigorous form is paradoxically also the easiest way to do the job! Of course, at that
level, students have a sufficient background in the sophisticated machinery of the
Theory of Measure, that allows this to be done. But, while teaching a Probability
Theory course on Elementary and even Intermediate level, where a teacher has no a
luxury of assuming the knowledge of concepts of the Measure Theory, this job is in
a way, much more difficult. Although on this levels students are familiar with the
concept of conditional probabilities, presented usually in discrete cases, that is, in
cases of chains, the definition is too formal, and it is not quite clear as how from it
one concludes that this property is a probabilistic analogue of a familiar property
of dynamical systems, namely, if one has a system of particles and the position
and velocities of all particles are known at the present, then the future evolution of
such a system is fully determined. From the author’s experience the best way for
presenting the Markov property to students in elementary and even intermediate
Probability Theory courses, is to follow the path outlined in A. Rényi’s brilliant
monograph Foundations of Probability, [5]. The main idea used there is, to express
the Markov property via concepts of Entropy and Information! [2], [3]. Such a
presentation is perfectly suited for our information age, where students are at ease
in operating computers and cell phones. The mentioned monograph appeared in
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1970—just before the dawn of the new computer age. By using elements of the
Shannon Information Theory, the essence of the Markov property is easily under-
stood. Its natural connection with conditional probabilities is easily established.
Finally, following this development, that is also mentioned in [5], one arrives at
rooted random trees and forests—one of the latest research topics in contemporary
Probability Theory [4].

2. Setting

Throughout this exposition, all random variables are real-valued, and assuming
a finite number of different values. They are all given on a fixed probability space
(Ω,F , P), where the sample space Ω is often finite, and σ-algebra F of random
events, is the superset of Ω. This is a typical set-up that one finds in an elementary
Probability Theory course. Now, following Shannon’s ideas, one has the following

Definition 1. Let X be a random variable taking different values x1, x2, . . . ,
xN such that P[X = xk] = pk, k = 1, 2, . . . , N . The entropy H(X) of X is defined
by

(1) H(X) =
N∑

k=1

pk log2

1
pk

.

Remark. Obviously, H(X) ≥ 0, and H(X) = 0 if and only if N = 1, i.e., if
X is a constant random variable. The entropy H(X) of X could be interpreted as
a measure of the amount of uncertainty carried by the value of random variable X,
but before observing the actual value of X. Yet, the another interpretation of H(X)
is that it represents a measure of the amount of information received from X, but
after the actual value of X has been observed. Equation (1) is known as Shannon
formula. In short, the entropy measures the amount of uncertainty carried by a
random variable.

As H(X) depends only on the distribution P = {p1, p2, . . . , pN} of X, the
following notation will be used as well.

(1’) H[P] =
N∑

k=1

pk log2

1
pk

.

Now, let f be any function whose domain is the set {x1, x2, . . . , xN} such that
f(xi) 6= f(xj), if i 6= j. Then, P[f(X) = f(xk)] = P[X = xk] = pk, and

(2) H(f(X)) = H(X).

More generally,

Lemma 1. For any function f , one has

(3) H(f(X)) ≤ H(X),
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where the equality holds in (3) if and only if, f(xi) 6= f(xj), for i 6= j. (X is a
random variable taking finite number of different values.)

Proof. Let {y1, y2, . . . , yr} denote the set of different values of f(X), and put
Dj ≡ {k; such that f(xk) = yj , j = 1, 2, . . . , r}. Let

∀j, qj ≡ P[f(X) = yj ] =
∑

k∈Dj

pk.

Then, one has:

(4) H(X)−H(f(X)) =
r∑

j=1

qjH[Pj ],

where Pj denotes the probability distribution {pk

qj
; k ∈ Dj}. Since ∀j, H[Pj ] ≥ 0,

with equality sign holding if and only if Dj is a singleton, the inequality (3) follows.

Definition 2. Let P = {p1, p2, . . . , pN} andQ = {q1, q2, . . . , qN} be two finite
probability distributions containing the equal number N , (N ≥ 2), of positive, and
different terms. The divergence D(P,Q) of distribution P from distribution Q is
defined by the formula:

(5) D(P,Q) =
N∑

k=1

pk log2

pk

qk
.

Observe that the divergence D(P,Q) may be interpreted as a measure of the
discrepancy of the two distributions P and Q. It is asymmetric, i.e., in gener-
al, D(P,Q) 6= D(Q,P). Also, notice that definition of D(P,Q) depends on the
labelling of terms of distributions P and Q.

Lemma 1. Let P and Q be any pair of distributions for which D(P,Q) is
defined. Then, one has:

(6) D(P,Q) ≥ 0.

The equality sign holds if and only if pk = qk, k = 1, 2, . . . , N .

Proof. Using the inequality ln(1 + x) ≤ x, for x > −1, where the equality sign
holds only for x = 0, one gets:

−D(P,Q) ln 2 =
N∑

k=1

pk ln
(

1 +
qk − pk

pk

)
≤

N∑

k=1

(qk − pk) = 0,

thus showing (6).
This lemma has several important consequences.

Corollary 1. Given a discrete random variable X taking on N different
values. Then, its entropy is maximal if and only if pk = 1

N , k = 1, 2, . . . , N . In
this case, H(X) = log2 N .
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Proof. Denote by PN the probability distribution {p1, p2, . . . , pN} and let UN

denote the uniform distribution { 1
N , . . . , 1

N }. Then, using the previous lemma, one
gets:

(7) log2 N −H(X) = D(PN ,UN ) ≥ 0.

Here is an important consequence of this corollary: the uncertainty concerning
the value of a discrete random variable X that takes N different values is maximal,
if all these values are equiprobable.

One of the basic inequalities used in Information Theory is given by the fol-
lowing

Corollary 2. If P = {p1, p2, . . . , pn} is a probability distribution and Q =
{q1, q2, . . . , qN} is a set of N positive numbers such that

∑N
k=1 qk ≤ 1, then,

N∑

k=1

pk log2

pk

qk
≥ 0.

Proof. Set λ ≡ ∑N
k=1 qk and qk

′ = qk

λ , k = 1, 2, . . . , N . Then, Q′ =
{q1

′, . . . , qN
′} is a probability distribution, and by Lemma 1, D(P,Q′) ≥ 0. Thus,

N∑

k=1

pk log2

pk

qk
= log2

1
λ

+ D(P,Q′) ≥ 0.

Now one can introduce the basic concept that will be used in characterization
of the Markov Property.

Definition 3. The joint information I(X,Y ) of random variables X and Y
where each one of them takes only a finite number of different values, is defined by:

(8) I(X,Y ) ≡ H(X) + H(Y )−H((X, Y )),

where H((X, Y )) denotes the entropy of the random vector (X,Y ).

Observe that if different values of X and Y are x1, . . . , xN and y1, . . . , yM ,
respectively, and if the joint distribution of X and Y is rjk = P[X = xj , Y =
yk], j = 1, 2, . . . , N, k = 1, 2, . . . , M , then the entropy H((X, Y )) of the random
vector (X, Y ), is given by:

H((X, Y )) =
N∑

j=1

M∑

k=1

rjk log2

1
rjk

.

Remark. Put pj = P[X = xj ], j = 1, 2, . . . , N , and qk = P[Y = yk], k =
1, 2, . . . ,M . Then one has:

M∑

k=1

rjk = pj , j = 1, 2, . . . , N, and

N∑

j=1

rjk = qk, k = 1, 2, . . . , M.
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Hence,

H(X) =
N∑

j=1

pj log2

1
pj

=
N∑

j=1

M∑

k=1

rjk log2

1
pj

,

H(Y ) =
M∑

k=1

qk log2

1
qk

=
N∑

j=1

M∑

k=1

rjk log2

1
qk

.

Thus,

I(X, Y ) =
N∑

j=1

M∑

k=1

rjk log2

rjk

pjqk
.

Remark. Let R denote the joint probability distribution of random variables
X and Y , and let PQ be probability distribution {pjqk; j = 1, 2, . . . , N, k =
1, 2, . . . ,M}, that is, PQ would be the joint distribution of random variables X
and Y , were they independent, as they are not assumed to be here. Then

(9) I(X, Y ) = D(R,PQ).

From (9) and Lemma 2, one gets the following

Theorem 1. For any two random variables X and Y , one has:

(10) I(X, Y ) ≥ 0.

The equality sign holds in (10) if and only if X and Y are independent.

A very important ramification of this theorem: in classical Shannon Informa-
tion Theory, I(X, Y ) is interpreted as the amount of information gained about the
random variable X based on observations of random variable Y . From the defini-
tion of I(X, Y ), it follows that I(X, Y ) = I(Y,X), that is, amounts of information
gained about one of the random variables based on observations of the other, are
equal. This amount of information is always nonnegative and equal to zero if and
only if X and Y are independent random variables. Or, two paraphrase this, two
random variables are independent if and only if by observing one of them, one gets
no information about the other. Hence, Theorem 1 sheds a new light on the mean-
ing of independence—one of the basic concepts that is introduced in an elementary
Probability Theory course. Actually, this theorem could be used as the definition
of independence of two random variables. By defining independence this ways,
students will get a clear intuitive meaning of this concept. To elaborate further on
this, one recalls the definition of conditional probabilities:

pj|k ≡ P[X = xj |Y = yk] =
rjk

qk
, qk > 0;

qj|k ≡ P[Y = yk|X = xj ] =
rjk

pj
, pj > 0.

Denote by Pk the distribution {pj|k; j = 1, 2, . . . , N} for k = 1, 2, . . . ,M , and
by Qj the distribution {qk|j ; k = 1, 2, . . . ,M, } for j = 1, 2, . . . , N . Thus, Pk is
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the conditional distribution of X given Y = yk, k = 1, 2, . . . , M , and Qj is the
conditional distribution of Y given X = xj , j = 1, 2, . . . , N . Put

H(X|Y ) =
M∑

k=1

qkH[Pk], and

H(Y |X) =
N∑

j=1

PjH[Qj ].

The quantity H(X|Y ), (resp. H(Y |X)), is interpreted as the average conditional
entropy of X given Y . (Resp. of Y given X). It is clear that

(11) H(X|Y ) = H((X,Y ))−H(Y ),

and from Lemma 1 it follows that

(12) H(X|Y ) ≥ 0,

since Y is a function of (X, Y ), and thus

H(Y ) ≤ H((X, Y )).

Furthermore, it follows from (11) that

(13) I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Formula (13) has the following, and very important interpretation: the information
gained about X by observing Y is equal to the decrease of uncertainty concerning
X obtained by observing Y (and conversely). It follows from (12) that

(14) H(X|Y ) ≤ H(X).

Thus, one has the following corollary to Theorem 1: by observing Y , the uncertainty
concerning X is nonincreasing; it remains unchanged if and only if random variables
X and Y are independent. Another way of paraphrasing Theorem 1 is to state that
for any pair of random variables X and Y , one has

H((X, Y )) ≤ H(X) + H(Y ),

where the equality sign holds if and only if X and Y are independent. From (13)
one gets that

(15) I(X,Y ) ≤ H(X).

Observe that in (15) equality sign holds if and only if X is w.p. 1 constant for a
given value of random variable Y . That is, if X is a function of Y . In particular,

(16) I(X,X) = H(X).

Hence, the entropy of a random variable X measures the amount of information
concerning itself that is contained in its value. Since I(X, Y ) is symmetric, (15)
implies that

I(X, Y ) ≤ min(H(X),H(Y )).
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Theorem 1 demonstrated that a close relationship between the notion of indepen-
dence of two random variables, and that of information. This relationship can now
be extended to a case of more than two independent random variables, and it is
described by the following theorem.

Theorem 2. Given a finite set of jointly distributed random variables {Xi;
i = 1, 2, . . . , n, n > 2} on probability space (Ω,F ,P). Assume that for every
i, i = 1, 2, . . . , n, Xi takes only a finite number of different values. Denote by
H((X1, X2, . . . , Xn)) the entropy of the joint distribution of X1, X2, . . . , Xn. Then,

(17) H((X1, X2, . . . , Xn)) ≤
n∑

k=1

H(Xk),

where the equality sign holds if and only if X1, X2, . . . , Xn are independent.

Proof. Let xkj , j = 1, 2, . . . , Nk, denote the set of different values taken by
random variables Xk, k = 1, 2, . . . , n. Put pkj = P[Xk = xkj ], k = 1, 2, . . . , n, j =
1, 2, . . . , Nk. Denote by Pk the distribution {pk1, pk2, . . . , pkNk

} and by P1P2 · · · Pn

the probability distribution whose terms are p1j1p2j2 · · · pnjn
. LetR denote the joint

distribution of the random variables X1, X2, . . . , Xn, that is, R = {r(j1, . . . , jn)},
where

r(j1, . . . , jn) = P[X1 = x1j1 , . . . , Xn = xnjn ].

Then, one has:

H((X1, X2, . . . , Xn))−
n∑

k=1

H(Xk) =
N1∑

j1=1

· · ·
Nn∑

jn=1

r(j1, . . . , jn) log2

r(j1, . . . , jn)
p1j1 · · · pnjn

.

Thus,

(18) H((X1, X2, . . . , Xn))−
n∑

k=1

H(Xk) = D(R,P1P2 · · · Pn) ≥ 0,

where the equality sign holds in (18) if and only if R = P1P2 · · · Pn, i.e., if
X1, X2, . . . , Xn are independent.

Definition 4. Put

(19) I(X1, X2, . . . , Xn) ≡ H((X1, X2, . . . , Xn))−
n∑

k=1

H(Xk).

I(X1, X2, . . . , Xn) is called the joint information provided by random variable
X1, X2, . . . , Xn.

Observe that (19) generalizes Definition 1. The immediate consequence of
Theorem 2 is the following corollary.

Corollary 3. Random variables {Xk, k = 1, 2, . . . , n} are independent if
and only if their joint information is equal to zero.
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Another re-statement of Theorem 2 is the following corollary.

Corollary 4. Random variables {Xk; k = 1, 2, . . . , n} are independent if
and only if for each k, k = 1, 2, . . . , n− 1, one has:

(20) I((X1, X2, . . . , Xk), Xk+1) = 0.

Remark. What does (20) say? It states, that when Xks are independent, by
observing X1, X2, . . . , Xk, k = 1, 2, . . . , n − 1, one does not get information about
Xk+1.

Proof. For k ≥ 2 one has that

(21) I(X1, . . . , Xk+1)− I(X1, . . . , Xk) = I((X1, . . . , Xk), Xk+1).

After summing (21) for k = 2, 3, . . . , n−1, and after adding I(X1, X2) to both sides
of the equality, one gets:

(22) I(X1, X2, . . . , Xn) =
n−1∑

k=1

I((X1, . . . , Xk), Xk+1).

Using (22), one gets the statement of the corollary.
Observe that although I(X1, X2, . . . , Xn) is invariant with respect to any per-

mutation of random variables X1, X2, . . . , Xn, the right-hand side of (22) is not
invariant with respect to permutations of Xks. It can be shown that there are
(2n− 3)!! decompositions of the right-hand side of (22). More precisely, this num-
ber represents the number of decomposition of I(X1, X2, . . . , Xn) into the sum of
n− 1 joint informations. (This number is obtained by considering oriented rooted
trees). However, to each of these decompositions for joint information corresponds
a criterion of independence of random elements in question. This leads to the
following theorem.

Theorem 3. Let X1, X2, . . . , Xn be a set of independent random variables
given on probability space (Ω,F ,P), each of them taking on a finite number of
different values, and let Z be an arbitrary random variable given on the same prob-
ability space and also taking on a finite number of different values. Then,

(23)
n∑

k=1

I(Xk, Z) ≤ I((X1, X2, . . . , Xn), Z).

Proof. It suffices to prove (23) for n = 2, and then use the induction argument
to show its validity for n > 2. Assume X, Y are independent random variables
satisfying the assumptions of the theorem, and whose values are denoted by x, y,
respectively. Likewise, let Z be an arbitrary random variable satisfying the as-
sumptions of the theorem, and whose values are denoted by z. Then, one has to
show

(24) I(X, Z) + I(Y, Z) ≤ I((X, Y ), Z).
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From the definition of information, it follows that

I((X,Y ), Z)− I(X, Z)− I(Y, Z) = D(P,Q),

where P is the joint distribution of X, Y and Z, that is, P = {P[X = x, Y = y,
Z = z]}, and Q is the probability distribution whose terms are

Q(x, y, z) =
P[X = x,Z = z]P[Y = y, Z = z]

P[Z = z]
.

Then, with all this in place, (24) follows from Lemma 2. The induction argument
completes the proof.

Remark. The notion of the joint information can be extended for arbitrary
random variables. However, we are not going to do it here. For example, if X, Y
are continuous random variables having the joint probability density function fX,Y

and whose marginal probability densities are fX , fY , respectively, then their joint
information is given by:

I(X, Y ) =
∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y) log2

fX,Y (x, y)
fX(x)fY (y)

dx dy,

provided that the integral on the right-hand-side of this equation converges.

3. Sufficient Function

The main ingredient for formulating the Markov property in terms of Entropy
and Information, is the concept of a sufficient function. It is introduced by the
following definition.

Definition 5. Let X, Y be random variables given on a probability space
(Ω,F ,P) such that I(X,Y ) is finite. Given a real-valued, Borel measurable function
g. Then, the random variable g◦X ≡ g(X) is called a sufficient function of random
variable X for random variable Y , if one has

I(g(X), Y ) = I(X,Y ).

In other words, g(X) is sufficient for Y if g(X) contains all information on
random variable Y provided by random variable X. The main characterization of
a sufficient function, that connects concepts of information and conditional prob-
abilities, and that will be used in formulation of the Markov property, is given by
the following theorem.

Theorem 4. Given random variables X and Y each of them taking on a
finite number of values x1, . . . , xN and y1, . . . , yM , respectively. Let g be a real-
valued, Borel function. Then, g(X) is a sufficient function for Y if and only if the
conditional probability distribution of Y given a value of X, depends on the value
of g(X) only, that is,

(25) P[Y = yk|X = xi] = P[Y = yk|X = xj ]

whenever g(xi) = g(xj), i = 1, 2, . . . , N, j = 1, 2, . . . , N .
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Observe that relation (25) could be expressed differently, namely, X and Y are
independent random variables when the value of g(X) is fixed, that is, for any z
such that P[g(X) = z] > 0, one has:

(26) P[X = xj , Y = yk|g(X) = z] = P[X = xj |g(X) = z]P[Y = yk|g(X) = z].

Proof. Denote by P = {pj ; j = 1, 2, . . . , N}, where pj = P[X = xj ] the
distribution of X, and by Q = {qk; k = 1, 2, . . . , M}, where qk = P[Y = yk],
the distribution of Y . Denote by R = {rjk; j = 1, 2, . . . , N, k = 1, 2, . . . , M},
where rjk = P[X = xj , Y = yk] the joint distribution of X,Y . Let {z1, z2, . . . , zs}
be the set of different values of function g taken on the set {x1, x2, . . . , xN}. Put
g(xj) = zl, j ∈ Dl, where D1, D2, . . . , Ds is a partition of the set {1, 2, . . . , N}.
Furthermore, define v(xj) = l if j ∈ Dl, tlk = P[g(X) = zl, Y = yk] and tl =
P[g(X) = zl]. The numbers

(27) ujk =
tv(xj)k · pj

tv(xj)
, j = 1, 2, . . . , N, k = 1, 2, . . . ,M,

form a probability distribution U = {ujk}, and one has:

(28) I(X,Y )− I(g(X), Y ) = D(R,U),

thus, I(X,Y ) = I(g(X), Y ) if and only if R = U ; that is, if

(29)
tv(xj)k · pj

tv(xj)
= rjk,

i.e., if and only if

(30)
rik

pi
=

rjk

pj
whenever g(xi) = g(xj).

Hence, (25) is the necessary and sufficient condition for

I(g(X), Y ) = I(X,Y ).

Furthermore, if g(xj) = zl, then

P[X = xj , Y = yk|g(X) = zl] =
P[X = xj , Y = yk]

P[g(X) = zl]
= P[X = xj |g(X) = zl]P[Y = yk|X = xj ].

Hence, (26) is equivalent to

P[Y = yk|X = xj ] = P[Y = yk|g(X) = zl]

if g(xj) = zl. Thus, (26) is equivalent to (25).
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4. Markov Chains

Using concepts of entropy and information with their basic characterizations
just introduced, now one can introduce a Markov Chain—a concept close to that of
independence. Here, the simplest case of a Markov Chain will be introduced: that
one depending on a discrete parameter, and with a finite number of states.

Definition 6. A sequence {Xn; n = 1, 2, . . . } of real-valued random variables
given on a probability space (Ω,F ,P), each taking on a finite number of values, is
called a discrete-parameter Markov Chain if

(31) I((X1, X2, . . . , Xn), Xn+1) = I(Xn, Xn+1), n = 1, 2, . . . .

The relation (31) expresses the Markov Property in a natural way that is
easy to comprehend intuitively, while at the same time, preserves all the neces-
sary mathematical rigor. Definition 6 tells us that a sequence of random variables
{Xn; n = 1, 2, . . . } is a Markov Chain if Xn contains all information about Xn+1

that is present in the random vector (X1, X2, . . . , Xn). To put it yet another way,
this sequence of random variables is a Markov Chain if Xn, now considered as a
function on X1, X2, . . . , Xn, is a sufficient function for Xn+1 for n = 1, 2, . . . .

Recall the traditional definition of a discrete-parameter Markov Chain with a
finite number if states:

Definition 7. A sequence {Xn; n = 1, 2, . . . } of real-valued random variables
given on a probability space (Ω,F ,P), each taking on a finite number of values, is
called a Markov Chain if

(32) P[Xn+1 = xn+1|X1, X2, . . . , Xn] = P[Xn+1 = xn+1|Xn].

The requirement (32), although very deep, appears to students who are taking
an elementary Probability Theory course, as purely formalistic—just made in order
to make our life easy!

Exercise 1. Show that Definitions 6 and 7 are equivalent. Hint: use Theorem
4 and the basic property of a sufficient function.

Exercise 2. A person is walking on a straight line who at each point of time
n, n = 1, 2, . . . , either takes one step to the right with probability p, p > 0, or one
step to the left with probability q = 1− p. Let Xn denotes his/her position on the
line at instant n. Using both Definitions 6 and 7, show that Xn is a Markov Chain.
(This is the well-known Random Walk Model.)

Exercise 3. Given a sequence of independent, identically distributed random
variables {Xn; n = 1, 2, . . . } such that P[Xn = −1] = p > 0, P[Xn = +1] = q =
1 − p. Put Yn = XnXn+1, n = 1, 2, . . . . Show that sequence Yn; n = 1, 2, . . . , is
not a Markov Chain if p 6= q.
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5. A History Note

Today, Theory of Markov Processes is an essential part of the Probability
Theory, and it has wide applications in many areas of sciences. This theory was
named after A. A. Markov, the celebrated Russian mathematician, who laid the
foundations of the theory in a series of papers starting in 1907. One of his first
application of this theory was in investigation of the way the vowels and consonants
alternate in literary works in Russian literature. Markov carried out such a study
on Pushkin’s Eugene Onegin and on Aksakov’s The Childhood Years of Bagrov’s
Grandson. Although the modern linguists have shown that a natural language
is not a Markov Chain, nevertheless, the work on a study of Russian language, a
natural language, contributed to the creation of what is known today, as the Theory
of Markov Processes!
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